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The inverse scattering method

The inverse scattering method for the N -wave equations – Zakharov,
Shabat, Manakov (1973).

Lax representation:

[L,M ] ≡ 0,

Lψ ≡ i
∂ψ

∂x
+ (U1(x, t)− λJ)ψ(x, t, λ) = 0,

Mψ ≡ i
∂ψ

∂t
+ (V1(x, t)− λK)ψ(x, t, λ) = 0,

(1)

where J , K – constant diagonal matrices.

λ2 a) [J,K] = 0,

λ b) [U1,K] + [J, V1] = 0,

λ0 c) iV1,x − iU1,t + [U1, V1] = 0.

(2)

Eq. a) is satisfied identically.



Eq. b) is satisfied identically if:

U1(x, t) = [J,Q1(x, t)], V1(x, t) = [K,Q1(x, t)],

Then eq. c) becomes the N -wave equation:

i

[
J,
∂Q1

∂t

]
− i

[
K,

∂Q1

∂x

]
+ [[K,Q1], [J,Q1]] = 0.

Simplest non-trivial case:

N = 3, g ≃ sl(3), Q1(x, t) =

 0 u1 u3
u∗1 0 u2
u∗3 u

∗
2 0

 .

Then the 3-wave equations take the form:

∂u1
∂t

− a1 − a2
b1 − b2

∂u1
∂x

+ κϵ1ϵ2u
∗
2u3 = 0,

∂u2
∂t

− a2 − a3
b2 − b3

∂u2
∂x

+ κϵ1u
∗
1u3 = 0,

∂u3
∂t

− a1 − a3
b1 − b3

∂u3
∂x

+ κϵ2u
∗
1u

∗
2 = 0,



where

κ = a1(b2 − b3)− a2(b1 − b3) + a3(b1 − b2).

Solving Nonlinear Cauchy problems by the
Inverse scattering method

Find solution to the N -wave eqs. such that

Q1(x, t = 0) = q0(x).

q0 −→ L0 L|t>0 −→ q(x, t)

I

y xIII

T (0, λ)
II−→ T (t, λ)

(3)

Step I: Given Q1(x, t = 0) = q0(x) construct the scattering matrix
T (λ, 0).



Jost solutions:

Lϕ(x, λ) = 0, lim
x→−∞

ϕ(x, λ)eiλJx = 11,

Lψ(x, λ) = 0, lim
x→∞

ψ(x, λ)eiλJx = 11,

T (λ, 0) = ψ−1(x, λ)ϕ(x, λ).

Step II: From the Lax representation there follows:

i
∂T

∂t
− λ[K,T (λ, t)] = 0,

i.e.
T (λ, t) = e−iλKtT (λ, 0)eiλKt.

Step III: Given T (λ, t) construct the potential Q1(x, t) for t > 0.
For g ≃ sl(2) – GLM eq. – Volterra type integral equations
For higher rank simple Lie algebras – GLM eq. become Fredholm type
integral equations, very complicated. But it can be reduced to Riemann-
Hilbert problem.



Important: All steps reduce to linear integral equations.
Thus the nonlinear Cauchy problem reduces to a sequence of three linear
Cauchy problems; each has unique solution!

The fundamental analytic solutions and Riemann-Hilbert
problem

Shabat (1974) – introduced the fundamental analytic solutions of L.

χ+(x, t, λ) = ϕ(x, t, λ)S+(λ, t) = ψ(x, t, λ)T−(λ, t)D+(λ), λ ∈ C+,

χ−(x, t, λ) = ϕ(x, t, λ)S−(λ, t) = ψ(x, t, λ)T+(λ, t)D−(λ), λ ∈ C−,

where S+(λ, t), T+(λ, t) – upper-triangular matrices
S−(λ, t), T−(λ, t) – lower-triangular matrices
D+(λ), D−(λ) – diagonal matrices
Gauss decomposition of T (λ, t) :

T (λ, t) = T−(λ, t)D+(λ)Ŝ+(λ, t) = T+(λ, t)D−(λ)Ŝ−(λ, t).



Then

χ+(x, t, λ) = χ−(x, t, λ)G0(λ, t), λ ∈ R, G0(λ, t) = Ŝ−(λ, t)S+(λ, t).

Introduce

ξ+(x, t, λ) = χ+(x, t, λ)eiλJx, ξ−(x, t, λ) = χ−(x, t, λ)eiλJx,

Then ξ±(x, t, λ) are FAS of the linear problem:

i
∂ξ±

∂x
+ U1(x, t)ξ

±(x, t, λ)− λ[J, ξ±(x, t, λ)] = 0,

that satisfy RHP:

ξ+(x, t, λ) = ξ−(x, t, λ)G(x, t, λ), λ ∈ R,

i
∂G

∂x
− λ[J,G(x, t, λ)] = 0, i

∂G

∂t
− λ[K,G(x, t, λ)] = 0,

Canonical normalization

lim
λ→∞

ξ±(x, t, λ) = 11.



