https://www.researchgate.net/publication/359080617/figure/fig1/AS:1131231521574912@1646718020686/This-figure-is-a-representation-of-the-symplectic-group-Sp1-as-the-interior-of-a-solid.ppm

Metaplectic groups and quadratic hamiltonians

Group Leader: Olimpiu Anton

Study Team: Olimpiu Anton

Supervisor: Calin Lazaroiu

1. M. H. Weissman, What is a metaplectic group ?, Notices of the AMS 70 (2023) 5, 806-811.

2. J. Rawnsley, On the universal covering group of the real symplectic group, J. Geometry and Physics 62 (2012) 2044 - 2058.

3. M. Combescure, D. Robert, Quadratic Quantum Hamiltonians revisited, arXiv/math-ph/0509027.

4. J. Leray, Lagrangian analysis and quantum mechanics, MIT Press 1981.

5. A. Weyl, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964) 143 - 211.

6. P. L. Robinson & J. L. Rawnsley, The metaplectic representation, structures and geometric quantization, Memoirs of the AMS 81 (1989) 410.

7. M. Cahen & S. Gutt, Spinc, Mpc and symplectic Dirac operators, Geometric Methods in Physics, Trends in Mathematics 2013, pp 13-28.

8. M. Kashiwara & M. Vergne, On the Segal-Shale-Weil Representations and Harmonic Polynomials, Inventiones mathematicae, 44 (1978) 1-47.

See also

D. Salamon, Symplectic geometry, Cambridge U.P., 1994.

da Silva, Lectures on symplectic geometry

Meinrenken, Symplectic geometry