The geometric algebra of metric cones and supersymmetry

Calin Lazaroiu (joint work with E. M. Babalic)
Presentation within the Geometry and Physics Group Department of Theoretical Physics IFIN-HH

September 20, 2013

- $(M, g)=$ pseudo-Riemannian manifold of even dimension d
- $\hat{M}=$ manifold diffeomorphic with $\mathbb{R} \times M$ (on which we shall consider the cylinder and cone metrics, respectively).
- $(p, q)=$ the signature type of the metric g on M;
- $\operatorname{dim} \hat{M}=d+1$; both cone and cylinder metric on \hat{M} have signature type $(p+1, q)$.
- Also assume that $\mathrm{Cl}_{\mathbb{K}}(p+1, q)$ is non-simple and that its Schur algebra equals \mathbb{K}, i.e.:
(A) $\mathbb{K}=\mathbb{C}$,
or
(B) $\mathbb{K}=\mathbb{R}$ and $p-q \equiv_{8} 0$.

Then $\mathrm{Cl}_{\mathbb{K}}(p, q)$ is simple and its Schur algebra also equals \mathbb{K}. We further assume that M is oriented and on \hat{M} we choose the orientation compatible with that of M.

On \hat{M}, consider the cylinder metric $g_{\text {cyl }}$ whose squared line element takes the form:

$$
\mathrm{d} s_{\mathrm{cyl}}^{2}=\mathrm{d} u^{2}+\mathrm{d} s^{2} \quad(u \in \mathbb{R})
$$

where $d s^{2}$ is the squared line element of g. This is related by a conformal transformation to the cone metric $g_{\text {cone }}$ on \hat{M}, whose squared line element is given by:

$$
\mathrm{d} s_{\text {cone }}^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} s^{2}=r^{2} \mathrm{~d} s_{\text {cyl }}^{2} \quad\left(r \stackrel{\text { def. }}{=} e^{u} \in(0,+\infty)\right) .
$$

We have $g_{\text {cone }}=r^{2} g_{\text {cyl }}$ and $\hat{g}_{\text {cone }}=\frac{1}{r^{2}} \hat{g}_{\text {cyl }}$, where we view u and $r=e^{u}$ as smooth functions defined on \hat{M}, namely $u \in \mathcal{C}^{\infty}(\hat{M}, \mathbb{R})$ and $r \in \mathcal{C}^{\infty}(\hat{M},(0,+\infty)) \subset \mathcal{C}^{\infty}(\hat{M}, \mathbb{R})$. The transformation $u \rightarrow r$ maps the limit $u \rightarrow-\infty$ to the limit $r \rightarrow 0$. Unless M is a sphere, the cone metric is not complete due to the conical singularity which arises when one attempts to add the point at $r=0$. For any vector field $V \in \Gamma\left(\hat{M}, T_{\mathbb{K}} \hat{M}\right)$ and any one-form $\eta \in \Gamma\left(\hat{M}, T_{\mathbb{K}}^{*} \hat{M}\right)=\Omega_{\mathbb{K}}^{1}(\hat{M})$, we have $V_{\# \text { cone }}=r^{2} V_{\# \text { cyl }}$ and $\eta^{\# \text { cone }}=\frac{1}{r^{2}} \eta^{\# \text { cyl }}$, where $\#_{\text {cyl }}$ and \#cone are the musical isomorphisms of the cylinder and cone, respectively.

Preparations

Figure: Metric cone over M

Figure: Metric cylinder over M

The ring $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$

We let $\Pi: \hat{M} \rightarrow M$ be the projection on the second factor. For later reference, consider the following unital subring of the commutative ring $\mathcal{C}^{\infty}(\hat{M}, \mathbb{K}):$

$$
\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K}) \stackrel{\text { def. }}{=}\left\{f \circ \Pi \mid f \in \mathcal{C}^{\infty}(M, \mathbb{K})\right\} \subset \mathcal{C}^{\infty}(\hat{M}, \mathbb{K})
$$

It coincides with the image $\Pi^{*}\left(\mathcal{C}^{\infty}(M, \mathbb{K})\right)$ through the pullback map Π^{*}, which acts as follows on smooth functions defined on M :

$$
\Pi^{*}(f)=f \circ \Pi \in \mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K}) \quad, \quad \forall f \in \mathcal{C}^{\infty}(M, \mathbb{K})
$$

In fact, Π^{*} corestricts to a unital isomorphism of rings:

$$
\mathcal{C}^{\infty}(M, \mathbb{K}) \xrightarrow{\Pi^{*} \mid} \xrightarrow{c_{\perp}^{\infty}(\hat{M}, \mathbb{K})} \mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K}),
$$

which allows us to identify $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$ with $\mathcal{C}^{\infty}(M, \mathbb{K})$.