Theorem 1 (Zakharov-Shabat). Let ξ±(x, t, λ) be solutions to the RHP
whose sewing function depends on the auxiliary variables x and t as
above. Then ξ±(x, t, λ) are fundamental solutions of the following set of
differential operators:

L̃ξ± ≡i∂ξ
±

∂x
+ U(x, t, λ)ξ±(x, t, λ)− λ[J, ξ±(x, t, λ)] = 0,

M̃ξ± ≡i∂ξ
±

∂t
+ V (x, t, λ)ξ±(x, t, λ)− λ[K, ξ±(x, t, λ)] = 0.

Proof. Introduce the functions:

g±(x, t, λ) = i
∂ξ±

∂x
ξ̂±(x, t, λ) + λξ±(x, t, λ)Jξ̂±(x, t, λ),

p±(x, t, λ) = i
∂ξ±

∂t
ξ̂±(x, t, λ) + λξ±(x, t, λ)Kξ̂±(x, t, λ),

and using

i
∂G

∂x
− λ[J,G(x, t, λ)] = 0, i

∂G

∂t
− λ[K,G(x, t, λ)] = 0.



prove that

g+(x, t, λ) = g−(x, t, λ), p+(x, t, λ) = p−(x, t, λ),

which means that these functions are analytic functions of λ in the whole
complex λ-plane. Next we find that:

lim
λ→∞

g+(x, t, λ) = λJ, lim
λ→∞

p+(x, t, λ) = λK.

and make use of Liouville theorem to get

g+(x, t, λ) = g−(x, t, λ) = λJ − U1(x, t),

p+(x, t, λ) = p−(x, t, λ) = λK − V1(x, t).

We shall see below that the coefficients U1(x, t) and V1(x, t) can be ex-
pressed in terms of the asymptotic coefficients Qs of ξ±(x, t, λ).

Now remember the definition of g+(x, t, λ)

g±(x, t, λ) = i
∂ξ±

∂x
ξ̂±(x, t, λ) + λξ±(x, t, λ)Jξ̂±(x, t, λ)

= λJ − Ul(x, t),



Multiply both sides by ξ±(x, t, λ) and move all the terms to the left:

i
∂ξ±

∂x
+ Ul(x, t)ξ

±(x, t, λ)− λ[J, ξ±(x, t, λ)] = 0,

i.e. L̃ξ±(x, t, λ) = 0 or Lχ±(x, t, λ) = 0.

Zakharov-Shabat dressing method and soliton solu-
tions

Starting from a regular solution χ±
0 (x, t, λ) of L0(λ) with potentialQ(0)(x, t)

construct new singular solutions χ±
1 (x, t, λ) of L with a potentialQ(1)(x, t)

with two pole singularities located at prescribed positions λ±1 ∈ C±; the
reduction Q = Q† ensures that λ−1 = (λ+1 )

∗. It is related to the regular
one by a dressing factor u(x, t, λ)

χ±
1 (x, t, λ) = u(x, λ)χ±

0 (x, t, λ)u
−1
− (λ). u−(λ) = lim

x→−∞
u(x, λ) (4)

Note that u(x, λ) must satisfy

i∂xu+ [J,Q(1)(x)]u− u[J,Q(0)(x)]− λ[J, u(x, λ)] = 0, (5)



and the normalization condition limλ→∞ u(x, λ) = 11.
The construction of u(x, λ) is based on an appropriate anzats speci-

fying explicitly the form of its λ-dependence:

u(x, λ) = 11 + (c(λ)− 1)P (x, t), c(λ) =
λ− λ+1
λ− λ−1

, (6)

where P (x, t) is a projector

P (x, t) =
|n1(x, t)⟩⟨n†1(x, t)|
⟨n†1(x, t)|n1(x, t)⟩

, |n1(x, t)⟩ = χ+
0 (x, t, λ

+
1 )|n0,1⟩. (7)

Taking the limit λ→ ∞ in eq. (5) we get that

Q(1)(x, t)−Q(0)(x, t) = (λ−1 − λ+1 )[J, P (x, t)].

ISM as generalized Fourier transform

Based on the Wronskian relations

ρ±ij(λ, t) =
[[
Q1(x, t), e

±
ji(x, t, λ)

]]
,

[[
X,Y

]]
=

∫ ∞

−∞
tr (X, [J, Y ]) ,



e±ji(x, t, λ) = πJχ
±(x, t, λ)Eijχ̂

±(x, t, λ), πJX = ad−1
J ad JX.

But the ‘squared’ solutions satisfy completeness relation! So
every function, including Q1(x, t) allows expansion

Q1(x, t) =
1

π

∫ ∞

−∞
dλ
∑
i<j

(
ρ+ije

+
ij(x, t, λ)− ρ−jie

−
ji(x, t, λ)

)
+

N∑
a=1

Res . . .

(8)



Hamiltonian hierarchies of N-wave equations

The Lie bracket on g induces Poisson structure on the co-adjoint orbit
passing through J .

The functions D±(λ) are t-independent and generate an infinite num-
ber of integrals of motion in involution.

