Hora Hulubei National Institute of Physics and Nuclear Engeneering 5.09.2014, Magurele, Bucharest

On Riemann-Hilbert Problems and new Soliton equations

V. S. Gerdjikov
Institute for Nuclear Research and Nuclear Energy Sofia, Bulgaria

It is my pleasure to thank the professor Isar, professor
Visinescu and Dr. Babalic for kind hospitality

PLAN

- The inverse scattering method
- RHP with canonical normalization
- Jets of order k
- RHP, Reductions and Kac-Moody algebras
- New N-wave equations $-k \geq 2$
- mKdV equations related to simple Lie algebras
- Conclusions and open questions

Based on:

- V. S. Gerdjikov, D. J. Kaup. Reductions of 3×3 polynomial bundles and new types of integrable 3 -wave interactions. In Nonlinear evolution equations: integrability and spectral methods, Ed. A. P. Fordy, A. Degasperis, M. Lakshmanan, Manchester University Press, (1981), p. 373-380
- V. S. Gerdjikov. On new types of integrable 4-wave interactions. AIP Conf. proc. 1487 pp. 272-279; (2012).
- V. S. Gerdjikov. Riemann-Hilbert Problems with canonical normalization and families of commuting operators. Pliska Stud. Math. Bulgar. 21, 201-216 (2012).
- V. S. Gerdjikov. Derivative Nonlinear Schrödinger Equations with \mathbb{Z}_{N} and \mathbb{D}_{N}-Reductions. Romanian Journal of Physics, 58, Nos. 5-6, 573-582 (2013).
- V. S. Gerdjikov, A. B. Yanovski On soliton equations with \mathbb{Z}_{h}
and \mathbb{D}_{h} reductions: conservation laws and generating operators. J. Geom. Symmetry Phys. 31, 57-92 (2013).
- V. S. Gerdjikov, A B Yanovski. Riemann-Hilbert Problems, families of commuting operators and soliton equations Journal of Physics: Conference Series 482 (2014) 012017 doi:10.1088/1742-6596/482/1/012017

The inverse scattering method

The inverse scattering method for the N-wave equations - Zakharov, Shabat, Manakov (1973).

Lax representation:

$$
\begin{align*}
{[L, M] } & \equiv 0 \\
L \psi & \equiv i \frac{\partial \psi}{\partial x}+\left(U_{1}(x, t)-\lambda J\right) \psi(x, t, \lambda)=0 \tag{1}\\
M \psi & \equiv i \frac{\partial \psi}{\partial t}+\left(V_{1}(x, t)-\lambda K\right) \psi(x, t, \lambda)=0
\end{align*}
$$

where J, K - constant diagonal matrices.

$$
\begin{align*}
\lambda^{2} & \text { a) } & {[J, K] } & =0 \\
\lambda & \text { b) } & {\left[U_{1}, K\right]+\left[J, V_{1}\right] } & =0 \\
\lambda^{0} & \text { c) } & i V_{1, x}-i U_{1, t}+\left[U_{1}, V_{1}\right] & =0 \tag{2}
\end{align*}
$$

Eq. a) is satisfied identically.

Eq. b) is satisfied identically if:

$$
U_{1}(x, t)=\left[J, Q_{1}(x, t)\right], \quad V_{1}(x, t)=\left[K, Q_{1}(x, t)\right],
$$

Then eq. c) becomes the N-wave equation:

$$
i\left[J, \frac{\partial Q_{1}}{\partial t}\right]-i\left[K, \frac{\partial Q_{1}}{\partial x}\right]+\left[\left[K, Q_{1}\right],\left[J, Q_{1}\right]\right]=0
$$

Simplest non-trivial case:

$$
N=3, \quad \mathfrak{g} \simeq \operatorname{sl}(3), \quad Q_{1}(x, t)=\left(\begin{array}{ccc}
0 & u_{1} & u_{3} \\
u_{1}^{*} & 0 & u_{2} \\
u_{3}^{*} & u_{2}^{*} & 0
\end{array}\right) .
$$

Then the 3 -wave equations take the form:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial t}-\frac{a_{1}-a_{2}}{b_{1}-b_{2}} \frac{\partial u_{1}}{\partial x}+\kappa \epsilon_{1} \epsilon_{2} u_{2}^{*} u_{3}=0 \\
& \frac{\partial u_{2}}{\partial t}-\frac{a_{2}-a_{3}}{b_{2}-b_{3}} \frac{\partial u_{2}}{\partial x}+\kappa \epsilon_{1} u_{1}^{*} u_{3}=0 \\
& \frac{\partial u_{3}}{\partial t}-\frac{a_{1}-a_{3}}{b_{1}-b_{3}} \frac{\partial u_{3}}{\partial x}+\kappa \epsilon_{2} u_{1}^{*} u_{2}^{*}=0
\end{aligned}
$$

where

$$
\kappa=a_{1}\left(b_{2}-b_{3}\right)-a_{2}\left(b_{1}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right) .
$$

Solving Nonlinear Cauchy problems by the Inverse scattering method

Find solution to the N-wave eqs. such that

$$
Q_{1}(x, t=0)=q_{0}(x)
$$

Step I: Given $Q_{1}(x, t=0)=q_{0}(x)$ construct the scattering matrix $T(\lambda, 0)$.

Jost solutions:

$$
\begin{gathered}
L \phi(x, \lambda)=0, \quad \lim _{x \rightarrow-\infty} \phi(x, \lambda) e^{i \lambda J x}=\mathbb{1} \\
L \psi(x, \lambda)=0, \quad \lim _{x \rightarrow \infty} \psi(x, \lambda) e^{i \lambda J x}=\mathbb{1} \\
T(\lambda, 0)=\psi^{-1}(x, \lambda) \phi(x, \lambda)
\end{gathered}
$$

Step II: From the Lax representation there follows:

$$
i \frac{\partial T}{\partial t}-\lambda[K, T(\lambda, t)]=0
$$

i.e.

$$
T(\lambda, t)=e^{-i \lambda K t} T(\lambda, 0) e^{i \lambda K t}
$$

Step III: Given $T(\lambda, t)$ construct the potential $Q_{1}(x, t)$ for $t>0$. For $\mathfrak{g} \simeq s l(2)-$ GLM eq. - Volterra type integral equations For higher rank simple Lie algebras - GLM eq. become Fredholm type integral equations, very complicated. But it can be reduced to RiemannHilbert problem.

Important: All steps reduce to linear integral equations.
Thus the nonlinear Cauchy problem reduces to a sequence of three linear Cauchy problems; each has unique solution!

The fundamental analytic solutions and Riemann-Hilbert problem

Shabat (1974) - introduced the fundamental analytic solutions of L.

$$
\begin{array}{ll}
\chi^{+}(x, t, \lambda)=\phi(x, t, \lambda) S^{+}(\lambda, t)=\psi(x, t, \lambda) T^{-}(\lambda, t) D^{+}(\lambda), & \lambda \in \mathbb{C}_{+} \\
\chi^{-}(x, t, \lambda)=\phi(x, t, \lambda) S^{-}(\lambda, t)=\psi(x, t, \lambda) T^{+}(\lambda, t) D^{-}(\lambda), & \lambda \in \mathbb{C}_{-}
\end{array}
$$

where $S^{+}(\lambda, t), T^{+}(\lambda, t)$ - upper-triangular matrices
$S^{-}(\lambda, t), T^{-}(\lambda, t)$ - lower-triangular matrices
$D^{+}(\lambda), D^{-}(\lambda)$ - diagonal matrices
Gauss decomposition of $T(\lambda, t)$:

$$
T(\lambda, t)=T^{-}(\lambda, t) D^{+}(\lambda) \hat{S}^{+}(\lambda, t)=T^{+}(\lambda, t) D^{-}(\lambda) \hat{S}^{-}(\lambda, t)
$$

Then

$$
\chi^{+}(x, t, \lambda)=\chi^{-}(x, t, \lambda) G_{0}(\lambda, t), \quad \lambda \in \mathbb{R}, \quad G_{0}(\lambda, t)=\hat{S}^{-}(\lambda, t) S^{+}(\lambda, t)
$$

Introduce

$$
\xi^{+}(x, t, \lambda)=\chi^{+}(x, t, \lambda) e^{i \lambda J x}, \quad \xi^{-}(x, t, \lambda)=\chi^{-}(x, t, \lambda) e^{i \lambda J x}
$$