The one-form:

$$
\psi=\mathrm{d} u=\frac{1}{r} \mathrm{~d} r
$$

has unit norm with respect to the cylinder metric, being dual to the unit norm vector field $\psi^{\# \text { cyl }}=\partial_{u}=r \partial_{r}$ with respect to the metric $g_{\text {cyl }}$:

$$
\left.\psi=\partial_{u}\right\lrcorner g_{\mathrm{cyl}}
$$

Similarly, the one-form:

$$
\theta=\mathrm{d} r=r \psi
$$

has unit norm with respect to the cone metric, being dual to the unit norm vector field $\theta^{\# \text { cone }}=\partial_{r}$ with respect to the metric $g_{\text {cone }}$:

$$
\left.\theta=\partial_{r}\right\lrcorner g_{\text {cone }}
$$

The Euler operator $\mathcal{E}=\oplus_{k=0}^{d+1} k \operatorname{id}_{\Omega_{\mathbb{K}}^{k}(\hat{M})}$ acts as follows on a general inhomogeneous form:

$$
\mathcal{E}(\omega)=\sum_{k=0}^{d+1} k \omega^{(k)}, \quad \forall \omega=\sum_{k=0}^{d+1} \omega^{(k)} \in \Omega_{\mathbb{K}}(\hat{M}) \text { with } \omega^{(k)} \in \Omega_{\mathbb{K}}^{k}(\hat{M}) .
$$

The scaling operators $\lambda^{\mathcal{E}}(\lambda>0)$ act as:
$\lambda^{\mathcal{E}}(\omega)=\sum_{k=0}^{d+1} \lambda^{k} \omega^{(k)}, \quad \forall \omega=\sum_{k=0}^{d+1} \omega^{(k)} \in \Omega_{\mathbb{K}}(\hat{M})$ with $\omega^{(k)} \in \Omega_{\mathbb{K}}^{k}(\hat{M})$.

The Kähler-Atiyah algebra

Using the definition of generalized products, we find:

$$
\triangle_{p}^{\text {cone }}=\frac{1}{r^{2 p}} \triangle_{p}^{\text {cyl }} \quad, \quad \forall p=0 \ldots d+1
$$

These identities imply:

$$
\begin{aligned}
& r^{\mathcal{E}} \circ \Delta_{p}^{\mathrm{cyl}}=\frac{1}{r^{2 p}} \Delta_{p}^{\mathrm{cyl}} \circ\left(r^{\mathcal{E}} \otimes r^{\mathcal{E}}\right) \Longleftrightarrow r^{\mathcal{E}}\left(\omega \Delta_{p}^{\mathrm{cyl}} \eta\right)=\frac{1}{r^{2 p}}\left[r^{\mathcal{E}}(\omega) \Delta_{p}^{\mathrm{cyl}}{ }_{r}^{\mathcal{E}}(\eta)\right], \forall \omega, \eta \in \Omega_{\mathbb{K}}(\hat{M}) \\
& r^{\mathcal{E}} \circ \Delta_{p}^{\mathrm{cone}}=\frac{1}{r^{2 p}} \Delta_{p}^{\mathrm{cone}} \circ\left(r^{\mathcal{E}} \otimes r^{\mathcal{E}}\right) \Longleftrightarrow r^{\mathcal{E}}\left(\omega \Delta_{p}^{\text {cone }} \eta\right)=\frac{1}{r^{2 p}}\left[r^{\mathcal{E}}(\omega) \Delta_{p}^{\text {cone }} r_{r} \mathcal{E}(\eta)\right], \forall \omega, \eta \in \Omega_{\mathbb{K}}(\hat{M})
\end{aligned}
$$

and
$r^{\mathcal{E}} \circ \diamond^{\mathrm{cyl}}=\diamond^{\mathrm{cone}} \circ\left(r^{\mathcal{E}} \otimes r^{\mathcal{E}}\right) \Longleftrightarrow r^{\mathcal{E}}\left(\omega \diamond^{\mathrm{cyl}} \eta\right)=r^{\mathcal{E}}(\omega) \diamond^{\text {cone }} r^{\mathcal{E}}(\eta), \quad \forall \omega, \eta \in \Omega_{\mathbb{K}}(\hat{M})$

