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Setting

(M , g) = pseudo-Riemannian manifold of even dimension d

M̂ =manifold diffeomorphic with R×M (on which we shall consider
the cylinder and cone metrics, respectively).

(p, q)=the signature type of the metric g on M ;

dim M̂ = d + 1; both cone and cylinder metric on M̂ have signature
type (p + 1, q).

Also assume that ClK(p + 1, q) is non-simple and that its Schur
algebra equals K, i.e.:

(A) K = C ,
or
(B) K = R and p − q ≡8 0.

Then ClK(p, q) is simple and its Schur algebra also equals K. We
further assume that M is oriented and on M̂ we choose the
orientation compatible with that of M .
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Preparations

On M̂, consider the cylinder metric gcyl whose squared line element takes
the form:

ds2cyl = du2 + ds2 (u ∈ R) ,

where ds2 is the squared line element of g . This is related by a conformal
transformation to the cone metric gcone on M̂ , whose squared line
element is given by:

ds2cone = dr2 + r2ds2 = r2ds2cyl (r
def.
= eu ∈ (0,+∞)) .

We have gcone = r2gcyl and ĝcone =
1
r2
ĝcyl, where we view u and r = eu

as smooth functions defined on M̂, namely u ∈ C∞(M̂ ,R) and
r ∈ C∞(M̂ , (0,+∞)) ⊂ C∞(M̂ ,R). The transformation u → r maps the
limit u → −∞ to the limit r → 0. Unless M is a sphere, the cone metric
is not complete due to the conical singularity which arises when one
attempts to add the point at r = 0. For any vector field V ∈ Γ(M̂ ,TKM̂)
and any one-form η ∈ Γ(M̂,T ∗

K
M̂) = Ω1

K
(M̂), we have V#cone

= r2V#cyl

and η#cone = 1
r2
η#cyl , where #cyl and #cone are the musical

isomorphisms of the cylinder and cone, respectively.
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Preparations

M(M̂ ,gcone)

r

Figure: Metric cone over M

M

u = +∞uu = −∞

(M̂ ,gcyl)

Figure: Metric cylinder over M
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The ring C∞
⊥ (M̂,K)

We let Π : M̂ → M be the projection on the second factor. For later
reference, consider the following unital subring of the commutative ring
C∞(M̂ ,K):

C∞
⊥ (M̂ ,K)

def.
= {f ◦ Π|f ∈ C∞(M ,K)} ⊂ C∞(M̂ ,K) .

It coincides with the image Π∗(C∞(M ,K)) through the pullback map Π∗,
which acts as follows on smooth functions defined on M :

Π∗(f ) = f ◦ Π ∈ C∞
⊥ (M̂,K) , ∀f ∈ C∞(M ,K) .

In fact, Π∗ corestricts to a unital isomorphism of rings:

C∞(M ,K)
Π∗| C∞

⊥
(M̂,K)

−→ C∞
⊥ (M̂ ,K) ,

which allows us to identify C∞
⊥ (M̂ ,K) with C∞(M ,K).
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The canonical normalized one-forms

The one-form:

ψ = du =
1

r
dr

has unit norm with respect to the cylinder metric, being dual to the unit
norm vector field ψ#cyl = ∂u = r∂r with respect to the metric gcyl:

ψ = ∂uygcyl .

Similarly, the one-form:
θ = dr = rψ

has unit norm with respect to the cone metric, being dual to the unit
norm vector field θ#cone = ∂r with respect to the metric gcone:

θ = ∂rygcone .
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The Euler operator

The Euler operator E = ⊕d+1
k=0k idΩk

K
(M̂) acts as follows on a general

inhomogeneous form:

E(ω) =

d+1
∑

k=0

kω(k) , ∀ω =

d+1
∑

k=0

ω(k) ∈ ΩK(M̂) with ω(k) ∈ Ωk
K
(M̂) .

