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Abstract

We give an overview of the theory of principaloid bundles with connection developed by T.
Strobl and R.R. Suszek. These are to be understood as models of the configuration bundle
and the gauge field of a field theory with a rigid Lie-groupoidal symmetry gauged (in the
sense of Cartan and Ehresmann). Using their formalism, we construct the minimal coupling
scheme for tensorial sigma models with groupoidal symmetry. We show that in order to allow
for non-zero-dimensional orbits in the presence of a metric term, one usually needs to non-
trivially reduce the structure group of the principaloid bundle. To gauge sigma models with a
non-tensorial topological coupling, we study the stack structure of degree-2 Cheeger-Simons
differential characters, and we construct an isomorphism between local cohomological data of
a character and the character descended onto the configuration bundle of the gauged sigma
model, identified with the Godement quotient of the principaloid bundle with respect to the
Lie groupoid action. For multiplicative differential forms ρ on a Lie groupoid G, appearing nat-
urally in the gauging beyond the minimal coupling scheme, we define ρ-equivariant differential
characters on G. Finally, we conjecture that under an appropriate reduction of the structure
group of the principaloid bundle and given a ρ-equivariant differential character of an arbitrary
degree, there exists a canonical gauged sigma model, the construction of which generalizes
the minimal coupling procedure. We prove the assertion for degree-2 ρ-equivariant differential
characters. Our constructive proof yields a novel definition (generalizing those formulated by
Gawędzki, Szuszek and Waldorf in degree-3 for the specific Lie-group action groupoid) of a
1-dimensional field theory with a Lie-groupoidal symmetry gauge in a quantum-mechanical
consistent manner.
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Introduction

Sigma models with a generically non-tensorial topological term arise for extended distribu-
tions of probe charge of arbitrary dimension. In the simplest 1-dimensional case, modeling
the evolution of a point charge in external gravitational and electromagnetic fiels, such a
term is given by the line holonomy of the U(1) bundle that geometrizes the latter field. Two-
dimensional sigma models abound in string theory and in the effective field theory of slow
spinons in a quantum spin-chain [AH87]. One should also mention their relation to the so-
called emergent spectral non-commutative geometry [FG94]. The gauging of 2-dimensional
sigma models with group symmetry and the Dirac-Feynman amplitude given by a Cheeger-
Simons differential character [CS85] was developed by K. Gawędzki, R. R. Suszek and K.
Waldorf in [GSW10] and [GSW13]. They operated in the formalism of U(1)-bundle gerbes
[Mur96; MS00], whose generalized holonomies are in a bijection with U(1)-valued differential
characters [Bry07, 1.5.]. This thesis might be viewed as a natural extension of their results
to a broader class of symmetries – namely those modeled by a smooth fibered action of a Lie
groupoid on its object manifold, chosen as the target space of the sigma model. Lie groupoids
are much better suited to model symmetries of physical systems, in particular, for bounded
configuration fibers – see [Wei96]. In this thesis, instead of studying groupoid-equivariant
bundle gerbes, we avoid extensive geometrization by adapting a differential-topological ap-
proach. To this end, we invoke the axiomatic description of differential characters introduced
by J. Simons and D. Sullivan in [SiSu07], and utilize the cohomological model constructed
by M. J. Hopkins and I. M. Singer in [HS05]. Using the cochain complex DC•

s(M,R/Z) from
[HS05], E. Lerman and A. Malkin proved in [LM08a] that the cocycle category of DC•

2(·,R/Z)
forms a stack over Man. This, then is an approach which conforms with the interpretation
of the results of [GSW10] in terms of gauge-symmetry defects, worked out by I. Runkel and
R. R. Suszek [RS09], in which the 2-stack structure on the bicategory of U(1)-gerbes is im-
plicitly used. In particular, the stack structure gives the necessary and sufficient conditions
for a degree-2 differential character on an open cover of a manifold to descend. A candidate
for the target space of a sigma model with groupoidal symmetry gauged was proposed by T.
Strobl and R. R. Suszek in [SS25]. They introduced the concept of a principaloid bundle P,
which is essentially, for a fixed Lie groupoid G, a MorG fiber-bundle with the group B(G)
of bisections of G serving as its structure group, the latter acting on the fibers via canonical
left action. It was showed [SS25] that every principaloid bundle canonically induces another
fiber-bundle over the same base, denoted by F , whose typical fiber is ObG, and which admits
the action of the group of gauge transformations of P (i.e., the vertical automorphisms of P).
Crucially, for the case of the action groupoid G ×λ M , corresponding to a smooth action λ
of a Lie group on a smooth manifold M , under a certain restriction of the structure group of
a G ×λ M -principaloid bundle, the induced bundle is the bundle P ×λ M associated to the
principal G-bundle P . This is known to be a model for the target space of a sigma model
with the group symmetry gauged. Our approach rests on the interpretation of the gauging
as an effective descent of a field theory to the space of orbits of the rigid symmetry [GSW13].