The Kähler-Atiyah algebra

Proposition. The maps $r^{\mathcal{E}}$ and $r^{-\mathcal{E}}$ are mutually inverse $\mathcal{C}^{\infty}(\hat{M}, \mathbb{K})$-linear unital isomorphisms of algebras between the Kähler-Atiyah algebras of the cylinder and cone:

$$
\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cyl }}\right) \underset{r^{-\varepsilon}}{\stackrel{r^{\varepsilon}}{\rightleftarrows}}\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cone }}\right)
$$

Corollary. The maps $r^{\mathcal{E}}$ and $r^{-\mathcal{E}}$ restrict to mutually inverse unital isomorphisms between the algebras $\left(\Omega_{\mathbb{K}}^{\frac{1}{(}}(\hat{M}), \diamond^{\text {cyl }}\right)$ and $\left(\Omega \frac{1}{\mathbb{K}}(\hat{M}), \diamond^{\text {cone }}\right)$:

$$
\left(\Omega_{\mathbb{K}}^{\perp}(\hat{M}), \diamond^{\mathrm{cyl}}\right) \underset{r^{\left.r^{-\varepsilon}\right|_{\Omega_{\mathbb{K}}}(\hat{M})}}{\stackrel{\left.r^{\varepsilon}\right|_{\Omega_{\mathbb{K}}(\hat{M})}}{\leftrightarrows}}\left(\Omega_{\mathbb{K}}^{\perp}(\hat{M}), \diamond^{\text {cone }}\right)
$$

The special and vertical subalgebras

One can show that $\mathcal{L}_{\partial_{u}}$ is an even $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-linear derivation of the Kähler-Atiyah algebra ($\left.\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cyl }}\right)$:

$$
\mathcal{L}_{\partial_{u}} \circ \diamond^{\mathrm{cyl}}=\diamond^{\mathrm{cyl}} \circ\left(\mathcal{L}_{\partial_{u}} \otimes \operatorname{id}_{\Omega_{\mathbb{K}}(\hat{M})}+\operatorname{id}_{\Omega_{\mathbb{K}}(\hat{M})} \otimes \mathcal{L}_{\partial_{u}}\right) .
$$

This implies that the operator $\mathcal{L}_{\partial_{u}}-\mathcal{E}$ is a degree zero $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-linear derivation of all generalized products of the cone:

$$
\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right) \circ \triangle_{p}^{\text {cone }}=\triangle_{p}^{\text {cone }} \circ\left[\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right) \otimes \operatorname{id}_{\Omega_{\mathbb{K}}(\hat{M})}+\operatorname{id}_{\Omega_{\mathbb{K}}(\hat{M})} \otimes\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right)\right]
$$

and hence of the Kähler-Atiyah algebra $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cone }}\right)$:

$$
\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right) \odot \diamond^{\text {cone }}=\diamond^{\text {cone }} \circ\left[\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right) \otimes \operatorname{id}_{\Omega_{\mathbb{K}}(\hat{M})}+\operatorname{id}_{\Omega_{\mathbb{K}}(\hat{M})} \otimes\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right)\right] .
$$

In particular, the following subspaces of $\Omega_{\mathbb{K}}(\hat{M})$:

$$
\Omega_{\mathbb{K}}^{\text {cyl }}(\hat{M}) \stackrel{\text { def. }}{=} \mathcal{K}\left(\mathcal{L}_{\partial_{u}}\right), \quad \Omega_{\mathbb{K}}^{\text {cone }}(\hat{M}) \stackrel{\text { def. }}{=} \mathcal{K}\left(\mathcal{L}_{\partial_{u}}-\mathcal{E}\right)
$$

are unital $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-subalgebras of the Kähler-Atiyah algebras $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cyl }}\right)$ and $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cone }}\right)$, which we shall call the special subalgebras of the cylinder and cone, respectively.