Then $\xi^{ \pm}(x, t, \lambda)$ are FAS of the linear problem:

$$
i \frac{\partial \xi^{ \pm}}{\partial x}+U_{1}(x, t) \xi^{ \pm}(x, t, \lambda)-\lambda\left[J, \xi^{ \pm}(x, t, \lambda)\right]=0
$$

that satisfy RHP:

$$
\begin{gathered}
\xi^{+}(x, t, \lambda)=\xi^{-}(x, t, \lambda) G(x, t, \lambda), \quad \lambda \in \mathbb{R} \\
i \frac{\partial G}{\partial x}-\lambda[J, G(x, t, \lambda)]=0, \quad i \frac{\partial G}{\partial t}-\lambda[K, G(x, t, \lambda)]=0
\end{gathered}
$$

Canonical normalization

$$
\lim _{\lambda \rightarrow \infty} \xi^{ \pm}(x, t, \lambda)=\mathbb{1}
$$

Theorem 1 (Zakharov-Shabat). Let $\xi^{ \pm}(x, t, \lambda)$ be solutions to the RHP whose sewing function depends on the auxiliary variables x and t as above. Then $\xi^{ \pm}(x, t, \lambda)$ are fundamental solutions of the following set of differential operators:

$$
\begin{aligned}
\tilde{L} \xi^{ \pm} & \equiv i \frac{\partial \xi^{ \pm}}{\partial x}+U(x, t, \lambda) \xi^{ \pm}(x, t, \lambda)-\lambda\left[J, \xi^{ \pm}(x, t, \lambda)\right]=0 \\
\tilde{M} \xi^{ \pm} & \equiv i \frac{\partial \xi^{ \pm}}{\partial t}+V(x, t, \lambda) \xi^{ \pm}(x, t, \lambda)-\lambda\left[K, \xi^{ \pm}(x, t, \lambda)\right]=0
\end{aligned}
$$

Proof. Introduce the functions:

$$
\begin{aligned}
g^{ \pm}(x, t, \lambda) & =i \frac{\partial \xi^{ \pm}}{\partial x} \hat{\xi}^{ \pm}(x, t, \lambda)+\lambda \xi^{ \pm}(x, t, \lambda) J \hat{\xi}^{ \pm}(x, t, \lambda) \\
p^{ \pm}(x, t, \lambda) & =i \frac{\partial \xi^{ \pm}}{\partial t} \hat{\xi}^{ \pm}(x, t, \lambda)+\lambda \xi^{ \pm}(x, t, \lambda) K \hat{\xi}^{ \pm}(x, t, \lambda)
\end{aligned}
$$

and using

$$
i \frac{\partial G}{\partial x}-\lambda[J, G(x, t, \lambda)]=0, \quad i \frac{\partial G}{\partial t}-\lambda[K, G(x, t, \lambda)]=0
$$

prove that

$$
g^{+}(x, t, \lambda)=g^{-}(x, t, \lambda), \quad p^{+}(x, t, \lambda)=p^{-}(x, t, \lambda)
$$

which means that these functions are analytic functions of λ in the whole complex λ-plane. Next we find that:

$$
\lim _{\lambda \rightarrow \infty} g^{+}(x, t, \lambda)=\lambda J, \quad \lim _{\lambda \rightarrow \infty} p^{+}(x, t, \lambda)=\lambda K
$$

and make use of Liouville theorem to get

$$
\begin{aligned}
& g^{+}(x, t, \lambda)=g^{-}(x, t, \lambda)=\lambda J-U_{1}(x, t), \\
& p^{+}(x, t, \lambda)=p^{-}(x, t, \lambda)=\lambda K-V_{1}(x, t)
\end{aligned}
$$

We shall see below that the coefficients $U_{1}(x, t)$ and $V_{1}(x, t)$ can be expressed in terms of the asymptotic coefficients Q_{s} of $\xi^{ \pm}(x, t, \lambda)$.

Now remember the definition of $g^{+}(x, t, \lambda)$

$$
\begin{aligned}
g^{ \pm}(x, t, \lambda) & =i \frac{\partial \xi^{ \pm}}{\partial x} \hat{\xi}^{ \pm}(x, t, \lambda)+\lambda \xi^{ \pm}(x, t, \lambda) J \hat{\xi}^{ \pm}(x, t, \lambda) \\
& =\lambda J-U_{l}(x, t)
\end{aligned}
$$

Multiply both sides by $\xi^{ \pm}(x, t, \lambda)$ and move all the terms to the left:

$$
i \frac{\partial \xi^{ \pm}}{\partial x}+U_{l}(x, t) \xi^{ \pm}(x, t, \lambda)-\lambda\left[J, \xi^{ \pm}(x, t, \lambda)\right]=0
$$

i.e. $\tilde{L} \xi^{ \pm}(x, t, \lambda)=0$ or $L \chi^{ \pm}(x, t, \lambda)=0$.

Zakharov-Shabat dressing method and soliton solutions

Starting from a regular solution $\chi_{0}^{ \pm}(x, t, \lambda)$ of $L_{0}(\lambda)$ with potential $Q_{(0)}(x, t)$ construct new singular solutions $\chi_{1}^{ \pm}(x, t, \lambda)$ of L with a potential $Q_{(1)}(x, t)$ with two pole singularities located at prescribed positions $\lambda_{1}^{ \pm} \in \mathbb{C}_{ \pm}$; the reduction $Q=Q^{\dagger}$ ensures that $\lambda_{1}^{-}=\left(\lambda_{1}^{+}\right)^{*}$. It is related to the regular one by a dressing factor $u(x, t, \lambda)$

$$
\begin{equation*}
\chi_{1}^{ \pm}(x, t, \lambda)=u(x, \lambda) \chi_{0}^{ \pm}(x, t, \lambda) u_{-}^{-1}(\lambda) . \quad u_{-}(\lambda)=\lim _{x \rightarrow-\infty} u(x, \lambda) \tag{4}
\end{equation*}
$$

Note that $u(x, \lambda)$ must satisfy

$$
\begin{equation*}
i \partial_{x} u+\left[J, Q_{(1)}(x)\right] u-u\left[J, Q_{(0)}(x)\right]-\lambda[J, u(x, \lambda)]=0 \tag{5}
\end{equation*}
$$

and the normalization condition $\lim _{\lambda \rightarrow \infty} u(x, \lambda)=\mathbb{1}$.
The construction of $u(x, \lambda)$ is based on an appropriate anzats specifying explicitly the form of its λ-dependence:

$$
\begin{equation*}
u(x, \lambda)=\mathbb{1}+(c(\lambda)-1) P(x, t), \quad c(\lambda)=\frac{\lambda-\lambda_{1}^{+}}{\lambda-\lambda_{1}^{-}} \tag{6}
\end{equation*}
$$

where $P(x, t)$ is a projector

$$
\begin{equation*}
P(x, t)=\frac{\left|n_{1}(x, t)\right\rangle\left\langle n_{1}^{\dagger}(x, t)\right|}{\left\langle n_{1}^{\dagger}(x, t) \mid n_{1}(x, t)\right\rangle}, \quad\left|n_{1}(x, t)\right\rangle=\chi_{0}^{+}\left(x, t, \lambda_{1}^{+}\right)\left|n_{0,1}\right\rangle \tag{7}
\end{equation*}
$$

Taking the limit $\lambda \rightarrow \infty$ in eq. (5) we get that

$$
Q_{(1)}(x, t)-Q_{(0)}(x, t)=\left(\lambda_{1}^{-}-\lambda_{1}^{+}\right)[J, P(x, t)] .
$$

ISM as generalized Fourier transform

Based on the Wronskian relations

$$
\rho_{i j}^{ \pm}(\lambda, t)=\left[\left[Q_{1}(x, t), e_{j i}^{ \pm}(x, t, \lambda)\right]\right], \quad[[X, Y]]=\int_{-\infty}^{\infty} \operatorname{tr}(X,[J, Y])
$$

$$
e_{j i}^{ \pm}(x, t, \lambda)=\pi_{J} \chi^{ \pm}(x, t, \lambda) E_{i j} \hat{\chi}^{ \pm}(x, t, \lambda), \quad \pi_{J} X=\operatorname{ad}_{J}^{-1} \operatorname{ad}_{J} X
$$

But the 'squared' solutions satisfy completeness relation! So every function, including $Q_{1}(x, t)$ allows expansion

$$
\begin{align*}
Q_{1}(x, t) & =\frac{1}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{i<j}\left(\rho_{i j}^{+} e_{i j}^{+}(x, t, \lambda)-\rho_{j i}^{-} e_{j i}^{-}(x, t, \lambda)\right) \\
& +\sum_{a=1}^{N} \operatorname{Res} \ldots \tag{8}
\end{align*}
$$

Hamiltonian hierarchies of N -wave equations

The Lie bracket on \mathfrak{g} induces Poisson structure on the co-adjoint orbit passing through J.