Ω0 =
[[
ad−1

J δQ1 ∧′ ad
−1
J δQ1

]]
,

Ωp =
[[
ad−1

J δQ1 ∧′ Λ
pad−1

J δQ1

]]
,

where Λ is the recursion operator:

Λe+ij(x, t, λ) = λe+ij(x, t, λ).

see VSG, P. Kulish (1981) and VSG, Yanovski, Vilasi. Integrable Hamil-
tonian Hierarchies. Spectral and Geometric Methods Lecture Notes in
Physics 748, Springer Verlag, Berlin, Heidelberg, New York (2008).



Generalizations to polynomial Lax operators

[L,M ] ≡ 0,

Lψ ≡ i
∂ψ

∂x
+ (U2(x, t) + λU1(x, t)− λ2J)ψ(x, t, λ) = 0,

Mψ ≡ i
∂ψ

∂t
+ (V2(x, t) + λV1(x, t)− λ2K)ψ(x, t, λ) = 0,

(9)

where J , K – constant diagonal matrices.

λ4 a) [J,K] = 0, λ3 b) [U1,K] + [J, V1] = 0,

λ2 c) [U1, V1]− [U2,K]− [J, V2] = 0.

Eqs. a)–c) must be satisfied identically if

U1(x, t) = [J,Q1(x, t)], V1(x, t) = [K,Q1(x, t)],

U2 = [J,Q2]−
1

2
ad 2

Q1
J, U2 = [K,Q2]−

1

2
ad 2

Q1
K.



Thus we obtain NLEE the generalization of the N -wave equation:

λ1 d) iV1,x − iU1,t + [U2, V1] + [U1, V2] = 0,

λ0 e) iV1,x − iU1,t + [U2, V1] + [U1, V2] = 0.
(10)

for the functions Q1(x, t) and Q2(x, t).
Note: Going to higher powers λk makes more complicated

1. the problem of correct parametrizing
2. Wronskian relations, ‘squared’ solutions, recursion operators
3. The potential functions of L and M

U(x, t, λ) = U2(x, t)+λU1(x, t)−λ2J, V (x, t, λ) = V2(x, t)+λV1(x, t)−λ2K,

can be viewed as elements of a Kac-Moody algebra gKM.
4. Hamiltonian properties are on the co-adjoint orbits of the gKM.



RHP with canonical normalization

ξ+(x, t, λ) = ξ−(x, t, λ)G(x, t, λ), λk ∈ R, lim
λ→∞

ξ+(x, t, λ) = 11,

ξ±(x, t, λ) ∈ G
Consider particular type of dependence G(x, t, λ):

i
∂G

∂x
− λk[J,G(x, t, λ)] = 0, i

∂G

∂t
− λk[K,G(x, t, λ)] = 0.

where J ∈ h ⊂ g.
The canonical normalization of the RHP:

ξ±(x, t, λ) = expQ(x, t, λ), Q(x, t, λ) =

∞∑
k=1

Qk(x, t)λ
−k.

where all Qk(x, t) ∈ g and Q(x, t, λ) ∈ gKM. However,

J (x, t, λ) = ξ±(x, t, λ)Jξ̂±(x, t, λ), K(x, t, λ) = ξ±(x, t, λ)Kξ̂±(x, t, λ),



belong to the algebra g for any J and K from g. If in addition K also
belongs to the Cartan subalgebra h, then

[J (x, t, λ),K(x, t, λ)] = 0.

Generalized Zakharov-Shabat theorem

Theorem 2. Let ξ±(x, t, λ) be solutions to the RHP whose sewing func-
tion depends on the auxiliary variables x and t as above. Then ξ±(x, t, λ)
are fundamental solutions of the following set of differential operators:

L̃ξ± ≡i∂ξ
±

∂x
+ U(x, t, λ)ξ±(x, t, λ)− λk[J, ξ±(x, t, λ)] = 0,

M̃ξ± ≡i∂ξ
±

∂t
+ V (x, t, λ)ξ±(x, t, λ)− λk[K, ξ±(x, t, λ)] = 0.

Proof. Introduce the functions:

g±(x, t, λ) = i
∂ξ±

∂x
ξ̂±(x, t, λ) + λkξ±(x, t, λ)Jξ̂±(x, t, λ),

p±(x, t, λ) = i
∂ξ±

∂t
ξ̂±(x, t, λ) + λkξ±(x, t, λ)Kξ̂±(x, t, λ),



and using

i
∂G

∂x
− λk[J,G(x, t, λ)] = 0, i

∂G

∂t
− λk[K,G(x, t, λ)] = 0.

prove that

g+(x, t, λ) = g−(x, t, λ), p+(x, t, λ) = p−(x, t, λ),

which means that these functions are analytic functions of λ in the whole
complex λ-plane. Next we find that:

lim
λ→∞

g+(x, t, λ) = λkJ, lim
λ→∞

p+(x, t, λ) = λkK.

and make use of Liouville theorem to get

g+(x, t, λ) = g−(x, t, λ) = λkJ −
k∑

l=1

Ul(x, t)λ
k−l,

p+(x, t, λ) = p−(x, t, λ) = λkK −
k∑

l=1

Vl(x, t)λ
k−l.