The special and vertical subalgebras

Proposition. The appropriate restrictions of the maps $r^{ \pm \mathcal{E}}$ give mutually inverse $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-linear unital isomorphisms of algebras between the special subalgebras of the cylinder and cone:

The subspace:

$$
\left.\left.\Omega_{\mathbb{K}}^{\perp}(\hat{M}) \stackrel{\text { def. }}{=}\left\{\omega \in \Omega_{\mathbb{K}}(\hat{M}) \mid \partial_{u}\right\lrcorner \omega=0\right\}=\left\{\omega \in \Omega_{\mathbb{K}}(\hat{M}) \mid \partial_{r}\right\lrcorner \omega=0\right\}
$$

is a unital $\mathcal{C}^{\infty}(\hat{M}, \mathbb{K})$-subalgebra of both $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cyl }}\right)$ and $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cone }}\right)$. Therefore, the intersections:
$\Omega_{\mathbb{K}}^{\perp, \text { cyl }}(\hat{M}) \stackrel{\text { def. }}{=} \Omega_{\mathbb{K}}^{\perp}(\hat{M}) \cap \Omega_{\mathbb{K}}^{\text {cyl }}(\hat{M}), \Omega_{\mathbb{K}}^{\perp \text { cone }}(\hat{M}) \stackrel{\text { def. }}{=} \Omega_{\mathbb{K}}^{\perp}(\hat{M}) \cap \Omega_{\mathbb{K}}^{\text {cone }}(\hat{M})$
are unital $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-subalgebras $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cyl }}\right)$ and $\left(\Omega_{\mathbb{K}}(\hat{M}), \diamond^{\text {cone }}\right)$ respectively (the vertical subalgebras of the cylinder and cone). The operator $r^{\mathcal{E}}$ satisfies:

$$
r^{\mathcal{E}}\left(\Omega_{\mathbb{K}}^{\perp, \mathrm{cyl}}(\hat{M})\right)=\Omega_{\mathbb{K}}^{\perp, \mathrm{cone}}(\hat{M})
$$

The special and vertical subalgebras

Proposition. The appropriate restrictions of the maps $r^{ \pm \mathcal{E}}$ give mutually inverse $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-linear unital isomorphisms of algebras between the vertical subalgebras of the cylinder and cone:

Special twisted (anti)selfdual forms

Definition. The subalgebras of special twisted (anti-)selfdual forms are the following $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-subalgebras of the Kähler-Atiyah algebras of the cylinder and of the cone:
$\Omega_{\mathbb{K}}^{ \pm}$, cyl $(\hat{M}) \stackrel{\text { def. }}{=} \Omega_{\mathbb{K}, c y l}^{ \pm}(\hat{M}) \cap \Omega_{\mathbb{K}}^{\text {cyl }}(\hat{M}), \Omega_{\mathbb{K}}^{ \pm, \text {cone }}(\hat{M}) \stackrel{\text { def. }}{=} \Omega_{\mathbb{K}, \text { cone }}^{ \pm}(\hat{M}) \cap \Omega_{\mathbb{K}}^{\text {cone }}(\hat{M})$.
These algebras have units $p_{ \pm}^{\text {cyl }}=\frac{1}{2}\left(1 \pm \nu^{\text {cyl }}\right)$ and $p_{ \pm}^{\text {cone }}=\frac{1}{2}\left(1 \pm \nu^{\text {cone }}\right)$, respectively. Combining the observations above gives:

Proposition. The appropriate restrictions of the maps $r^{ \pm \mathcal{E}}$ give mutually inverse $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-linear unital isomorphisms of algebras between the subalgebras of special twisted selfdual/anti-selfdual forms of the cylinder and cone:

$$
\left(\Omega_{\mathbb{K}}^{ \pm, \mathrm{cyl}}(\hat{M}), \diamond^{\mathrm{cyl}}\right) \underset{\left.r^{-\varepsilon}\right|_{\Omega_{\mathbb{K}}^{ \pm}, \mathrm{cone}} ^{(\hat{M})}}{\stackrel{\left.r^{\mathcal{E}}\right|_{\Omega_{\mathbb{K}}^{ \pm}, \mathrm{cyl}}(\hat{M})}{\rightleftarrows}}\left(\Omega_{\mathbb{K}}^{ \pm, \text {cone }}(\hat{M}), \diamond^{\mathrm{cone}}\right)
$$

Recovering the Kähler-Atiyah algebra of M

The $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-algebra $\left(\Omega_{\mathbb{K}}^{\text {cyl }}(\hat{M}), \diamond^{\mathrm{cyl}}\right)$ can be identified with the Kähler-Atiyah algebra $\left(\Omega_{\mathbb{K}}(M), \diamond\right)$ as follows. Let $\Pi: \hat{M} \rightarrow M$ be the projection on the second factor.