The functions $D^{ \pm}(\lambda)$ are t-independent and generate an infinite number of integrals of motion in involution.

$$
\begin{gathered}
\left.\Omega_{0}=\left[\operatorname{ad}_{J}^{-1} \delta Q_{1} \wedge_{,} \operatorname{ad}_{J}^{-1} \delta Q_{1}\right]\right] \\
\Omega_{p}=\left[\left[\operatorname{ad}_{J}^{-1} \delta Q_{1} \wedge_{,} \Lambda^{p} \operatorname{ad}_{J}^{-1} \delta Q_{1}\right]\right]
\end{gathered}
$$

where Λ is the recursion operator:

$$
\Lambda e_{i j}^{+}(x, t, \lambda)=\lambda e_{i j}^{+}(x, t, \lambda)
$$

see VSG, P. Kulish (1981) and VSG, Yanovski, Vilasi. Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods Lecture Notes in Physics 748, Springer Verlag, Berlin, Heidelberg, New York (2008).

Generalizations to polynomial Lax operators

$$
\begin{align*}
{[L, M] } & \equiv 0 \\
L \psi & \equiv i \frac{\partial \psi}{\partial x}+\left(U_{2}(x, t)+\lambda U_{1}(x, t)-\lambda^{2} J\right) \psi(x, t, \lambda)=0 \tag{9}\\
M \psi & \equiv i \frac{\partial \psi}{\partial t}+\left(V_{2}(x, t)+\lambda V_{1}(x, t)-\lambda^{2} K\right) \psi(x, t, \lambda)=0
\end{align*}
$$

where J, K - constant diagonal matrices.
λ^{4}
a) $[J, K]=0, \quad \lambda^{3}$
b)
$\left[U_{1}, K\right]+\left[J, V_{1}\right]=0$,
λ^{2}
c)
$\left[U_{1}, V_{1}\right]-\left[U_{2}, K\right]-\left[J, V_{2}\right]=0$.

Eqs. a)-c) must be satisfied identically if

$$
\begin{gathered}
U_{1}(x, t)=\left[J, Q_{1}(x, t)\right], \quad V_{1}(x, t)=\left[K, Q_{1}(x, t)\right] \\
U_{2}=\left[J, Q_{2}\right]-\frac{1}{2} \operatorname{ad}_{Q_{1}}^{2} J, \quad U_{2}=\left[K, Q_{2}\right]-\frac{1}{2} \operatorname{ad}_{Q_{1}}^{2} K .
\end{gathered}
$$

Thus we obtain NLEE the generalization of the N-wave equation:

$$
\begin{array}{lll}
\lambda^{1} & \text { d) } & i V_{1, x}-i U_{1, t}+\left[U_{2}, V_{1}\right]+\left[U_{1}, V_{2}\right]=0 \\
\lambda^{0} & \text { e) } & i V_{1, x}-i U_{1, t}+\left[U_{2}, V_{1}\right]+\left[U_{1}, V_{2}\right]=0 . \tag{10}
\end{array}
$$

for the functions $Q_{1}(x, t)$ and $Q_{2}(x, t)$.
Note: Going to higher powers λ^{k} makes more complicated

1. the problem of correct parametrizing
2. Wronskian relations, 'squared' solutions, recursion operators
3. The potential functions of L and M

$$
U(x, t, \lambda)=U_{2}(x, t)+\lambda U_{1}(x, t)-\lambda^{2} J, \quad V(x, t, \lambda)=V_{2}(x, t)+\lambda V_{1}(x, t)-\lambda^{2} K
$$

can be viewed as elements of a Kac-Moody algebra $\mathfrak{g}_{\mathrm{KM}}$.
4. Hamiltonian properties are on the co-adjoint orbits of the $\mathfrak{g}_{\mathrm{KM}}$.

RHP with canonical normalization

$\xi^{+}(x, t, \lambda)=\xi^{-}(x, t, \lambda) G(x, t, \lambda), \quad \lambda^{k} \in \mathbb{R}, \quad \lim _{\lambda \rightarrow \infty} \xi^{+}(x, t, \lambda)=\mathbb{1}$,
$\xi^{ \pm}(x, t, \lambda) \in \mathfrak{G}$
Consider particular type of dependence $G(x, t, \lambda)$:

$$
i \frac{\partial G}{\partial x}-\lambda^{k}[J, G(x, t, \lambda)]=0, \quad i \frac{\partial G}{\partial t}-\lambda^{k}[K, G(x, t, \lambda)]=0
$$

where $J \in \mathfrak{h} \subset \mathfrak{g}$.
The canonical normalization of the RHP:

$$
\xi^{ \pm}(x, t, \lambda)=\exp Q(x, t, \lambda), \quad Q(x, t, \lambda)=\sum_{k=1}^{\infty} Q_{k}(x, t) \lambda^{-k}
$$

where all $Q_{k}(x, t) \in \mathfrak{g}$ and $Q(x, t, \lambda) \in \mathfrak{g}_{\mathrm{KM}}$. However,

$$
\mathcal{J}(x, t, \lambda)=\xi^{ \pm}(x, t, \lambda) J \hat{\xi}^{ \pm}(x, t, \lambda), \quad \mathcal{K}(x, t, \lambda)=\xi^{ \pm}(x, t, \lambda) K \hat{\xi}^{ \pm}(x, t, \lambda)
$$

belong to the algebra \mathfrak{g} for any J and K from \mathfrak{g}. If in addition K also belongs to the Cartan subalgebra \mathfrak{h}, then

$$
[\mathcal{J}(x, t, \lambda), \mathcal{K}(x, t, \lambda)]=0
$$

Generalized Zakharov-Shabat theorem
Theorem 2. Let $\xi^{ \pm}(x, t, \lambda)$ be solutions to the RHP whose sewing function depends on the auxiliary variables x and t as above. Then $\xi^{ \pm}(x, t, \lambda)$ are fundamental solutions of the following set of differential operators:

$$
\begin{gathered}
\tilde{L} \xi^{ \pm} \equiv i \frac{\partial \xi^{ \pm}}{\partial x}+U(x, t, \lambda) \xi^{ \pm}(x, t, \lambda)-\lambda^{k}\left[J, \xi^{ \pm}(x, t, \lambda)\right]=0 \\
\tilde{M} \xi^{ \pm} \equiv i \frac{\partial \xi^{ \pm}}{\partial t}+V(x, t, \lambda) \xi^{ \pm}(x, t, \lambda)-\lambda^{k}\left[K, \xi^{ \pm}(x, t, \lambda)\right]=0
\end{gathered}
$$

Proof. Introduce the functions:

$$
\begin{aligned}
g^{ \pm}(x, t, \lambda) & =i \frac{\partial \xi^{ \pm}}{\partial x} \hat{\xi}^{ \pm}(x, t, \lambda)+\lambda^{k} \xi^{ \pm}(x, t, \lambda) J \hat{\xi}^{ \pm}(x, t, \lambda) \\
p^{ \pm}(x, t, \lambda) & =i \frac{\partial \xi^{ \pm}}{\partial t} \hat{\xi}^{ \pm}(x, t, \lambda)+\lambda^{k} \xi^{ \pm}(x, t, \lambda) K \hat{\xi}^{ \pm}(x, t, \lambda)
\end{aligned}
$$

and using

$$
i \frac{\partial G}{\partial x}-\lambda^{k}[J, G(x, t, \lambda)]=0, \quad i \frac{\partial G}{\partial t}-\lambda^{k}[K, G(x, t, \lambda)]=0
$$

prove that

$$
g^{+}(x, t, \lambda)=g^{-}(x, t, \lambda), \quad p^{+}(x, t, \lambda)=p^{-}(x, t, \lambda)
$$

which means that these functions are analytic functions of λ in the whole complex λ-plane. Next we find that:

$$
\lim _{\lambda \rightarrow \infty} g^{+}(x, t, \lambda)=\lambda^{k} J, \quad \lim _{\lambda \rightarrow \infty} p^{+}(x, t, \lambda)=\lambda^{k} K
$$

and make use of Liouville theorem to get

$$
\begin{aligned}
& g^{+}(x, t, \lambda)=g^{-}(x, t, \lambda)=\lambda^{k} J-\sum_{l=1}^{k} U_{l}(x, t) \lambda^{k-l} \\
& p^{+}(x, t, \lambda)=p^{-}(x, t, \lambda)=\lambda^{k} K-\sum_{l=1}^{k} V_{l}(x, t) \lambda^{k-l}
\end{aligned}
$$

We shall see below that the coefficients $U_{l}(x, t)$ and $V_{l}(x, t)$ can be expressed in terms of the asymptotic coefficients Q_{s} of $\xi^{ \pm}(x, t, \lambda)$.