We shall see below that the coefficients Ul(x, t) and Vl(x, t) can be ex-
pressed in terms of the asymptotic coefficients Qs of ξ±(x, t, λ).

Now remember the definition of g+(x, t, λ)

g±(x, t, λ) = i
∂ξ±

∂x
ξ̂±(x, t, λ) + λkξ±(x, t, λ)Jξ̂±(x, t, λ)

= λkJ −
k∑

l=1

Ul(x, t)λ
k−l,

Multiply both sides by ξ±(x, t, λ) and move all the terms to the left:

i
∂ξ±

∂x
+

k∑
l=1

Ul(x, t)λ
k−lξ±(x, t, λ)− λk[J, ξ±(x, t, λ)] = 0,

i.e. L̃ξ±(x, t, λ) = 0 and Lχ±(x, t, λ) = 0 where χ±(x, t, λ) = ξ±(x, t, λ)e−iλkJx.

Lemma 1. The operators L and M commute

[L,M ] = 0,



i.e. the following set of equations hold:

i
∂U

∂t
− i

∂V

∂x
+ [U(x, t, λ)− λkJ, V (x, t, λ)− λkK] = 0.

where

U(x, t, λ) =

k∑
l=1

Ul(x, t)λ
k−l, V (x, t, λ) =

k∑
l=0

Vl(x, t)λ
k−l.

Jets of order k

How to parametrize U(x, t, λ) and V (x, t, λ)?
Use:

ξ±(x, t, λ) = expQ(x, t, λ), Q(x, t, λ) =
∞∑
k=1

Qk(x, t)λ
−k.



and consider the jets of order k of J+(x, λ) and K+(x, λ):

J+(x, t, λ) ≡
(
λkξ±(x, t, λ)Jlξ̂

±(x, t, λ)
)
+
= λkJ − U(x, t, λ),

K+(x, t, λ) ≡
(
λkξ±(x, t, λ)Kξ̂±(x, t, λ)

)
+
= λkK − V (x, t, λ).

Express U(x) ∈ g in terms of Qs(x):

J (x, t, λ) ≡= ξ±(x, t, λ)Jξ̂±(x, t, λ)

= J +
∞∑
k=1

1

k!
ad k

QJ,

K(x, t, λ) ≡ ξ±(x, t, λ)Kξ̂±(x, t, λ)

= K +

∞∑
k=1

1

k!
ad k

QK,

adQZ = [Q,Z], ad 2
QZ = [Q, [Q,Z]], . . .



and therefore for Ul we get:

U1(x, t) = −adQ1J, U2(x, t) = −adQ2J − 1

2
ad 2

Q1
J

U3(x, t) = −adQ3J − 1

2
(adQ2adQ1 + adQ1adQ2) J − 1

6
ad 3

Q1
J.

and similar expressions for Vl(x, t) with J replaced by K.

Reductions of polynomial bundles

Using J+(x, t, λ) and K+(x, t, λ) we end up with a set of NLEE for
the coefficients Q1(x, t), Q2(x, t), . . . , Qk(x, t). Too many functions, too
complicated equations.

They can be simplified by using Mikhailov’s reduction group:
Z2-reductions (involutions):

a) Aξ+,†(x, t, ϵλ∗)Â = ξ̂−(x, t, λ), AQ†(x, t, ϵλ∗)Â = −Q(x, t, λ),

b) Bξ+,∗(x, t, ϵλ∗)B̂ = ξ−(x, t, λ), BQ∗(x, t, ϵλ∗)B̂ = Q(x, t, λ),

c) Cξ+,T (x, t,−λ)Ĉ = ξ̂−(x, t, λ), CQ†(x, t,−λ)Ĉ = −Q(x, t, λ),



where ϵ2 = 1 and A, B and C are elements of the group G such that
A2 = B2 = C2 = 11.
ZN -reductions:

Dξ±(x, t, ωλ)D̂ = ξ±(x, t, λ), DQ(x, t, ωλ)D̂ = Q(x, t, λ),

where ωh = 1 and Dh = 11.
If D is the Coxeter element of g then Q(x, t, λ) belongs to the corre-
sponding gKM of height 1.
If D is the Coxeter element of g composed by V – an external automor-
phism of g then Q(x, t, λ) belongs to the corresponding gKM of height 2
or 3.



On N-wave equations – k = 1

Lax representation involves two Lax operators linear in λ:

Lξ± ≡i∂ξ
±

∂x
+ [J,Q(x, t)]ξ±(x, t, λ)− λ[J, ξ±(x, t, λ)] = 0,

Mξ± ≡i∂ξ
±

∂t
+ [K,Q(x, t)]ξ±(x, t, λ)− λ[K, ξ±(x, t, λ)] = 0.