Proposition. The pullback map $\Pi^{*}: \Omega_{\mathbb{K}}(M) \rightarrow \Omega_{\mathbb{K}}(\hat{M})$ has image equal to $\Omega_{\mathbb{K}}^{\perp, c y l}(\hat{M})$. Furthermore, its corestriction to this image (which we again denote by $\left.\Pi^{*}\right)$ is a unital $\mathcal{C}^{\infty}(M, \mathbb{K})$-linear isomorphism of algebras from $\left(\Omega_{\mathbb{K}}(M), \diamond\right)$ to the vertical subalgebra $\left(\Omega_{\mathbb{K}}^{\perp, \mathrm{cyl}}(\hat{M}), \diamond^{\mathrm{cyl}}\right)$ of the cylinder, provided that we identify $\mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K}) \approx \mathcal{C}^{\infty}(M, \mathbb{K})$. The inverse of this isomorphism is the pullback map j^{*}, where $j: M \hookrightarrow \hat{M}$ is the embedding of M as the section $r=1$ of \hat{M}. Thus, we have mutually inverse unital isomorphisms of $\mathcal{C}^{\infty}(M, \mathbb{K}) \approx \mathcal{C}_{\perp}^{\infty}(\hat{M}, \mathbb{K})$-algebras:

$$
\left(\Omega_{\mathbb{K}}(M), \diamond\right) \underset{\left.j^{*}\right|_{\Omega_{\mathbb{K}}} ^{\perp, \mathrm{cyl}(\hat{M})}}{{\Pi^{*}}_{\Omega_{\mathbb{K}}^{\perp}, \mathrm{cyl}(\hat{M})}^{\longleftrightarrow}}\left(\Omega_{\mathbb{K}}^{\perp, \mathrm{cyl}}(\hat{M}), \diamond^{\mathrm{cyl}}\right)
$$

Recovering the Kähler-Atiyah algebra of (M, g)

Proposition. We have mutually-inverse unital isomorphisms of \mathbb{K}-algebras:

Thus $\Omega_{\mathbb{K}}^{\perp, c y l}(\hat{M})$ consists of those inhomogeneous forms on \hat{M} which are Π-pullbacks of inhomogeneous forms ω on M; this pullback will be called the cylinder lift $\omega_{\text {cyl }}$ of ω :

$$
\omega_{\text {cyl }} \stackrel{\text { def. }}{=} \Pi^{*}(\omega) \in \Omega_{\mathbb{K}}^{\perp, \text { cyl }}(\hat{M}) \quad, \quad \forall \omega \in \Omega_{\mathbb{K}}(M)
$$

Similarly, $\Omega_{\mathbb{K}}^{\perp \text {,cone }}(M)$ consists of cone lifts:

$$
\omega_{\text {cone }} \stackrel{\text { def. }}{=} r^{\mathcal{E}}\left(\Pi^{*}(\omega)\right) \in \Omega_{\mathbb{K}}^{\perp \text { cone }}(\hat{M}), \quad \forall \omega \in \Omega_{\mathbb{K}}(M),
$$

which are inhomogeneous forms of the type:

$$
\omega_{\text {cone }}=r^{\mathcal{E}}\left(\Pi^{*}(\omega)\right)=\sum_{k=0}^{d} r^{k} \Pi^{*}\left(\omega^{(k)}\right), \forall \omega=\sum_{k=0}^{d} \omega^{(k)}, \omega^{(k)} \in \Omega_{\mathbb{K}}^{k}(M) .
$$

Isomorphic models of the Kähler-Atiyah algebra of (M, g)

The full collection of isomorphic models of the Kähler-Atiyah algebra of (M, g) (viewed as a \mathbb{K}-algebra) which arise from the cone and cylinder constructions is summarized in the commutative diagram below:

$$
\begin{aligned}
& \Gamma(\hat{M}, \operatorname{End}(\hat{S})) \xrightarrow{\gamma_{\text {cone }}^{-1}} \Omega_{\mathrm{K}, \text { cone }}^{\epsilon}(\hat{M})
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{\frac{\mathrm{K}}{}}^{\frac{1}{(}}(\hat{M}) \xrightarrow[p_{e}^{\text {ceyl }}]{ } \Omega_{\mathbb{K}, ~ c y l}^{\epsilon}(\hat{M})
\end{aligned}
$$

The Fierz Isomorphism of cylinders and cones

The Fierz Isomorphism of cylinders and cones

The pull-back of pinors

The supersymmetry conditions (CGK pinor equations)