Now remember the definition of $g^{+}(x, t, \lambda)$

$$
\begin{aligned}
g^{ \pm}(x, t, \lambda) & =i \frac{\partial \xi^{ \pm}}{\partial x} \hat{\xi}^{ \pm}(x, t, \lambda)+\lambda^{k} \xi^{ \pm}(x, t, \lambda) J \hat{\xi}^{ \pm}(x, t, \lambda) \\
& =\lambda^{k} J-\sum_{l=1}^{k} U_{l}(x, t) \lambda^{k-l},
\end{aligned}
$$

Multiply both sides by $\xi^{ \pm}(x, t, \lambda)$ and move all the terms to the left:

$$
i \frac{\partial \xi^{ \pm}}{\partial x}+\sum_{l=1}^{k} U_{l}(x, t) \lambda^{k-l} \xi^{ \pm}(x, t, \lambda)-\lambda^{k}\left[J, \xi^{ \pm}(x, t, \lambda)\right]=0
$$

i.e. $\tilde{L} \xi^{ \pm}(x, t, \lambda)=0$ and $L \chi^{ \pm}(x, t, \lambda)=0$ where $\chi^{ \pm}(x, t, \lambda)=\xi^{ \pm}(x, t, \lambda) e^{-i \lambda^{k} J x}$.

Lemma 1. The operators L and M commute

$$
[L, M]=0,
$$

i.e. the following set of equations hold:

$$
i \frac{\partial U}{\partial t}-i \frac{\partial V}{\partial x}+\left[U(x, t, \lambda)-\lambda^{k} J, V(x, t, \lambda)-\lambda^{k} K\right]=0
$$

where

$$
U(x, t, \lambda)=\sum_{l=1}^{k} U_{l}(x, t) \lambda^{k-l}, \quad V(x, t, \lambda)=\sum_{l=0}^{k} V_{l}(x, t) \lambda^{k-l}
$$

Jets of order k

How to parametrize $U(x, t, \lambda)$ and $V(x, t, \lambda)$? Use:

$$
\xi^{ \pm}(x, t, \lambda)=\exp Q(x, t, \lambda), \quad Q(x, t, \lambda)=\sum_{k=1}^{\infty} Q_{k}(x, t) \lambda^{-k}
$$

and consider the jets of order k of $\mathcal{J}_{+}(x, \lambda)$ and $\mathcal{K}_{+}(x, \lambda)$:

$$
\begin{aligned}
\mathcal{J}_{+}(x, t, \lambda) & \equiv\left(\lambda^{k} \xi^{ \pm}(x, t, \lambda) J_{l} \hat{\xi}^{ \pm}(x, t, \lambda)\right)_{+}=\lambda^{k} J-U(x, t, \lambda) \\
\mathcal{K}_{+}(x, t, \lambda) & \equiv\left(\lambda^{k} \xi^{ \pm}(x, t, \lambda) K \hat{\xi}^{ \pm}(x, t, \lambda)\right)_{+}=\lambda^{k} K-V(x, t, \lambda)
\end{aligned}
$$

Express $U(x) \in \mathfrak{g}$ in terms of $Q_{s}(x)$:

$$
\begin{aligned}
\mathcal{J}(x, t, \lambda) & \equiv=\xi^{ \pm}(x, t, \lambda) J \hat{\xi}^{ \pm}(x, t, \lambda) \\
& =J+\sum_{k=1}^{\infty} \frac{1}{k!} \operatorname{ad}_{Q}^{k} J, \\
\mathcal{K}(x, t, \lambda) & \equiv \xi^{ \pm}(x, t, \lambda) K \hat{\xi}^{ \pm}(x, t, \lambda) \\
& =K+\sum_{k=1}^{\infty} \frac{1}{k!} \operatorname{ad}_{Q}^{k} K,
\end{aligned}
$$

$$
\operatorname{ad}_{Q} Z=[Q, Z], \quad \operatorname{ad}_{Q}^{2} Z=[Q,[Q, Z]], \quad \ldots
$$

and therefore for U_{l} we get:

$$
\begin{aligned}
& U_{1}(x, t)=-\operatorname{ad}_{Q_{1}} J, \quad U_{2}(x, t)=-\operatorname{ad}_{Q_{2}} J-\frac{1}{2} \operatorname{ad}_{Q_{1}}^{2} J \\
& U_{3}(x, t)=-\operatorname{ad}_{Q_{3}} J-\frac{1}{2}\left(\operatorname{ad}_{Q_{2}} \operatorname{ad}_{Q_{1}}+\operatorname{ad}_{Q_{1}} \operatorname{ad}_{Q_{2}}\right) J-\frac{1}{6} \operatorname{ad}_{Q_{1}}^{3} J .
\end{aligned}
$$

and similar expressions for $V_{l}(x, t)$ with J replaced by K.

Reductions of polynomial bundles

Using $\mathcal{J}_{+}(x, t, \lambda)$ and $\mathcal{K}_{+}(x, t, \lambda)$ we end up with a set of NLEE for the coefficients $Q_{1}(x, t), Q_{2}(x, t), \ldots, Q_{k}(x, t)$. Too many functions, too complicated equations.

They can be simplified by using Mikhailov's reduction group: \mathbb{Z}_{2}-reductions (involutions):
a) $\quad A \xi^{+, \dagger}\left(x, t, \epsilon \lambda^{*}\right) \hat{A}=\hat{\xi}^{-}(x, t, \lambda), \quad A Q^{\dagger}\left(x, t, \epsilon \lambda^{*}\right) \hat{A}=-Q(x, t, \lambda)$,
b) $\quad B \xi^{+, *}\left(x, t, \epsilon \lambda^{*}\right) \hat{B}=\xi^{-}(x, t, \lambda), \quad B Q^{*}\left(x, t, \epsilon \lambda^{*}\right) \hat{B}=Q(x, t, \lambda)$,
c) $\quad C \xi^{+, T}(x, t,-\lambda) \hat{C}=\hat{\xi}^{-}(x, t, \lambda), \quad C Q^{\dagger}(x, t,-\lambda) \hat{C}=-Q(x, t, \lambda)$,
where $\epsilon^{2}=1$ and A, B and C are elements of the group \mathfrak{G} such that $A^{2}=B^{2}=C^{2}=\mathbb{1}$.
\mathbb{Z}_{N}-reductions:

$$
D \xi^{ \pm}(x, t, \omega \lambda) \hat{D}=\xi^{ \pm}(x, t, \lambda), \quad D Q(x, t, \omega \lambda) \hat{D}=Q(x, t, \lambda)
$$

where $\omega^{h}=1$ and $D^{h}=\mathbb{1}$.
If D is the Coxeter element of \mathfrak{g} then $Q(x, t, \lambda)$ belongs to the corresponding $\mathfrak{g}_{\mathrm{KM}}$ of height 1 .
If D is the Coxeter element of \mathfrak{g} composed by V - an external automorphism of \mathfrak{g} then $Q(x, t, \lambda)$ belongs to the corresponding $\mathfrak{g}_{\mathrm{KM}}$ of height 2 or 3 .

On N-wave equations $-k=1$

Lax representation involves two Lax operators linear in λ :

$$
\begin{aligned}
L \xi^{ \pm} & \equiv i \frac{\partial \xi^{ \pm}}{\partial x}+[J, Q(x, t)] \xi^{ \pm}(x, t, \lambda)-\lambda\left[J, \xi^{ \pm}(x, t, \lambda)\right]=0 \\
M \xi^{ \pm} & \equiv i \frac{\partial \xi^{ \pm}}{\partial t}+[K, Q(x, t)] \xi^{ \pm}(x, t, \lambda)-\lambda\left[K, \xi^{ \pm}(x, t, \lambda)\right]=0
\end{aligned}
$$

The corresponding equations take the form:

$$
\begin{aligned}
& i\left[J, \frac{\partial Q}{\partial t}\right]-i\left[K, \frac{\partial Q}{\partial x}\right]-[[J, Q],[K, Q(x, t)]]=0 \\
& Q(x, t)=\left(\begin{array}{ccc}
0 & u_{1} & u_{3} \\
-v_{1} & 0 & u_{2} \\
-v_{3} & -v_{2} & 0
\end{array}\right), \quad \begin{array}{ll}
& J=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right), \\
& =\operatorname{diag}\left(b_{1}, b_{2}, b_{3}\right),
\end{array}
\end{aligned}
$$