The corresponding equations take the form:

i

[
J,
∂Q

∂t

]
− i

[
K,

∂Q

∂x

]
− [[J,Q], [K,Q(x, t)]] = 0

Q(x, t) =

 0 u1 u3
−v1 0 u2
−v3 −v2 0

 ,
J = diag (a1, a2, a3),

K = diag (b1, b2, b3),



Then the 3-wave equations take the form:

∂u1
∂t

− a1 − a2
b1 − b2

∂u1
∂x

+ κϵ1ϵ2u
∗
2u3 = 0,

∂u2
∂t

− a2 − a3
b2 − b3

∂u2
∂x

+ κϵ1u
∗
1u3 = 0,

∂u3
∂t

− a1 − a3
b1 − b3

∂u3
∂x

+ κϵ2u
∗
1u

∗
2 = 0,

where

κ = a1(b2 − b3)− a2(b1 − b3) + a3(b1 − b2).

New 3-wave equations – k ≥ 2

Let g = sl(3) and

Q1(x, t) =

 0 u1 u3
−v1 0 u2
−v3 −v2 0

 , Q2(x, t) =

 q11 w1 w3

−z1 q22 w2

−z3 −z2 q33

 ,



Fix up k = 2. Then the Lax pair becomes

Lξ± ≡ i
∂ξ±

∂x
+ U(x, t, λ)ξ±(x, t, λ)− λ2]J, ξ±(x, t, λ)] = 0,

Mξ± ≡ i
∂ξ±

∂t
+ V (x, t, λ)ξ±(x, t, λ)− λ2]K, ξ±(x, t, λ)] = 0,

where

U ≡ U2 + λU1 =

(
[J,Q2(x)]−

1

2
[[J,Q1], Q1(x)]

)
+ λ[J,Q1],

V ≡ V2 + λV1 =

(
[K,Q2(x)]−

1

2
[[K,Q1], Q1(x)]

)
+ λ[K,Q1].

Impose a Z2-reduction of type a) with A = diag (1, ϵ, 1), ϵ2 = 1. Thus
Q1 and Q2 get reduced into:

Q1 =

 0 u1 0
ϵu∗1 0 u2
0 ϵu∗2 0

 , Q2 =

 0 0 w3

0 0 0
w∗

3 0 0

 ,



and we obtain new type of integrable 3-wave equations:

i(a1 − a2)
∂u1
∂t

− i(b1 − b2)
∂u1
∂x

+ ϵκu∗2u3 + ϵ
κ(a1 − a2)

(a1 − a3)
u1|u2|2 = 0,

i(a2 − a3)
∂u2
∂t

− i(b2 − b3)
∂u2
∂x

+ ϵκu∗1u3 − ϵ
κ(a2 − a3)

(a1 − a3)
|u1|2u2 = 0,

i(a1 − a3)
∂u3
∂t

− i(b1 − b3)
∂u3
∂x

− iκ

a1 − a3

∂(u1u2)

∂x

+ ϵκ

(
a1 − a2
a1 − a3

|u1|2 +
a2 − a3
a1 − a3

|u2|2
)
u1u2 + ϵκu3(|u1|2 − |u2|2) = 0,

where

κ = a1(b2 − b3)− a2(b1 − b3) + a3(b1 − b2), u3 = w3 +
2a2 − a1 − a3
2(a1 − a3)

u1u2.

The diagonal terms in the Lax representation are λ-independent.



Two of them read:

i(a1 − a2)
∂|u1|2

∂t
− i(b1 − b2)

∂|u1|2

∂x
− ϵκ(u1u2u

∗
3 − u∗1u

∗
2u3) = 0,

i(a2 − a3)
∂|u2|2

∂t
− i(b2 − b3)

∂|u2|2

∂x
− ϵκ(u1u2u

∗
3 − u∗1u

∗
2u3) = 0,

These relations are satisfied identically as a consequence of the NLEE.

New types of 4-wave interactions

The Lax pair for these new equations will be provided by:

Lψ = i
∂ψ

∂x
+ (U2(x, t) + λU1(x, t)− λ2J)ψ(x, t, λ) = 0,

Mψ = i
∂ψ

∂t
+ (V2(x, t) + λV1(x, t)− λ2K)ψ(x, t, λ) = 0,



where Uj(x, t) and Vj(x, t) are fast decaying smooth functions taking
values in the Lie algebra so(5)

U1(x, t) = [J,Q1(x, t)], U2(x, t) = [J,Q2(x, t)]−
1

2
ad 2

Q1
J,

V1(x, t) = [K,Q1(x, t)], V2(x, t) = [K,Q2(x, t)]−
1

2
ad 2

Q1
K.

Here adQ1X ≡ [Q1(x, t), X].
Assume Q1(x, t) and Q2(x, t) to be generic elements of so(5):

Q1(x, t) =
∑

α∈∆+

(q1αEα + p1αE−α) + r11He1 + r12He2 ,

Q2(x, t) =
∑

α∈∆+

(q2αEα + p2αE−α) + r21He1 + r22He2 ,

J = a1He1 + a2He2 = diag (a1, a2, 0,−a2,−a1),
K = b1He1 + b2He2 = diag (b1, b2, 0,−b2,−b1),



Next we impose on Q1(x, t) and Q2(x, t) the natural reduction

B0U(x, t, ϵλ∗)†B−1
0 = U(x, t, λ), B0 = diag (1, ϵ, 1, ϵ, 1), ϵ2 = 1.