5



Following the universal Cartan construction of a homotopy quotient [Car50], we seek smooth
realizations of the latter over the spacetime of the field theory of interest. Conceptually, one
should consider the whole collection of such models—one for each isoclass of P—in order to
capture all degrees of freedom of possible field configurations and gauge transformations.
Generalizing principal connections on principal G-bundles, one can define compatible connec-
tions on principaloid bundles, which descend to F ≃ P/G in the sense of Sh. Kobayashi and
K. Nomizu [KN69]. Consequently, the covariant derivative is defined, and we make use of it to
provide a gauging scheme for tensorial couplings. In particular, this schema may be applied
to the metric term. However, it follows from the smooth structure of a Lie groupoid with a
metric object manifold (ObG, g) that whenever there exists a global bisection through each
arrow of G (such groupoids are called B-complete), and if every bisection induces an isometry
of ObG through the target map of G, the G-orbits on ObG are 0-dimensional. This reveals the
necessity of a reduction of the structure group of a principaloid bundle in most field-theoretic
applications.
A non-tensorial coupling in a sigma model is determined by a differential character f on
the target space. Hence, in order to construct the Dirac-Feynman amplitude for the gauged
model, it suffices to give a gauge-invariant differential character on F , under the constraint
that for a trivial character, fixed by a B(G)-invariant global primitive of the character’s curva-
ture, the gauging scheme specialize to the minimal coupling scheme. The constructive results
of [GSW10], put on display a key role in descent of multiplicative extensions of the integral de
Rham class of curvatures of the differential characters to classes in the Bott-Schulman-Stasheff
complex for the symmetry groupoid [BSS76]. Hence, when looking for non-trivial gaugings
(for characters which do not descend directly) we seek to imitate the idea of ρ-augmented de-
scent, worked out in [GSW10]. Given a multiplicative form ρ on G (see [CSS12] for references),
we define ρ-pre-equivariant and ρ-equivariant differential characters. The ρ-pre-equivariant
characters ones are those, whose first cohomological obstruction to equivariance vanishes.
We conjecture, and prove for degree-2, that given a ρ-pre-equivariant differential character f
and upon reducing the structure group of a principaloid bundle P to ρ-holonomic bisections
[CSS12], we can define a differential character on the cover of the total space of F canonically
induced by a trivializing cover of its base, in such a way that on each element of the cover
the corresponding pullback of f is corrected by a trivial character, and so that the restric-
tions of local characters agree on double overlaps. Moreover, each of the local characters
is gauge-invariant. However, this does not solve the problem of gauging just yet, since the
differential character functor Ĥk( · ,R/Z) fails to be a sheaf. We characterize the obstruction
to the descent of the character on the cover to F . We show that if the character descends,
then the resultant Dirac-Feynman amplitude is gauge-invariant, and the scheme reduces to
the minimal coupling for a trivial B(G)-invariant f . Finally, we conjecture, and prove for
degree-2, that given a ρ-equivariant differential character f , that is, whenever a secondary
cohomological obstruction vanishes, the local characters descend to F in a canonical way. We
anticipate that the structure of proofs for arbitrary degree n ∈ N>0 of f is analogous, albeit
significantly more complex. The author hopes to prove the general statements in his future
works.

The structure of this work is the following: In Chapter 1, we introduce the category G-Man
(Man-G) of left (right) G-manifolds for a fixed Lie groupoid G. In Chapter 2, we give an
overview of the theory of principaloid and principal G-bundles, describing their topological
and smooth structure in Section 2.1, and the theory of compatible connections in Section 2.2.
In Chapter 3, we present the gauging scheme for B(G)-invariant tensorial couplings in sigma
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models with groupoidal symmetries. Chapter 4 is concerned with the metric term for B-
complete structure groupoids, and demonstrates the necessity to reduce the structure group of
the principaloid bundle used for the gauging. In Chapter 5, we study the gauging of groupoidal
symmetries in sigma models with non-tensorial topological couplings. In Section 5.1, we
give an overview of Cheeger-Simons differential characters and prove the effective descent of
degree-2 characters over Man. In Section 5.2, we define ρ-pre-equivariant and ρ-equivariant
differential characters for a multiplicative form ρ, as well as the corresponding subgroup of
B(G) which admits the gauging. Finally, in Section 5.3, we state the fundamental theorems
and conjectures about the existence of the gauged sigma models, and give proofs in the case
of degree-2. [GSW13]
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Chapter 1

Lie Groupoids and Other Prerequisites

We assume every manifold and every map between manifolds to be smooth. In the case of
infinite-dimensional manifolds (for example, the group of bisections B(G)) refer
to [KM97, Ch. VI] for the relevant notion of smoothness. We denote by C• the graded
abelian group of smooth singular chains, and by Z•, B• its subgroups of smooth singular
cycles and smooth singular boundaries, respectively. We make use of the fact that there is a
chain-homotopy equivalence between the complex of smooth singular chains and the complex
of continuous singular chains [Lee00, Ch. 18]. For prerequisites in homological algebra and
algebraic topology, refer to Appendix A.