Then the 3-wave equations take the form:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial t}-\frac{a_{1}-a_{2}}{b_{1}-b_{2}} \frac{\partial u_{1}}{\partial x}+\kappa \epsilon_{1} \epsilon_{2} u_{2}^{*} u_{3}=0, \\
& \frac{\partial u_{2}}{\partial t}-\frac{a_{2}-a_{3}}{b_{2}-b_{3}} \frac{\partial u_{2}}{\partial x}+\kappa \epsilon_{1} u_{1}^{*} u_{3}=0, \\
& \frac{\partial u_{3}}{\partial t}-\frac{a_{1}-a_{3}}{b_{1}-b_{3}} \frac{\partial u_{3}}{\partial x}+\kappa \epsilon_{2} u_{1}^{*} u_{2}^{*}=0,
\end{aligned}
$$

where

$$
\kappa=a_{1}\left(b_{2}-b_{3}\right)-a_{2}\left(b_{1}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)
$$

New 3-wave equations - $k \geq 2$
Let $\mathfrak{g}=\operatorname{sl}(3)$ and

$$
Q_{1}(x, t)=\left(\begin{array}{ccc}
0 & u_{1} & u_{3} \\
-v_{1} & 0 & u_{2} \\
-v_{3} & -v_{2} & 0
\end{array}\right), \quad Q_{2}(x, t)=\left(\begin{array}{ccc}
q_{11} & w_{1} & w_{3} \\
-z_{1} & q_{22} & w_{2} \\
-z_{3} & -z_{2} & q_{33}
\end{array}\right)
$$

Fix up $k=2$. Then the Lax pair becomes

$$
\begin{aligned}
L \xi^{ \pm} & \left.\left.\equiv i \frac{\partial \xi^{ \pm}}{\partial x}+U(x, t, \lambda) \xi^{ \pm}(x, t, \lambda)-\lambda^{2}\right] J, \xi^{ \pm}(x, t, \lambda)\right]=0 \\
M \xi^{ \pm} & \left.\left.\equiv i \frac{\partial \xi^{ \pm}}{\partial t}+V(x, t, \lambda) \xi^{ \pm}(x, t, \lambda)-\lambda^{2}\right] K, \xi^{ \pm}(x, t, \lambda)\right]=0
\end{aligned}
$$

where

$$
\begin{aligned}
U & \equiv U_{2}+\lambda U_{1}=\left(\left[J, Q_{2}(x)\right]-\frac{1}{2}\left[\left[J, Q_{1}\right], Q_{1}(x)\right]\right)+\lambda\left[J, Q_{1}\right] \\
V & \equiv V_{2}+\lambda V_{1}=\left(\left[K, Q_{2}(x)\right]-\frac{1}{2}\left[\left[K, Q_{1}\right], Q_{1}(x)\right]\right)+\lambda\left[K, Q_{1}\right]
\end{aligned}
$$

Impose a \mathbb{Z}_{2}-reduction of type a) with $A=\operatorname{diag}(1, \epsilon, 1), \epsilon^{2}=1$. Thus Q_{1} and Q_{2} get reduced into:

$$
Q_{1}=\left(\begin{array}{ccc}
0 & u_{1} & 0 \\
\epsilon u_{1}^{*} & 0 & u_{2} \\
0 & \epsilon u_{2}^{*} & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{ccc}
0 & 0 & w_{3} \\
0 & 0 & 0 \\
w_{3}^{*} & 0 & 0
\end{array}\right)
$$

and we obtain new type of integrable 3-wave equations:

$$
\begin{aligned}
& i\left(a_{1}-a_{2}\right) \frac{\partial u_{1}}{\partial t}-i\left(b_{1}-b_{2}\right) \frac{\partial u_{1}}{\partial x}+\epsilon \kappa u_{2}^{*} u_{3}+\epsilon \frac{\kappa\left(a_{1}-a_{2}\right)}{\left(a_{1}-a_{3}\right)} u_{1}\left|u_{2}\right|^{2}=0 \\
& i\left(a_{2}-a_{3}\right) \frac{\partial u_{2}}{\partial t}-i\left(b_{2}-b_{3}\right) \frac{\partial u_{2}}{\partial x}+\epsilon \kappa u_{1}^{*} u_{3}-\epsilon \frac{\kappa\left(a_{2}-a_{3}\right)}{\left(a_{1}-a_{3}\right)}\left|u_{1}\right|^{2} u_{2}=0 \\
& i\left(a_{1}-a_{3}\right) \frac{\partial u_{3}}{\partial t}-i\left(b_{1}-b_{3}\right) \frac{\partial u_{3}}{\partial x}-\frac{i \kappa}{a_{1}-a_{3}} \frac{\partial\left(u_{1} u_{2}\right)}{\partial x} \\
& \quad+\epsilon \kappa\left(\frac{a_{1}-a_{2}}{a_{1}-a_{3}}\left|u_{1}\right|^{2}+\frac{a_{2}-a_{3}}{a_{1}-a_{3}}\left|u_{2}\right|^{2}\right) u_{1} u_{2}+\epsilon \kappa u_{3}\left(\left|u_{1}\right|^{2}-\left|u_{2}\right|^{2}\right)=0
\end{aligned}
$$

where

$$
\kappa=a_{1}\left(b_{2}-b_{3}\right)-a_{2}\left(b_{1}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right), \quad u_{3}=w_{3}+\frac{2 a_{2}-a_{1}-a_{3}}{2\left(a_{1}-a_{3}\right)} u_{1} u_{2}
$$

The diagonal terms in the Lax representation are λ-independent.

Two of them read:

$$
\begin{aligned}
& i\left(a_{1}-a_{2}\right) \frac{\partial\left|u_{1}\right|^{2}}{\partial t}-i\left(b_{1}-b_{2}\right) \frac{\partial\left|u_{1}\right|^{2}}{\partial x}-\epsilon \kappa\left(u_{1} u_{2} u_{3}^{*}-u_{1}^{*} u_{2}^{*} u_{3}\right)=0 \\
& i\left(a_{2}-a_{3}\right) \frac{\partial\left|u_{2}\right|^{2}}{\partial t}-i\left(b_{2}-b_{3}\right) \frac{\partial\left|u_{2}\right|^{2}}{\partial x}-\epsilon \kappa\left(u_{1} u_{2} u_{3}^{*}-u_{1}^{*} u_{2}^{*} u_{3}\right)=0
\end{aligned}
$$

These relations are satisfied identically as a consequence of the NLEE.

New types of 4 -wave interactions

The Lax pair for these new equations will be provided by:

$$
\begin{aligned}
L \psi & =i \frac{\partial \psi}{\partial x}+\left(U_{2}(x, t)+\lambda U_{1}(x, t)-\lambda^{2} J\right) \psi(x, t, \lambda)=0 \\
M \psi & =i \frac{\partial \psi}{\partial t}+\left(V_{2}(x, t)+\lambda V_{1}(x, t)-\lambda^{2} K\right) \psi(x, t, \lambda)=0
\end{aligned}
$$

where $U_{j}(x, t)$ and $V_{j}(x, t)$ are fast decaying smooth functions taking values in the Lie algebra so(5)

$$
\begin{array}{ll}
U_{1}(x, t)=\left[J, Q_{1}(x, t)\right], & U_{2}(x, t)=\left[J, Q_{2}(x, t)\right]-\frac{1}{2} \operatorname{ad}_{Q_{1}}^{2} J, \\
V_{1}(x, t)=\left[K, Q_{1}(x, t)\right], & V_{2}(x, t)=\left[K, Q_{2}(x, t)\right]-\frac{1}{2} \operatorname{ad}_{Q_{1}}^{2} K .
\end{array}
$$

Here $\operatorname{ad}_{Q_{1}} X \equiv\left[Q_{1}(x, t), X\right]$.
Assume $Q_{1}(x, t)$ and $Q_{2}(x, t)$ to be generic elements of so(5):

$$
\begin{aligned}
Q_{1}(x, t) & =\sum_{\alpha \in \Delta_{+}}\left(q_{\alpha}^{1} E_{\alpha}+p_{\alpha}^{1} E_{-\alpha}\right)+r_{1}^{1} H_{e_{1}}+r_{2}^{1} H_{e_{2}} \\
Q_{2}(x, t) & =\sum_{\alpha \in \Delta_{+}}\left(q_{\alpha}^{2} E_{\alpha}+p_{\alpha}^{2} E_{-\alpha}\right)+r_{1}^{2} H_{e_{1}}+r_{2}^{2} H_{e_{2}} \\
J & =a_{1} H_{e_{1}}+a_{2} H_{e_{2}}=\operatorname{diag}\left(a_{1}, a_{2}, 0,-a_{2},-a_{1}\right), \\
K & =b_{1} H_{e_{1}}+b_{2} H_{e_{2}}=\operatorname{diag}\left(b_{1}, b_{2}, 0,-b_{2},-b_{1}\right),
\end{aligned}
$$