The scaling operators λE (λ > 0) act as:

λE (ω) =

d+1
∑

k=0

λkω(k) , ∀ω =

d+1
∑

k=0

ω(k) ∈ ΩK(M̂) with ω(k) ∈ Ωk
K
(M̂) .
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The Kähler-Atiyah algebra

Using the definition of generalized products, we find:

△cone
p =

1

r2p
△cyl

p , ∀p = 0 . . . d + 1 .

These identities imply:

r
E

◦ △
cyl
p =

1

r2p
△

cyl
p ◦(r

E
⊗ r

E
) ⇐⇒ r

E
(ω △

cyl
p η) =

1

r2p
[r
E
(ω) △

cyl
p r

E
(η)] , ∀ω, η ∈ ΩK(M̂) ,

r
E

◦ △
cone
p =

1

r2p
△

cone
p ◦(r

E
⊗ r

E
) ⇐⇒ r

E
(ω △

cone
p η) =

1

r2p
[r
E
(ω) △

cone
p r

E
(η)] , ∀ω, η ∈ ΩK(M̂) .

and

rE◦⋄cyl = ⋄cone◦(rE⊗rE) ⇐⇒ rE(ω⋄cylη) = rE(ω)⋄conerE(η) , ∀ω, η ∈ ΩK(M̂)
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The Kähler-Atiyah algebra

Proposition. The maps rE and r−E are mutually inverse
C∞(M̂ ,K)-linear unital isomorphisms of algebras between the
Kähler-Atiyah algebras of the cylinder and cone:

(ΩK(M̂), ⋄cyl)
rE //

(ΩK(M̂), ⋄cone)
r−E

oo .

Corollary. The maps rE and r−E restrict to mutually inverse unital
isomorphisms between the algebras (Ω⊥

K
(M̂), ⋄cyl) and (Ω⊥

K
(M̂), ⋄cone):

(Ω⊥
K
(M̂), ⋄cyl)

rE |
Ω⊥
K

(M̂)
//

(Ω⊥
K
(M̂), ⋄cone)

r−E |
Ω⊥
K

(M̂)

oo .
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The special and vertical subalgebras

One can show that L∂u
is an even C∞

⊥ (M̂ ,K)-linear derivation of the

Kähler-Atiyah algebra (ΩK(M̂), ⋄cyl):

L∂u
◦ ⋄cyl = ⋄cyl ◦ (L∂u

⊗ idΩK(M̂) + idΩK(M̂) ⊗ L∂u
) .

This implies that the operator L∂u
− E is a degree zero C∞

⊥ (M̂ ,K)-linear
derivation of all generalized products of the cone:

(L∂u
−E)◦△cone

p = △cone
p ◦

[

(L∂u
− E)⊗ idΩK(M̂) + idΩK(M̂) ⊗ (L∂u

− E)
]

and hence of the Kähler-Atiyah algebra (ΩK(M̂), ⋄cone):

(L∂u
−E)◦⋄cone = ⋄cone◦

[

(L∂u
− E)⊗ idΩK(M̂) + idΩK(M̂) ⊗ (L∂u

− E)
]

.

In particular, the following subspaces of ΩK(M̂):

Ωcyl
K

(M̂)
def.
= K(L∂u

) , Ωcone
K

(M̂)
def.
= K (L∂u

− E)

are unital C∞
⊥ (M̂,K)-subalgebras of the Kähler-Atiyah algebras

(ΩK(M̂), ⋄cyl) and (ΩK(M̂), ⋄cone), which we shall call the special
subalgebras of the cylinder and cone, respectively.
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The special and vertical subalgebras

Proposition. The appropriate restrictions of the maps r±E give mutually
inverse C∞

⊥ (M̂,K)-linear unital isomorphisms of algebras between the
special subalgebras of the cylinder and cone:

(Ωcyl
K

(M̂), ⋄cyl)

rE |
Ω
cyl
K

(M̂)
//

(Ωcone
K

(M̂), ⋄cone)
r−E |Ωcone

K
(M̂)

oo .

