Encoding graphs into quantum states: an axiomatic approach

Radu Ionicioiu

DFT, IFIN-HH
18.10 .2013

Outline

Setting the scene
Motivation, notations, approaches

From graphs to quantum states, the axiomatic way
A fresh look
Three axioms
Examples

Conclusions

The main question

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

|G>

Given a graph $G=(V, E)$, how do we map it to a quantum state $|G\rangle$?

Motivation

- going beyond graph states many interesting states ($W_{n}, D_{n, k}$) are not graph states
Can we define new families of entangled states based on graphs?
solving graph problems using the "quantum power"
hard problems: (sub)graph isomorphism, 3COL etc
Can we derive properties of G from the associated $|G\rangle$? graph invariants?

Motivation

- going beyond graph states many interesting states ($W_{n}, D_{n, k}$) are not graph states
Can we define new families of entangled states based on graphs?
- solving graph problems using the "quantum power" hard problems: (sub)graph isomorphism, 3COL etc
Can we derive properties of G from the associated $|G\rangle$? graph invariants?

Notations and background

a quick overview
graph: $G=(V, E)$

- order of $G: n=|V|$
- adjacency matrix: $A(G): \quad A_{i j}=1 \quad$ iff $\quad(i, j) \in E, 0$ otherwise
- simple graph: undirected, no loops, no multiedges: $A_{i j}=A_{j i}$
- graph isomorphism:

$$
G \simeq G^{\prime} \Leftrightarrow A\left(G^{\prime}\right)=P A(G) P^{-1}, \quad P \in \mathcal{S}_{n}
$$

Several approaches

given $G=(V, E)$, how to: (i) find \mathcal{H}
(ii) find $|G\rangle \in \mathcal{H}$

- map V to qubits: graph states
 - map E to qubits: Kitaev-like

other: $\frac{1}{\sigma_{G}} L(G)=\frac{\Delta(G)-A(G)}{2|E|}=: \rho(G)$

Braunstein et al. quant-ph/0406165
random walks ...

Several approaches

$$
\begin{aligned}
\text { given } G=(V, E) \text {, how to: } & \text { (i) find } \mathcal{H} \\
& \text { (ii) find }|G\rangle \in \mathcal{H}
\end{aligned}
$$

- map V to qubits: graph states
- map E to qubits: Kitaev-like
- other: $\frac{1}{d_{G}} L(G)=\frac{\Delta(G)-A(G)}{2|E|}=: \rho(G)$

Braunstein et al. quant-ph/0406165
random walks ...

How big \mathcal{H} needs to be?

a simple counting

$$
G=(V, E), n=|V|, L=|E|
$$

we have

$$
0 \leq L \leq n(n-1) / 2
$$

\# graphs with n vertices: $2^{n(n-1) / 2}$
not all distinct!
\# graphs with n vertices, L edges: $\binom{n(n-1) / 2}{L}$
need a bigger \mathcal{H} than n-dim

Reframing the question

What properties we want for the map $G \rightarrow|G\rangle$?

Reframing the question

What properties we want for the map $G \rightarrow|G\rangle$?

New approach: start with Axioms \rightarrow derive properties

How to choose the Axioms?

Three axioms: A1

tensor product

- A1. Tensor product:

$$
\left|G_{1} \uplus G_{2}\right\rangle=\left|G_{1}\right\rangle \otimes\left|G_{2}\right\rangle
$$

Corrolary 1 (empty graph): $\left|E_{n}\right\rangle=\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$
Corrolary 2: Given $G=(V, E)$, to each $i \in V$ we associate $\mathcal{H} i$, $\mathcal{H}=\otimes_{i} \mathcal{H}_{i}$
vertices \mapsto qudits

Three axioms: A1

tensor product

- A1. Tensor product:

$$
\left|G_{1} \uplus G_{2}\right\rangle=\left|G_{1}\right\rangle \otimes\left|G_{2}\right\rangle
$$

Corrolary 1 (empty graph): $\left|E_{n}\right\rangle=\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$
Corrolary 2: Given $G=(V, E)$, to each $i \in V$ we associate \mathcal{H}_{i}, $\mathcal{H}=\bigotimes_{i} \mathcal{H}_{i}$
vertices \mapsto qudits

Three axioms: A1

tensor product

- A1. Tensor product:

$$
\left|G_{1} \uplus G_{2}\right\rangle=\left|G_{1}\right\rangle \otimes\left|G_{2}\right\rangle
$$

Corrolary 1 (empty graph): $\left|E_{n}\right\rangle=\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$