Next we impose on $Q_{1}(x, t)$ and $Q_{2}(x, t)$ the natural reduction

$$
B_{0} U\left(x, t, \epsilon \lambda^{*}\right)^{\dagger} B_{0}^{-1}=U(x, t, \lambda), \quad B_{0}=\operatorname{diag}(1, \epsilon, 1, \epsilon, 1), \quad \epsilon^{2}=1
$$

As a result:

$$
B_{0}\left(\chi^{+}\left(x, t, \epsilon \lambda^{*}\right)\right)^{\dagger} B_{0}^{-1}=\left(\chi^{-}(x, t, \lambda)\right)^{-1}, \quad B_{0}\left(T\left(t, \epsilon \lambda^{*}\right)\right)^{\dagger} B_{0}^{-1}=(T(t, \lambda))^{-1}
$$

which provide $p_{\alpha}^{1}=\epsilon\left(q_{\alpha}^{1}\right)^{*}, p_{\alpha}^{2}=\epsilon\left(q_{\alpha}^{2}\right)^{*}$. Then the Lax representation will be a (rather complicated) system of 8 NLEE for the 8 independent matrix elements q_{α}^{1} and q_{α}^{2}. Additional \mathbb{Z}_{2} reduction condition

$$
\begin{aligned}
D \xi^{ \pm}(x, t,-\lambda) \hat{D} & =\xi^{ \pm}(x, t, \lambda), \\
D & =\operatorname{diag}(1,-1,1,-1,1)
\end{aligned} \quad D Q(x, t,-\lambda) \hat{D}=Q(x, t, \lambda),
$$

$$
\begin{aligned}
Q_{1}(x, t) & =\left(\begin{array}{ccccc}
0 & u_{1} & 0 & u_{3} & 0 \\
v_{1} & 0 & u_{2} & 0 & u_{3} \\
0 & v_{2} & 0 & u_{2} & 0 \\
v_{3} & 0 & v_{2} & 0 & u_{1} \\
0 & v_{3} & 0 & v_{1} & 0
\end{array}\right) \\
Q_{2}(x, t) & =\left(\begin{array}{ccccc}
w_{1} & 0 & u_{4} & 0 & 0 \\
0 & w_{2} & 0 & 0 & 0 \\
w_{4} & 0 & 0 & 0 & u_{4} \\
0 & 0 & 0 & -w_{2} & 0 \\
0 & 0 & -v_{4} & 0 & -w_{1}
\end{array}\right), \\
J & =a_{1} H_{e_{1}}+a_{2} H_{e_{2}}=\operatorname{diag}\left(a_{1}, a_{2}, 0,-a_{2},-a_{1}\right), \\
K & =b_{1} H_{e_{1}}+b_{2} H_{e_{2}}=\operatorname{diag}\left(b_{1}, b_{2}, 0,-b_{2},-b_{1}\right)
\end{aligned}
$$

Combining both reductions for the matrix elements of $Q_{j}(x, t)$ we have:

$$
v_{1}=\epsilon u_{1}^{*}, \quad v_{2}=\epsilon u_{2}^{*}, \quad v_{3}=\epsilon u_{3}^{*}, \quad v_{4}=u_{4}^{*}
$$

The commutativity condition for the Lax pair

$$
i\left(\frac{\partial V_{2}}{\partial x}+\lambda \frac{\partial V_{1}}{\partial x}\right)-i\left(\frac{\partial U_{2}}{\partial t}+\lambda \frac{\partial U_{1}}{\partial t}\right)+\left[U_{2}+\lambda U_{1}-\lambda^{2} J, V_{2}+\lambda V_{1}-\lambda^{2} K\right]=0
$$

must hold identically with respect to λ. The terms proportional to λ^{4}, λ^{3} and λ^{2} vanish identically. The term proportional to λ and the λ independent term vanish provided Q_{i} satisfy the NLEE:

$$
\begin{aligned}
& i \frac{\partial V_{1}}{\partial x}-i \frac{\partial U_{1}}{\partial t}+\left[U_{2}, V_{1}\right]+\left[U_{1}, V_{1}\right]=0 \\
& i \frac{\partial V_{2}}{\partial x}-i \frac{\partial U_{2}}{\partial t}+\left[U_{2}, V_{2}\right]=0
\end{aligned}
$$

In components the corresponding NLEE:

$$
\begin{aligned}
& -2 i\left(a_{1}-a_{2}\right) \frac{\partial u_{1}}{\partial t}+2 i\left(b_{1}-b_{2}\right) \frac{\partial u_{1}}{\partial x}+\kappa \epsilon u_{2}^{*}\left(\epsilon u_{2}^{*} u_{3}-u_{1} u_{2}-2 u_{4}\right)=0 \\
& -2 i a_{2} \frac{\partial u_{2}}{\partial t}+2 i b_{2} \frac{\partial u_{2}}{\partial x}-\kappa\left(u_{2} \epsilon\left(\left|u_{3}\right|^{2}-\left|u_{1}\right|^{2}\right)+2 u_{3} u_{4}^{*}+2 \epsilon u_{1}^{*} u_{4}\right)=0 \\
& -2 i\left(a_{1}+a_{2}\right) \frac{\partial u_{3}}{\partial t}+2 i\left(b_{1}+b_{2}\right) \frac{\partial u_{3}}{\partial x}+\kappa u_{2}\left(\epsilon u_{2}^{*} u_{3}-u_{1} u_{2}+2 u_{4}\right)=0 \\
& -2 i a_{1} \frac{\partial u_{4}}{\partial t}+2 i b_{1} \frac{\partial u_{4}}{\partial x}+i \frac{\partial}{\partial t}\left(-\left(2 a_{2}-a_{1}\right) u_{1} u_{2}+\left(2 a_{2}+a_{1}\right) \epsilon u_{2}^{*} u_{3}\right) \\
& +i\left(2 b_{2}-b_{1}\right) \frac{\partial\left(u_{1} u_{2}\right)}{\partial x}-i\left(2 b_{2}+b_{1}\right) \epsilon \frac{\partial\left(u_{2}^{*} u_{3}\right)}{\partial x}-\kappa\left(2 \epsilon u_{4}\left(\left|u_{1}\right|^{2}-\left|u_{3}\right|^{2}\right)\right. \\
& \left.+\epsilon u_{1} u_{2}\left(\left|u_{1}\right|^{2}+3\left|u_{3}\right|^{2}\right)-u_{3} u_{2}^{*}\left(3\left|u_{1}\right|^{2}+\left|u_{3}\right|^{2}\right)\right)=0
\end{aligned}
$$

NLS and MKdV-type equations with $s l(n)$ series

Drinfeld, Sokolov (1981).

$$
\begin{aligned}
L \psi & \equiv i \frac{\partial \psi}{\partial x}+U(x, t, \lambda) \psi=0 \\
M \psi & \equiv i \frac{\partial \psi}{\partial t}+V(x, t, \lambda) \psi=\psi C(\lambda)
\end{aligned}
$$

For the case of \mathbb{Z}_{N}-reduction (Mikhailov (1981)):

$$
C_{1} U(x, t, \lambda) C_{1}^{-1}=U(x, t, \omega \lambda), \quad C_{1} V(x, t, \lambda) C_{1}^{-1}=V(x, t, \omega \lambda),
$$

where $C_{1}^{N}=\mathbb{1}$ is a Coxeter automorphism of the algebra $\mathfrak{s l}(N, \mathbb{C})$ and $\omega=\exp (2 \pi i / N)$.

Let $\mathfrak{g} \simeq \mathfrak{s l}(N, \mathbb{C})$ and the group of reduction is \mathbb{Z}_{N}. The class of relevant NLEE may be considered as generalizations of the derivative

NLS equations

$$
i \frac{\partial \psi_{k}}{\partial t}+\gamma \frac{\partial}{\partial x}\left(\cot \left(\frac{\pi k}{N}\right) \cdot \psi_{k, x}+i \sum_{p=1}^{N-1} \psi_{p} \psi_{k-p}\right)=0
$$

$k=1,2, \ldots, N-1$, where γ is a constant and the index $k-p$ should be understood modulus N and $\psi_{0}=\psi_{N}=0$.