The subspace:

Ω⊥
K
(M̂)

def.
= {ω ∈ ΩK(M̂)|∂uyω = 0} = {ω ∈ ΩK(M̂)|∂ryω = 0}

is a unital C∞(M̂ ,K)-subalgebra of both (ΩK(M̂), ⋄cyl) and
(ΩK(M̂), ⋄cone). Therefore, the intersections:

Ω⊥,cyl
K

(M̂)
def.
= Ω⊥

K
(M̂)∩Ωcyl

K
(M̂) , Ω⊥,cone

K
(M̂)

def.
= Ω⊥

K
(M̂)∩Ωcone

K
(M̂)

are unital C∞
⊥ (M̂,K)-subalgebras (ΩK(M̂), ⋄cyl) and (ΩK(M̂), ⋄cone)

respectively (the vertical subalgebras of the cylinder and cone). The
operator rE satisfies:

rE(Ω⊥,cyl
K

(M̂)) = Ω⊥,cone
K

(M̂) .
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The special and vertical subalgebras

Proposition. The appropriate restrictions of the maps r±E give mutually
inverse C∞

⊥ (M̂,K)-linear unital isomorphisms of algebras between the
vertical subalgebras of the cylinder and cone:

(Ω⊥,cyl
K

(M̂), ⋄cyl)

rE |
Ω
⊥,cyl
K

(M̂)
//

(Ω⊥,cone
K

(M̂), ⋄cone)
r−E |

Ω
⊥,cone
K

(M̂)

oo .
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Special twisted (anti)selfdual forms

Definition. The subalgebras of special twisted (anti-)selfdual forms are
the following C∞

⊥ (M̂ ,K)-subalgebras of the Kähler-Atiyah algebras of the
cylinder and of the cone:

Ω±,cyl
K

(M̂)
def.
= Ω±

K,cyl(M̂)∩Ωcyl
K

(M̂) , Ω±,cone
K

(M̂)
def.
= Ω±

K,cone(M̂)∩Ωcone
K

(M̂) .

These algebras have units pcyl± = 1
2 (1± νcyl) and pcone± = 1

2 (1± νcone),
respectively. Combining the observations above gives:

Proposition. The appropriate restrictions of the maps r±E give mutually
inverse C∞

⊥ (M̂,K)-linear unital isomorphisms of algebras between the
subalgebras of special twisted selfdual/anti-selfdual forms of the cylinder
and cone:

(Ω±,cyl
K

(M̂), ⋄cyl)

rE |
Ω
±,cyl
K

(M̂)
//

(Ω±,cone
K

(M̂), ⋄cone)
r−E |

Ω
±,cone
K

(M̂)

oo .
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Recovering the Kähler-Atiyah algebra of M

The C∞
⊥ (M̂ ,K)-algebra (Ωcyl

K
(M̂), ⋄cyl) can be identified with the

Kähler-Atiyah algebra (ΩK(M), ⋄) as follows. Let Π : M̂ → M be the
projection on the second factor.

Proposition. The pullback map Π∗ : ΩK(M) → ΩK(M̂) has image equal

to Ω⊥,cyl
K

(M̂). Furthermore, its corestriction to this image (which we
again denote by Π∗) is a unital C∞(M ,K)-linear isomorphism of algebras

from (ΩK(M), ⋄) to the vertical subalgebra (Ω⊥,cyl
K

(M̂), ⋄cyl) of the

cylinder, provided that we identify C∞
⊥ (M̂,K) ≈ C∞(M ,K). The inverse

of this isomorphism is the pullback map j∗, where j : M →֒ M̂ is the
embedding of M as the section r = 1 of M̂. Thus, we have mutually
inverse unital isomorphisms of C∞(M ,K) ≈ C∞

⊥ (M̂ ,K)-algebras:

(ΩK(M), ⋄)
Π∗|Ω

⊥,cyl
K

(M̂)

//
(Ω⊥,cyl

K
(M̂), ⋄cyl)

j∗|
Ω
⊥,cyl
K

(M̂)

oo .
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Recovering the Kähler-Atiyah algebra of (M , g)

Proposition. We have mutually-inverse unital isomorphisms of
K-algebras:

(ΩK(M), ⋄)
rE◦ Π∗|Ω

⊥,cone
K

(M̂)

//
(Ω⊥,cone

K
(M̂), ⋄cone)

j∗◦ r−E |
Ω
⊥,cone
K

(M̂)

oo .