Corrolary 2: Given $G=(V, E)$, to each $i \in V$ we associate \mathcal{H}_{i}, $\mathcal{H}=\otimes_{i} \mathcal{H}_{i}$
vertices \mapsto qudits

Three axioms: A2

isomorphism

- A2. Graph isomorphism:

$$
\begin{gathered}
G_{1} \simeq G_{2} \Rightarrow \rho_{2}=P \rho_{1} P^{-1} \\
\rho_{1,2}=\left|G_{1,2}\right\rangle\left\langle G_{1,2}\right|, P \in \mathcal{S}_{n}, \text { well-defined }
\end{gathered}
$$

Corrollary 3: If $P \in \mathcal{S}_{n}$ automorphism of G, then $[P, \rho]=0$
Proposition: Given $G=(V, E),|G\rangle \in \mathcal{H}$, with $\mathcal{H}=\mathcal{H}_{1}^{\otimes n}$
$\operatorname{dim} \mathcal{H}_{1}$ free parameter

Three axioms: A2

isomorphism

- A2. Graph isomorphism:

$$
\begin{gathered}
G_{1} \simeq G_{2} \Rightarrow \rho_{2}=P \rho_{1} P^{-1} \\
\rho_{1,2}=\left|G_{1,2}\right\rangle\left\langle G_{1,2}\right|, P \in \mathcal{S}_{n}, \text { well-defined }
\end{gathered}
$$

Corrollary 3: If $P \in \mathcal{S}_{n}$ automorphism of G, then $[P, \rho]=0$
Proposition: Given $G=(V, E),|G\rangle \in \mathcal{H}$, with $\mathcal{H}=\mathcal{H}_{1}^{\otimes n}$
$\operatorname{dim} \mathcal{H}_{1}$ free parameter

Three axioms: A3

edge operator

- A3. Universal edge operator:

$$
\begin{aligned}
& \left|G^{\prime}\right\rangle=U(i, j)|G\rangle \\
& E^{\prime}=E \cup\{(i, j)\} \\
& U \text { does not depend on } G, G^{\prime}
\end{aligned}
$$

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

$$
\downarrow
$$

|G>

Consistency: properties of U

1. local action on $\mathcal{H}_{i j}=\mathcal{H}_{i} \otimes \mathcal{H}_{j}$

$$
U(i, j)=U \otimes I^{\otimes n-2}
$$

2. unoriented edge $U(i, j)=U(j, i)$

3. edge commutativity

Consistency: properties of U

1. local action on $\mathcal{H}_{i j}=\mathcal{H}_{i} \otimes \mathcal{H}_{j}$

$$
U(i, j)=U \otimes I^{\otimes n-2}
$$

2. unoriented edge $U(i, j)=U(j, i)$

$$
[S, U]=0
$$

3. edge commutativity

Consistency: properties of U

1. local action on $\mathcal{H}_{i j}=\mathcal{H}_{i} \otimes \mathcal{H}_{j}$

$$
U(i, j)=U \otimes I^{\otimes n-2}
$$

2. unoriented edge $U(i, j)=U(j, i)$

$$
[S, U]=0
$$

3. edge commutativity

$$
[U \otimes I, I \otimes U]=0
$$

To summarize

The theory is characterized by a triplet

$$
\left(\mathcal{H}_{1},|\phi\rangle, U\right)
$$

where:

- \mathcal{H}_{1} :
- $|\phi\rangle \in \mathcal{H}_{1}$:
- $U \in \mathcal{L}\left(\mathcal{H}_{1}^{\otimes 2}\right)$:

$$
|G\rangle=\prod_{i, j \in E(G)} U(i, j)|\phi\rangle^{\otimes n}
$$

Examples I

Qudit graph states

- $\mathcal{H}_{1}=\mathbb{C}^{d} \quad d=2$ graph states
- $|\phi\rangle=|+\rangle_{d}=\frac{1}{\sqrt{d}} \sum_{i}|i\rangle$
- $U=C Z_{d}=\sum_{j, k} \omega^{j k}|j k\rangle\langle j k|$ $\omega=e^{2 \pi i / d}$

Raussendorf et al., PRA 68, 022312 (2003)
Looi et al., PRA 78, 042303 (2008)

Examples II

Gaussian states, CV cluster states

$$
\text { vertex = qumode }(\mathrm{HO})
$$

- $\mathcal{H}_{1}=\operatorname{span}\left\{|s\rangle_{p}\right\} \quad \mathbf{p}|s\rangle_{p}=s|s\rangle_{p}$
- $|\phi\rangle=|0\rangle_{p}$ (CV cluster states)
$|\phi\rangle=|\beta\rangle$ (Gaussian states)
- $U=C_{i j}(\kappa)=e^{i \kappa q_{i} q_{j}}$

$$
|G\rangle=e^{\frac{i}{2} \kappa \sum_{i, j} A(G)_{i j} q_{i} q_{j}}|\phi\rangle^{\otimes n}
$$