The automorphism $\operatorname{Ad}_{C_{1}}\left(\operatorname{Ad}_{C_{1}}(Y) \equiv C_{1} Y C_{1}^{-1}\right.$ for every Y from $\left.\mathfrak{g}\right)$ defines a grading in the Lie algebra

$$
\begin{gathered}
\mathfrak{s l}(N, \mathbb{C})=\stackrel{{\underset{k=0}{-1}}_{\oplus} \mathfrak{g}^{(k)}}{J^{(k)}=\sum_{j=1}^{N} \omega^{k j} E_{j, j+s}, \quad C^{-1} J^{(k)} C=\omega^{-k} J^{(k)} .} .
\end{gathered}
$$

where $\left(E_{j, s}\right)_{q, r}=\delta_{j q} \delta_{s r}$. Obviously

$$
\left[J^{(k)}, J_{l}^{(m)}\right]=\left(\omega^{m s}-\omega^{k l}\right) J_{s+l}^{(k+m)}
$$

Examples of DNLS-type equations

If $N=5$ we can apply the involution: $\psi_{0}=\psi_{5}=0, \psi_{1}=\psi_{4}^{*}, \psi_{2}=\psi_{3}^{*}$, i.e., we have only two independent complex-valued fields and

$$
\begin{align*}
& i \frac{\partial \psi_{1}}{\partial t}+\gamma \operatorname{cotan} \frac{\pi}{5} \frac{\partial^{2} \psi_{1}}{\partial x^{2}}+i \gamma \frac{\partial}{\partial x}\left(2 \psi_{2} \psi_{1}^{*}+\left(\psi_{2}^{*}\right)^{2}\right)=0 \tag{11}\\
& i \frac{\partial \psi_{2}}{\partial t}+\gamma \operatorname{cotan} \frac{2 \pi}{5} \frac{\partial^{2} \psi_{2}}{\partial x^{2}}+i \gamma \frac{\partial}{\partial x}\left(2 \psi_{1}^{*} \psi_{2}^{*}+\left(\psi_{1}\right)^{2}\right)=0
\end{align*}
$$

For $N=6$ and $\psi_{1}=\psi_{5}^{*}, \psi_{2}=\psi_{4}^{*}, \psi_{3}=\psi_{3}^{*}$, so we have a system for two complex-valued fields ψ_{1} and ψ_{2} and the real field ψ_{3} :

$$
\begin{align*}
i \frac{\partial \psi_{1}}{\partial t}+\gamma \operatorname{cotan} \frac{\pi}{6} \frac{\partial^{2} \psi_{1}}{\partial x^{2}}+2 i \gamma \frac{\partial}{\partial x}\left(\psi_{1}^{*} \psi_{2}+\psi_{2}^{*} \psi_{3}\right) & =0 \\
i \frac{\partial \psi_{2}}{\partial t}+\gamma \operatorname{cotan} \frac{2 \pi}{6} \frac{\partial^{2} \psi_{2}}{\partial x^{2}}+i \gamma \frac{\partial}{\partial x}\left(\psi_{1}^{2}+2 \psi_{1}^{*} \psi_{3}+\left(\psi_{2}^{*}\right)^{2}\right) & =0 \tag{12}\\
\frac{\partial \psi_{3}}{\partial t}+2 \gamma \frac{\partial}{\partial x}\left(\psi_{1} \psi_{2}+\psi_{1}^{*} \psi_{2}^{*}\right) & =0
\end{align*}
$$

Examples of MKdV-type equations

Next choose $U(x, t, \lambda)$ and $V(x, t, \lambda)$ as follows:

$$
\begin{gathered}
U(x, t, \lambda)=Q(x, t)-\lambda J, \quad Q(x, t)=\sum_{j=1}^{N-1} \psi_{j}(x, t) J_{j}^{(0)}, \quad J=a J_{0}^{(1)} \\
V(x, t, \lambda)=V_{3}(x, t)+\lambda V_{2}(x, t)+\lambda^{2} V_{1}(x, t)-\lambda^{3} K
\end{gathered}
$$

where

$$
\begin{array}{rlrl}
V_{1}(x, t) & =\sum_{k=1}^{N} v_{k}^{1}(x, t) J_{k}^{(2)}, & V_{2}(x, t) & =\sum_{l=1}^{N} v_{l}^{2}(x, t) J_{l}^{(1)} \\
V_{3}(x, t) & =\sum_{j=1}^{N-1} v_{j}^{3}(x, t) J_{j}^{(0)}, & K=b J_{0}^{(3)}
\end{array}
$$

The constants a and b determine the dispersion law of the MKdV eqs.
The next step is to request that $[L, M]=0$ identically with respect to λ.

$$
v_{k}^{1}(x, t)=\frac{b}{a}\left(\omega^{2 k}+\omega^{k}+1\right) \psi_{k}, \quad k=1, \ldots, N-1
$$

and $v_{N}^{1}=C(t)$ with $C(t)$ - arbitrary function of time. For

$$
\begin{aligned}
v_{l}^{2}(x, t) & =\frac{b}{a^{2}} \sum_{j+k=l}^{N-1} \frac{\omega^{2 l}+\omega^{2 j+k}-\omega^{k}-1}{1-\omega^{l}} \psi_{j} \psi_{k} \\
& +i \frac{b}{a^{2}}\left(\frac{\omega^{2 l}+\omega^{l}+1}{1-\omega^{l}}\right) \frac{\partial \psi_{l}}{\partial x}-\frac{C}{a}\left(\omega^{l}+1\right) \psi_{l}
\end{aligned}
$$

for $l=1, \ldots, N-1$ and

$$
v_{N}^{2}=-\frac{b}{a^{2}} \sum_{j+l=0}^{N-1}\left(\cos \frac{2 \pi j}{N}+\frac{1}{2}\right) \psi_{j} \psi_{l}+D(t)
$$

with $\mathrm{D}(\mathrm{t})$ - another arbitrary function of time. And for

$$
\begin{aligned}
& v_{j}^{3}=\frac{b}{a^{3}} \cot \left(\frac{\pi j}{N}\right) \sum_{k+l=j}^{N-1} \frac{\partial}{\partial x}\left(\psi_{k} \psi_{l}\right)+\frac{C}{a^{2}} \sum_{m+l=j}^{N-1}\left(\psi_{m} \psi_{l}\right) \\
& +\frac{b}{2 a^{3}} \sum_{k+l=j}^{N-1} \frac{\cos \frac{\pi(k-l)}{N}}{\sin \frac{\pi j}{N}} \frac{\partial}{\partial x}\left(\psi_{k} \psi_{l}\right)-\frac{D}{a} \psi_{j}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b}{a^{3}} \sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1}\left(\psi_{i} \psi_{k} \psi_{m}\right)+\frac{3 b}{2 a^{3}} \sum_{l+m=j}^{N-1} \cot \left(\frac{\pi l}{N}\right) \frac{\partial \psi_{l}}{\partial x} \psi_{m} \\
& +\frac{b}{a^{3}} \sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} \frac{\sin \frac{\pi(j-2 k)}{N}-\sin \frac{\pi(j-2 m)}{N}}{\sin \frac{\pi j}{N}}\left(\psi_{i} \psi_{k} \psi_{m}\right) \\
& -\frac{b}{4 a^{3}} \cot \left(\frac{\pi j}{N}\right) \sum_{l+m=j}^{N-1} \frac{\partial}{\partial x}\left(\psi_{l} \psi_{m}\right)+\frac{C}{a^{2}} \cot \left(\frac{\pi j}{N}\right) \frac{\partial \psi_{j}}{\partial x} \\
& -\frac{b}{2 a^{3}} \sum_{l+m=j}^{N-1} \frac{\cos \frac{\pi(l-m)}{N}}{\sin \frac{\pi j}{N}} \frac{\partial}{\partial x}\left(\psi_{l} \psi_{m}\right)+\frac{b}{a^{3}}\left(\cot ^{2} \frac{\pi j}{N}-\frac{1}{4 \sin ^{2} \frac{\pi j}{N}}\right) \frac{\partial^{2} \psi_{j}}{\partial x^{2}} \\
& +\frac{b}{a^{3}} \sum_{k=1}^{N-1}\left(\cos \frac{2 \pi k}{N}+\frac{1}{2}\right)\left(\psi_{k} \psi_{N-k} \psi_{j}\right)
\end{aligned}
$$

where j is running from 1 to $\mathrm{N}-1$. We choose $C(t)=0$ and $D(t)=0$.