Thus Ω⊥,cyl
K

(M̂) consists of those inhomogeneous forms on M̂ which are
Π-pullbacks of inhomogeneous forms ω on M ; this pullback will be called
the cylinder lift ωcyl of ω:

ωcyl
def.
= Π∗(ω) ∈ Ω⊥,cyl

K
(M̂) , ∀ω ∈ ΩK(M) .

Similarly, Ω⊥,cone
K

(M) consists of cone lifts:

ωcone
def.
= rE(Π∗(ω)) ∈ Ω⊥,cone

K
(M̂) , ∀ω ∈ ΩK(M) ,

which are inhomogeneous forms of the type:

ωcone = rE(Π∗(ω)) =

d
∑

k=0

rkΠ∗(ω(k)) , ∀ω =

d
∑

k=0

ω(k) , ω(k) ∈ Ωk
K
(M) .
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Isomorphic models of the Kähler-Atiyah algebra of (M , g)

The full collection of isomorphic models of the Kähler-Atiyah algebra of
(M , g) (viewed as a K-algebra) which arise from the cone and cylinder
constructions is summarized in the commutative diagram below:

(Ω<,cyl
K

(M̂),♦cyl
± )

P
cyl

± //
OO

(Ξcyl

± )−1

rEuujjjjjjjjjjjjjjj

(Ω±,cyl
K

(M̂), ⋄cyl)

2P⊥

��

rEuukkkkkkkkkkkkkk
2P<

oo

(Ω<,cone
K

(M̂),♦cone
± )

r−E

55jjjjjjjjjjjjjjj
Pcone
± //

Ξcone
±

��

(Ω±,cone
K

(M̂), ⋄cone)

r−E

55kkkkkkkkkkkkkk

2P⊥

��

2P<

oo

(ΩK(M), ⋄) oo
j∗

��
Ξcyl

±

(Ω⊥,cyl
K

(M̂), ⋄cyl)
//Π∗

P
cyl

±

OO

rEuukkkkkkkkkkkkkk

(ΩK(M), ⋄)
rE◦ Π∗

//

(Ξcone
± )−1

OO

id

55

uu
id

(Ω⊥,cone
K

(M̂), ⋄cone)

r−E

55kkkkkkkkkkkkkk

Pcone
±

OO

j∗◦ r−E

oo
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Pinors on metric cylinders and cones

ΩK(M̂)

ϕcyl
ǫ

��

γcyl

&&NNNNNNNNNNN

rE // ΩK(M̂)

ϕcone
ǫ

��

γcone

wwooooooooooo

Γ(M̂ ,End(Ŝ))

Ω⊥
K
(M̂)

γ∗

88ppppppppppp
rE // Ω⊥

K
(M̂)

γ∗◦ r−E
ggOOOOOOOOOOO

Γ(M̂ ,End(Ŝ))

γ−1
∗

��

γ−1
cyl

''OOOOOOOOOOOO

γ−1
cone // Ωǫ

K,cone(M̂)

Ω⊥
K
(M̂)

Pcyl
ǫ

// Ωǫ
K,cyl(M̂)

rE

OO
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The Fierz Isomorphism of cylinders and cones

Γ(M , S ⊗ S)
idS⊗ρ //

Ě

��

Π∗

wwooooooooooo

E

((

Γ(M , S ⊗ S∗)

q

��

Π∗

vvnnnnnnnnnnnn

Γ(M̂ , Ŝ ⊗ Ŝ)
idŜ⊗ρ̂

//

Ě∗

��
Ê

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Γ(M̂ , Ŝ ⊗ Ŝ∗)

q̂

��

ΩK(M)