As a result:

B0(χ
+(x, t, ϵλ∗))†B−1

0 = (χ−(x, t, λ))−1, B0(T (t, ϵλ
∗))†B−1

0 = (T (t, λ))−1,

which provide p1α = ϵ(q1α)
∗, p2α = ϵ(q2α)

∗. Then the Lax representation
will be a (rather complicated) system of 8 NLEE for the 8 independent
matrix elements q1α and q2α. Additional Z2 reduction condition

Dξ±(x, t,−λ)D̂ = ξ±(x, t, λ), DQ(x, t,−λ)D̂ = Q(x, t, λ),

D = diag (1,−1, 1,−1, 1)



Q1(x, t) =


0 u1 0 u3 0
v1 0 u2 0 u3
0 v2 0 u2 0
v3 0 v2 0 u1
0 v3 0 v1 0

 ,

Q2(x, t) =


w1 0 u4 0 0
0 w2 0 0 0
w4 0 0 0 u4
0 0 0 −w2 0
0 0 −v4 0 −w1

 ,

J = a1He1 + a2He2 = diag (a1, a2, 0,−a2,−a1),
K = b1He1 + b2He2 = diag (b1, b2, 0,−b2,−b1),

Combining both reductions for the matrix elements of Qj(x, t) we have:

v1 = ϵu∗1, v2 = ϵu∗2, v3 = ϵu∗3, v4 = u∗4,



The commutativity condition for the Lax pair

i

(
∂V2
∂x

+ λ
∂V1
∂x

)
− i

(
∂U2

∂t
+ λ

∂U1

∂t

)
+ [U2 + λU1 − λ2J, V2 + λV1 − λ2K] = 0

must hold identically with respect to λ. The terms proportional to λ4,
λ3 and λ2 vanish identically. The term proportional to λ and the λ-
independent term vanish provided Qi satisfy the NLEE:

i
∂V1
∂x

− i
∂U1

∂t
+ [U2, V1] + [U1, V1] = 0,

i
∂V2
∂x

− i
∂U2

∂t
+ [U2, V2] = 0.



In components the corresponding NLEE:

− 2i(a1 − a2)
∂u1
∂t

+ 2i(b1 − b2)
∂u1
∂x

+ κϵu∗2(ϵu
∗
2u3 − u1u2 − 2u4) = 0,

− 2ia2
∂u2
∂t

+ 2ib2
∂u2
∂x

− κ(u2ϵ(|u3|2 − |u1|2) + 2u3u
∗
4 + 2ϵu∗1u4) = 0,

− 2i(a1 + a2)
∂u3
∂t

+ 2i(b1 + b2)
∂u3
∂x

+ κu2(ϵu
∗
2u3 − u1u2 + 2u4) = 0,

− 2ia1
∂u4
∂t

+ 2ib1
∂u4
∂x

+ i
∂

∂t
(−(2a2 − a1)u1u2 + (2a2 + a1)ϵu

∗
2u3)

+ i(2b2 − b1)
∂(u1u2)

∂x
− i(2b2 + b1)ϵ

∂(u∗2u3)

∂x
− κ

(
2ϵu4(|u1|2 − |u3|2)

+ ϵu1u2(|u1|2 + 3|u3|2)− u3u
∗
2(3|u1|2 + |u3|2)

)
= 0.



NLS and MKdV-type equations with sl(n)-
series

Drinfeld, Sokolov (1981).

Lψ ≡ i
∂ψ

∂x
+ U(x, t, λ)ψ = 0,

Mψ ≡ i
∂ψ

∂t
+ V (x, t, λ)ψ = ψC(λ),

For the case of ZN -reduction (Mikhailov (1981)):

C1U(x, t, λ)C−1
1 = U(x, t, ωλ), C1V (x, t, λ)C−1

1 = V (x, t, ωλ),

where CN
1 = 11 is a Coxeter automorphism of the algebra sl(N,C) and

ω = exp(2πi/N).
Let g ≃ sl(N,C) and the group of reduction is ZN . The class of

relevant NLEE may be considered as generalizations of the derivative



NLS equations

i
∂ψk

∂t
+ γ

∂

∂x

(
cot

(
πk

N

)
· ψk,x + i

N−1∑
p=1

ψpψk−p

)
= 0,

k = 1, 2, . . . , N − 1, where γ is a constant and the index k− p should be
understood modulus N and ψ0 = ψN = 0.

The automorphism AdC1 (AdC1(Y ) ≡ C1Y C
−1
1 for every Y from g)

defines a grading in the Lie algebra

sl(N,C) =
N−1
⊕
k=0

g(k) ,

J (k) =

N∑
j=1

ωkjEj,j+s, C−1J (k)C = ω−kJ (k).

where (Ej,s)q,r = δjqδsr. Obviously[
J (k), J

(m)
l

]
=
(
ωms − ωkl

)
J
(k+m)
s+l .