In the end we get the following system of mKdV equations:

$$
\begin{aligned}
& \alpha \frac{\partial \psi_{j}}{\partial t}=\left(\cot ^{2} \frac{\pi j}{N}-\frac{1}{4 \sin ^{2} \frac{\pi j}{N}}\right) \frac{\partial^{3} \psi_{j}}{\partial x^{3}}+\sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} \frac{\partial}{\partial x}\left(\psi_{i} \psi_{k} \psi_{m}\right) \\
& +\sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} \frac{\sin \frac{\pi(j-2 k)}{N}-\sin \frac{\pi(j-2 m)}{N}}{\sin \frac{\pi j}{N}} \frac{\partial}{\partial x}\left(\psi_{i} \psi_{k} \psi_{m}\right) \\
& +\sum_{k=1}^{N-1}\left(\cos \frac{2 \pi k}{N}+\frac{1}{2}\right) \frac{\partial}{\partial x}\left(\psi_{k} \psi_{N-k} \psi_{j}\right)+\frac{3}{4} \cot \left(\frac{\pi j}{N}\right) \sum_{k+l=j}^{N-1} \frac{\partial^{2}}{\partial x^{2}}\left(\psi_{k} \psi_{l}\right) \\
& +\frac{3}{4} \sum_{k+l=j}^{N-1} \frac{\partial}{\partial x}\left(\cot \left(\frac{\pi l}{N}\right) \frac{\partial \psi_{l}}{\partial x} \psi_{k}+\cot \left(\frac{\pi k}{N}\right) \frac{\partial \psi_{k}}{\partial x} \psi_{l}\right)
\end{aligned}
$$

where $\alpha=a^{3} / b$.
In the case of $\mathfrak{s l}(2, \mathbb{C})$ algebra we obtain the well-known MKdV equation

$$
\alpha \frac{\partial \psi_{1}}{\partial t}=-\frac{1}{4} \frac{\partial^{3} \psi_{1}}{\partial x^{3}}-\frac{1}{2} \frac{\partial}{\partial x}\left(\psi_{1}^{3}\right)
$$

In the case of $\mathfrak{s l}(3, \mathbb{C})$ algebra we have the system of trivial equations $\partial_{t} \psi_{1}=0$ and $\partial_{t} \psi_{2}=0$. In the case of $\mathfrak{s l}(4, \mathbb{C})$ algebra we find:

$$
\begin{align*}
& \alpha \frac{\partial \psi_{1}}{\partial t}= \frac{1}{2} \frac{\partial^{3} \psi_{1}}{\partial x^{3}}+\frac{3}{2} \frac{\partial}{\partial x}\left(\frac{\partial \psi_{2}}{\partial x} \psi_{3}\right)+\frac{3}{2} \frac{\partial}{\partial x}\left(\psi_{1} \psi_{2}^{2}\right)+\frac{\partial}{\partial x}\left(\psi_{3}^{3}\right), \\
& \alpha \frac{\partial \psi_{2}}{\partial t}=-\frac{1}{4} \frac{\partial^{3} \psi_{2}}{\partial x^{3}}+\frac{3}{4} \frac{\partial^{2}}{\partial x^{2}}\left(\psi_{1}^{2}\right)-\frac{3}{4} \frac{\partial^{2}}{\partial x^{2}}\left(\psi_{3}^{2}\right) \\
&+3 \frac{\partial}{\partial x}\left(\psi_{1} \psi_{2} \psi_{3}\right)-\frac{1}{2} \frac{\partial}{\partial x}\left(\psi_{2}^{3}\right) \tag{13}\\
& \alpha \frac{\partial \psi_{3}}{\partial t}= \frac{1}{2} \frac{\partial^{3} \psi_{3}}{\partial x^{3}}-\frac{3}{2} \frac{\partial}{\partial x}\left(\psi_{1} \frac{\partial \psi_{2}}{\partial x}\right)+\frac{3}{2} \frac{\partial}{\partial x}\left(\psi_{2}^{2} \psi_{3}\right)+\frac{\partial}{\partial x}\left(\psi_{1}^{3}\right) .
\end{align*}
$$

If we apply case a) we get the same set of MKdV equations with ψ_{1}, ψ_{2} and ψ_{3} purely real functions.

In the case b) we put $\psi_{1}=-\psi_{3}^{*}=u$ and $\psi_{2}=-\psi_{2}^{*}=i v$ and get:

$$
\begin{aligned}
& \alpha \frac{\partial v}{\partial t}=-\frac{1}{4} \frac{\partial^{3} v}{\partial x^{3}}+\frac{3}{4 i} \frac{\partial^{2}}{\partial x^{2}}\left(u^{2}-u^{*, 2}\right)-3 \frac{\partial}{\partial x}\left(|u|^{2} v\right)+\frac{1}{2} \frac{\partial}{\partial x}\left(v^{3}\right), \\
& \alpha \frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{3} u}{\partial x^{3}}-i \frac{3}{2} \frac{\partial}{\partial x}\left(u^{*} \frac{\partial v}{\partial x}\right)-\frac{3}{2} \frac{\partial}{\partial x}\left(u v^{2}\right)-\frac{\partial}{\partial x}\left(\left(u^{*}\right)^{3}\right),
\end{aligned}
$$

where u is a complex function, but v is a purely real function. In the case c):

$$
\alpha \frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{3} u}{\partial x^{3}}-\frac{\partial}{\partial x}\left(u^{3}\right),
$$

where u is a complex function, we recover the MKdV equation. In the case of $\mathfrak{s l}(6, \mathbb{C})$ algebra with \mathbb{D}_{6}-reduction in the case c) we find

$$
\begin{aligned}
\alpha \frac{\partial u}{\partial t} & =2 \frac{\partial^{3} u}{\partial x^{3}}-2 \sqrt{3} \frac{\partial}{\partial x}\left(u \frac{\partial v}{\partial x}\right)-6 \frac{\partial}{\partial x}\left(u v^{2}\right) \\
\alpha \frac{\partial v}{\partial t} & =\sqrt{3} \frac{\partial^{2}}{\partial x^{2}}\left(u^{2}\right)-6 \frac{\partial}{\partial x}\left(u^{2} v\right)
\end{aligned}
$$

where u and v are complex functions.

MKdV and so(8)

Normally with each simple Lie algebra one can associate just one MKdV eq. The only exception is so(8) which allows a one-parameter family of MKdV equations. The reason is that only so(8) has 3 as a double exponent!

$$
\begin{gathered}
\partial_{t} q_{1}=2 a\left[\partial_{x}^{3} q_{1}-\sqrt{3} \partial_{x}\left(q_{1} \partial_{x} q_{2}\right)\right]-\sqrt{3}\left[(3 a+b) \partial_{x}\left(q_{4} \partial_{x} q_{3}\right)+(3 a-b) \partial_{x}\left(q_{3} \partial_{x} q_{4}\right)\right] \\
-3 \partial_{x}\left[q_{1}\left(2 a q_{2}^{2}+(a-b) q_{3}^{2}+(a+b) q_{4}^{2}\right)\right] \\
\partial_{t} q_{2}=\sqrt{3} a \partial_{x}^{2} q_{1}^{2}+\frac{\sqrt{3}}{2}(a+b) \partial_{x}^{2} q_{3}^{2}+\frac{\sqrt{3}}{2}(a-b) \partial_{x}^{2} q_{4}^{2} \\
\quad-3 \partial_{x}\left[q_{2}\left(2 a q_{1}^{2}+(a+b) q_{3}^{2}+(a-b) q_{4}^{2}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
\partial_{t} q_{3} & =-(a+b)\left[\partial_{x}^{3} q_{3}-\sqrt{3} \partial\left(q_{3} \partial_{x} q_{2}\right)\right]-\sqrt{3}\left[(3 a+b) \partial_{x}\left(q_{4} \partial_{x} q_{1}\right)+2 b \partial_{x}\left(q_{1} \partial_{x} q_{4}\right)\right] \\
& +3 \partial_{x}\left[q_{3}\left(2 a q_{4}^{2}+(a-b) q_{1}^{2}+(a+b) q_{2}^{2}\right)\right], \\
\partial_{t} q_{4} & =-(a-b)\left[\partial_{x}^{3} q_{4}-\sqrt{3} \partial_{x}\left(q_{4} \partial_{x} q_{2}\right)\right]-\sqrt{3}\left[(3 a-b) \partial_{x}\left(q_{3} \partial_{x} q_{1}\right)-2 b \partial_{x}\left(q_{1} \partial_{x} q_{3}\right)\right] \\
& +3 \partial_{x}\left[q_{4}\left(2 a q_{3}^{2}+(a-b) q_{2}^{2}+(a+b) q_{1}^{2}\right)\right] .
\end{aligned}
$$

Conclusions and open questions

- More classes of new integrable equations: i) higher rank simple Lie algebras; ii) different types of grading; iii) different power k of the polynomials $U(x, t, \lambda)$ and $V(x, t, \lambda)$ and iv) different reductions of U and V.
- These new NLEE must be Hamiltonian. View the jets $U(x, t, \lambda)$ and $V(x, t, \lambda)$ as elements of co-adjoint orbits of some Kac-Moody algebra.
- Apply Zakharov-Shabat dressing method for constructing their N soliton solutions and study their interactions.
- 'Squared' solutions, Recursion operators, Hamiltonian hierarchies
- Apply the above methods to twisted Kac-Moody algebras - work in progress

Thank you for your attention!