Π∗

ww

Γ(M ,End(S))
γ−1

oo

Π∗

vvnnnnnnnnnnnn

Ω⊥
K
(M̂) Γ(M̂ ,End(Ŝ))

γ−1
∗

oo
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The Fierz Isomorphism of cylinders and cones

Γ(M̂, Ŝ ⊗ Ŝ)
Ě∗ //

Ê

''OOOOOOOOOOOO
Ω⊥

K
(M̂)

γ∗

xxqqqqqqqqqq

Γ(M̂,End(Ŝ))

Γ(M , S ⊗ S)

Π∗

OO

Ě //

E

((PPPPPPPPPPPP
ΩK(M)

Π∗

OO

γ

xxppppppppppp

Γ(M ,End(S))

Π∗

OO
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The pull-back of pinors

ΩK(M)

Π∗

��

idΩK(M) // ΩK(M)

Π∗

��

Γ(M , S ⊗ S)

Ě

ggOOOOOOOOOOO Ě

77oooooooooooo

Π∗

��

Ω⊥
K
(M̂)

rE //

Pcyl
ǫ

��

Ω⊥
K
(M̂)

Pcone
ǫ

��

Γ(M̂ , Ŝ ⊗ Ŝ)

Ě∗

ggNNNNNNNNNNN rE◦Ě∗

77ooooooooooo

Ěcyl

xxppppppppppp
Ěcone

''NNNNNNNNNNN

Ωǫ
K,cyl(M̂)

rE // Ωǫ
K,cone(M̂)
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The supersymmetry conditions (CGK pinor equations)

(Ǩ<,cyl

D̂,Q̂
,♦cyl

ǫ )
Pcyl
ǫ //

OO

(Ξcyl
ǫ )−1

rEvvmmmmmmmmmmmm

(Ǩcyl

D̂,Q̂
, ⋄cyl)

2P⊥

��

rEwwooooooooooo
2P<

oo

(Ǩ<,cone

D̂,Q̂
,♦cone

ǫ )

r−E
66mmmmmmmmmmmm

Pcone
ǫ //

Ξcone
ǫ

��

(Ǩcone

D̂,Q̂
, ⋄cone)

r−E
77ooooooooooo

2P⊥

��

2P<

oo

(ǨD,Q , ⋄) oo
j∗

��
Ξcyl
ǫ

(Ǩ
D̂,Q̂ , ⋄

cyl)//Π∗

Pcyl
ǫ

OO

rEwwnnnnnnnnnnnn

(ǨD,Q , ⋄)
rE◦ Π∗

//

(Ξcone
ǫ

)−1

OO

id

66

vv id

(rE (Ǩ
D̂,Q̂), ⋄

cone)

r−E

77nnnnnnnnnnnn

Pcone
ǫ

OO

j∗◦ r−E

oo
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(Ǩ<,cyl(D̂, Q̂),♦cyl
ǫ )

Pcyl
ǫ //

OO

(Ξcyl
ǫ

)−1

rEttiiiiiiiiiiiiiiii

(Ǩcyl(D̂ , Q̂), ⋄cyl)

2P⊥

��

rEuukkkkkkkkkkkkkk
2P<

oo

(Ǩ<,cone(D̂ , Q̂),♦cone
ǫ )

r−E

44iiiiiiiiiiiiiiii
Pcone
ǫ //

Ξcone
ǫ

��

(Ǩcone(D̂, Q̂), ⋄cone)

r−E

55kkkkkkkkkkkkkk

2P⊥

��

2P<

oo

(Ǩ(D,Q), ⋄) oo
j∗

��
Ξcyl
ǫ

(Ǩ(D̂ , Q̂), ⋄cyl)
//Π∗

Pcyl
ǫ

OO

rEuukkkkkkkkkkkkkk

(Ǩ(D,Q), ⋄)
rE◦ Π∗

//

(Ξcone
ǫ

)−1

OO

id

44

tt id

(rE(Ǩ(D̂ , Q̂)), ⋄cone)

r−E

55kkkkkkkkkkkkkk

Pcone
ǫ

OO

j∗◦ r−E

oo
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