Examples of DNLS-type equations

If N = 5 we can apply the involution: ψ0 = ψ5 = 0, ψ1 = ψ∗
4 , ψ2 = ψ∗

3 ,
i.e., we have only two independent complex-valued fields and

i
∂ψ1

∂t
+ γcotan

π

5

∂2ψ1

∂x2
+ iγ

∂

∂x

(
2ψ2ψ

∗
1 + (ψ∗

2)
2
)
= 0,

i
∂ψ2

∂t
+ γcotan

2π

5

∂2ψ2

∂x2
+ iγ

∂

∂x

(
2ψ∗

1ψ
∗
2 + (ψ1)

2
)
= 0,

(11)

For N = 6 and ψ1 = ψ∗
5 , ψ2 = ψ∗

4 , ψ3 = ψ∗
3 , so we have a system for two

complex-valued fields ψ1 and ψ2 and the real field ψ3:

i
∂ψ1

∂t
+ γcotan

π

6

∂2ψ1

∂x2
+ 2iγ

∂

∂x
(ψ∗

1ψ2 + ψ∗
2ψ3) = 0,

i
∂ψ2

∂t
+ γcotan

2π

6

∂2ψ2

∂x2
+ iγ

∂

∂x

(
ψ2
1 + 2ψ∗

1ψ3 + (ψ∗
2)

2
)
= 0,

∂ψ3

∂t
+ 2γ

∂

∂x
(ψ1ψ2 + ψ∗

1ψ
∗
2) = 0,

(12)



Examples of MKdV-type equations

Next choose U(x, t, λ) and V (x, t, λ) as follows:

U(x, t, λ) = Q(x, t)− λJ, Q(x, t) =

N−1∑
j=1

ψj(x, t)J
(0)
j , J = aJ

(1)
0

V (x, t, λ) = V3(x, t) + λV2(x, t) + λ2V1(x, t)− λ3K,

where

V1(x, t) =
N∑

k=1

v1k(x, t)J
(2)
k , V2(x, t) =

N∑
l=1

v2l (x, t)J
(1)
l ,

V3(x, t) =
N−1∑
j=1

v3j (x, t)J
(0)
j , K = bJ

(3)
0 .

The constants a and b determine the dispersion law of the MKdV eqs.
The next step is to request that [L,M ] = 0 identically with respect

to λ.

v1k(x, t) =
b

a
(ω2k + ωk + 1)ψk, k = 1, . . . , N − 1,



and v1N = C(t) with C(t) - arbitrary function of time. For

v2l (x, t) =
b

a2

N−1∑
j+k=l

ω2l + ω2j+k − ωk − 1

1− ωl
ψjψk

+ i
b

a2

(
ω2l + ωl + 1

1− ωl

)
∂ψl

∂x
− C

a
(ωl + 1)ψl,

for l = 1, . . . , N − 1 and

v2N = − b

a2

N−1∑
j+l=0

(
cos

2πj

N
+

1

2

)
ψjψl +D(t),

with D(t) - another arbitrary function of time. And for

v3j =
b

a3
cot

(
πj

N

) N−1∑
k+l=j

∂

∂x
(ψkψl) +

C

a2

N−1∑
m+l=j

(ψmψl)

+
b

2a3

N−1∑
k+l=j

cos π(k−l)
N

sin πj
N

∂

∂x
(ψkψl)−

D

a
ψj



+
b

a3

N−1∑
l+m=j

N−1∑
i+k=l

(ψiψkψm) +
3b

2a3

N−1∑
l+m=j

cot

(
πl

N

)
∂ψl

∂x
ψm

+
b

a3

N−1∑
l+m=j

N−1∑
i+k=l

sin π(j−2k)
N − sin π(j−2m)

N

sin πj
N

(ψiψkψm)

− b

4a3
cot

(
πj

N

) N−1∑
l+m=j

∂

∂x
(ψlψm) +

C

a2
cot

(
πj

N

)
∂ψj

∂x

− b

2a3

N−1∑
l+m=j

cos π(l−m)
N

sin πj
N

∂

∂x
(ψlψm) +

b

a3

(
cot2

πj

N
− 1

4 sin2 πj
N

)
∂2ψj

∂x2

+
b

a3

N−1∑
k=1

(
cos

2πk

N
+

1

2

)
(ψkψN−kψj)

where j is running from 1 to N-1. We choose C(t) = 0 and D(t) = 0.



In the end we get the following system of mKdV equations:

α
∂ψj

∂t
=

(
cot2

πj

N
− 1

4 sin2 πj
N

)
∂3ψj

∂x3
+

N−1∑
l+m=j

N−1∑
i+k=l

∂

∂x
(ψiψkψm)

+
N−1∑

l+m=j

N−1∑
i+k=l

sin π(j−2k)
N − sin π(j−2m)

N

sin πj
N

∂

∂x
(ψiψkψm)

+
N−1∑
k=1

(
cos

2πk

N
+

1

2

)
∂

∂x
(ψkψN−kψj) +

3

4
cot

(
πj

N

) N−1∑
k+l=j

∂2

∂x2
(ψkψl)

+
3

4

N−1∑
k+l=j

∂

∂x

(
cot

(
πl

N

)
∂ψl

∂x
ψk + cot

(
πk

N

)
∂ψk

∂x
ψl

)

where α = a3/b.
In the case of sl(2,C) algebra we obtain the well-known MKdV equa-

tion

α
∂ψ1

∂t
= −1

4

∂3ψ1

∂x3
− 1

2

∂

∂x
(ψ3

1).