Menicucci et al., PRA 83, 042335 (2011)

Regular graphs

- so far: $\mathcal{H}_{1}=\mathbb{C}^{d}$
no structure at each vertex
- regular graphs: each vertex order g

$$
\mathcal{H}_{1}=\left(\mathbb{C}^{d}\right)^{g}
$$

add structure at the vertex

Examples III

Projected entangled pair states (PEPS)

- $\mathcal{H}_{1}=\left(\mathbb{C}^{d}\right)^{g}$

$$
g=4
$$

- $|\phi\rangle=|+\rangle_{d}^{\otimes g}$
- $U \sim \Pi^{(k)} V$

$$
\begin{aligned}
& V:=d^{-3 / 2} \sum_{i, j, k, l} \omega^{(i-j)(k-l)}|i j\rangle\langle k| \mid \\
& \left|\Phi_{d}\right\rangle=V|+\rangle_{d}^{\otimes 2}=\frac{1}{\sqrt{d}} \sum_{i}|i i\rangle
\end{aligned}
$$

Verstraete et al., PRL 96, 220601 (2006)

Examples IV

Quantum random networks (QRN)

- $\mathcal{H}_{1}=\left(\mathbb{C}^{2}\right)^{n-1}$
- $|\phi\rangle=|0\rangle^{\otimes n-1}$
- $U=\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right| V$

$$
\begin{aligned}
& V:=\sqrt{1-\frac{p}{2}} \left\lvert\, \otimes 2+\frac{i}{2} \sqrt{\frac{p}{2}}(X-Y)^{\otimes 2}\right. \\
& |\Omega\rangle=V|00\rangle=\sqrt{1-\frac{p}{2}}|00\rangle+\sqrt{\frac{p}{2}}|11\rangle
\end{aligned}
$$

Perseguers et al., Nature Phys. 6, 539 (2010)

Solutions: $d=2$

- $U=\operatorname{diag}(a, b, b, c)$
(a) U unitary \Rightarrow graph states (CZ): $a=b=1, c=-1$
(b) U projector \Rightarrow Bell projector (parity gate):
$P_{0}=\operatorname{diag}(1,0,0,1), \quad P_{1}=\operatorname{diag}(0,1,1,0)$

Solutions: $d=2$

- $U=\operatorname{diag}(a, b, b, c)$
(a) U unitary \Rightarrow graph states (CZ): $a=b=1, c=-1$
(b) U projector \Rightarrow Bell projector (parity gate):
$P_{0}=\operatorname{diag}(1,0,0,1), \quad P_{1}=\operatorname{diag}(0,1,1,0)$
- $U=a l^{\otimes 2}+b(T \otimes I+I \otimes T)+c T \otimes T$

$$
T=\left[\begin{array}{cc}
0 & 1 \\
\gamma & -\alpha
\end{array}\right]
$$

Extension: directed graphs

oriented edge operator : $V={ }_{y} \mathbb{\mathcal { L }} \Rightarrow V^{\prime}:=S V S={ }_{y} \downarrow$

- $\left[V, V^{\prime}\right]=0$

$$
{ }_{x}^{x} \bar{\downarrow}=\sqrt{\downarrow}
$$

- $[V \otimes I, I \otimes V]=0$
- $\left[V \otimes I, I \otimes V^{\prime}\right]=0$

- $\left[V^{\prime} \otimes I, I \otimes V\right]=0$

Directed graphs: a solution

Any soln. V for directed graphs provides soln. U for undirected graphs

$$
U(x, y)=V(x, y) V^{\prime}(x, y)
$$

Example:

Finale I

overview

- axiomatic way
unifying framework for several states: graph, Gaussian/CV cluster, PEPS, QRN
- modular approach
replace axioms with stronger/weaker ones \Rightarrow different class of states
- generalizes graph/cluster states
oriented graphs, weighted graphs
R.I., T. Spiller, Phys. Rev. A 85, 062313 (2012)

Finale II

open questions

- future work: general solution for qudit \mathbb{C}^{d}
- what class of quantum states can be described by A1-A3?
- what graph-theoretical problems can be solved?
- define new graph invariants?
R.I., T. Spiller, Phys. Rev. A 85, 062313 (2012)

Thank you!

Radu Ionicioiu
Encoding graphs into quantum states: an axiomatic approach