In the case of sl(3,C) algebra we have the system of trivial equations
∂tψ1 = 0 and ∂tψ2 = 0. In the case of sl(4,C) algebra we find:

α
∂ψ1

∂t
=

1

2

∂3ψ1

∂x3
+

3

2

∂

∂x

(
∂ψ2

∂x
ψ3

)
+

3

2

∂

∂x
(ψ1ψ

2
2) +

∂

∂x
(ψ3

3),

α
∂ψ2

∂t
= −1

4

∂3ψ2

∂x3
+

3

4

∂2

∂x2
(
ψ2
1

)
− 3

4

∂2

∂x2
(
ψ2
3

)
+ 3

∂

∂x
(ψ1ψ2ψ3)−

1

2

∂

∂x
(ψ3

2), (13)

α
∂ψ3

∂t
=

1

2

∂3ψ3

∂x3
− 3

2

∂

∂x

(
ψ1
∂ψ2

∂x

)
+

3

2

∂

∂x
(ψ2

2ψ3) +
∂

∂x
(ψ3

1).

If we apply case a) we get the same set of MKdV equations with ψ1, ψ2

and ψ3 purely real functions.



In the case b) we put ψ1 = −ψ∗
3 = u and ψ2 = −ψ∗

2 = iv and get:

α
∂v

∂t
= −1

4

∂3v

∂x3
+

3

4i

∂2

∂x2
(
u2 − u∗,2

)
− 3

∂

∂x
(|u|2v) + 1

2

∂

∂x
(v3),

α
∂u

∂t
=

1

2

∂3u

∂x3
− i

3

2

∂

∂x

(
u∗
∂v

∂x

)
− 3

2

∂

∂x
(uv2)− ∂

∂x
((u∗)3),

where u is a complex function, but v is a purely real function.
In the case c):

α
∂u

∂t
=

1

2

∂3u

∂x3
− ∂

∂x
(u3),

where u is a complex function, we recover the MKdV equation. In the
case of sl(6,C) algebra with D6-reduction in the case c) we find

α
∂u

∂t
= 2

∂3u

∂x3
− 2

√
3
∂

∂x

(
u
∂v

∂x

)
− 6

∂

∂x
(uv2),

α
∂v

∂t
=

√
3
∂2

∂x2
(
u2
)
− 6

∂

∂x
(u2v),

where u and v are complex functions.



MKdV and so(8)

Normally with each simple Lie algebra one can associate just one MKdV
eq. The only exception is so(8) which allows a one-parameter family
of MKdV equations. The reason is that only so(8) has 3 as a double
exponent!

∂tq1 = 2a

[
∂3xq1 −

√
3∂x(q1∂xq2)

]
−
√
3

[
(3a+ b)∂x(q4∂xq3) + (3a− b)∂x(q3∂xq4)

]
− 3∂x

[
q1
(
2aq22 + (a− b)q23 + (a+ b)q24

) ]
,

∂tq2 =
√
3a∂2xq

2
1 +

√
3

2
(a+ b)∂2xq

2
3 +

√
3

2
(a− b)∂2xq

2
4

− 3∂x

[
q2
(
2aq21 + (a+ b)q23 + (a− b)q24

) ]
,



∂tq3 = −(a+ b)

[
∂3xq3 −

√
3∂(q3∂xq2)

]
−

√
3

[
(3a+ b)∂x(q4∂xq1) + 2b∂x(q1∂xq4)

]
+ 3∂x

[
q3
(
2aq24 + (a− b)q21 + (a+ b)q22

) ]
,

∂tq4 = −(a− b)

[
∂3xq4 −

√
3∂x(q4∂xq2)

]
−

√
3

[
(3a− b)∂x(q3∂xq1)− 2b∂x(q1∂xq3)

]
+ 3∂x

[
q4
(
2aq23 + (a− b)q22 + (a+ b)q21

) ]
.



Conclusions and open questions

• More classes of new integrable equations: i) higher rank simple Lie
algebras; ii) different types of grading; iii) different power k of the
polynomials U(x, t, λ) and V (x, t, λ) and iv) different reductions of
U and V .

• These new NLEE must be Hamiltonian. View the jets U(x, t, λ)
and V (x, t, λ) as elements of co-adjoint orbits of some Kac-Moody
algebra.

• Apply Zakharov-Shabat dressing method for constructing their N -
soliton solutions and study their interactions.

• ‘Squared’ solutions, Recursion operators, Hamiltonian hierarchies

• Apply the above methods to twisted Kac-Moody algebras – work
in progress



Thank you for your
attention!