Definition 1.0.1. A groupoid is a category in which all morphisms are isomorphisms. A
group can be identified with a groupoid BG with just one object. A morphism between two
groupoids G and H is any functor F : G → H. Therefore, groupoids form a full subcategory
Grpd of Cat.

In this work, we assume all groupoids to be small categories.

Example 1.0.2. Let S be a set. A pair groupoid Pair(S) comes with the set of objects
ObPair(S) = S, the set of morphisms MorPair(S) = S × S such that for any a, b, c ∈ S, the
arrow (a, b) connects b to a, and the composition law is the following:

(a, b) ◦ (b, c) = (a, c). (1.1)

The identities and inverses are now obvious. It is clear that in the category Grpd/X, whose
objects are groupoids G with ObG = X and morphisms are functors F : G → H satisfying
F
∣∣
ObG = idObG , the pair groupoid is the terminal object.

Definition 1.0.3. Let S be a set and let G be a groupoid. A fiberwise left (right) action of
G on S is a pair (µ,Λ) where µ ∈ Set(S,ObG) and Λ : G → Set (Λ : Gop → Set) satisfy

∀A ∈ ObG : Λ(A) = µ−1(A). (1.2)

It is clear from the definition that whenever G(A,B) ̸= ∅, we have µ−1(A) ≃ µ−1(B).

Example 1.0.4. Let S be a set and let Pair(S) be the associated pair groupoid. There is a
canonical left action of Pair(S) on S given by µ = idS and Λ(a, b)(b) = a for every a, b ∈ S.
Pair(S) can also act canonically on MorPair(S) = S × S. The corresponding map µ = pr1,
and for every a, b, c ∈ S the functor Λ is defined by

Λ(a, b)(b, c) = (a, c). (1.3)
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In order to topologize or geometrize groupoids, we need an alternative way to present
a category. For any small category C, we define functions that assign to each morphism its
domain and codomain. We call the first one the source map s : Mor C → Ob C, and the second
one the target map t : Mor C → Ob C. Moreover, there is the multiplication map, which is the
composition

m : Mor C s×t Mor C → Mor C, (1.4)

and the identity map Id : Ob C → Mor C.
In a groupoid G, we have one more structure map – the inverse

i : MorG → MorG. (1.5)

The structure maps satisfy the axioms of a groupoid. Therefore, we can think of a groupoid
as a diagram in Set together with the axioms. In other words–a groupoid object in Set. We
now have the following useful generalizations.

Definition 1.0.5. A groupoid G is called a topological groupoid if both ObG and MorG
are topological spaces and all structure maps are continuous. In other words, a topological
groupoid is a groupoid object in Top.

Definition 1.0.6. A groupoid G is called a Lie groupoid if both ObG and MorG are smooth
manifolds, all structure maps are smooth, and s, t are submersions.

Similarly, we can put additional structure on groupoid morphisms. A morphism between
topological/Lie groupoids G,H is a functor F : G → H such that both F|ObG and F|MorG are
continuous/smooth.

Example 1.0.7. An important example of a Lie groupoid is the action groupoid G ×λ M
associated to a smooth action λ of a Lie group G on a manifold M . It is constructed as
follows:

• ObG×λM =M ,

• MorG×λM = G×M ,

• s = pr2, t = λ,

• (g, λ(h,m)) ◦ (h,m) = (gh,m),

• Id(m) = (e,m),

• i(g,m) = (g−1, λ(g,m)).

Remark 1.0.8. Let ActGrpd denote the full subcategory of Grpd consisting of action
groupoids. For an action groupoid G×λM , there exists a canonical functor

Fλ : G×λM → BG : (g,m) 7→ g. (1.6)

In particular, we can think BG as of an action groupoid with M = pt. This way, we can
define a category ActGrpd/BG whose objects are functors Fλ, and whose morphisms are
commutative diagrams

G×λ1 M G×λ2 N

BG.
Fλ1

Fλ2

(1.7)

in ActGrpd. It is an easy check to see that G-equivariant maps HomG(M,N) are in a
natural bijection with (ActGrpd/BG)(G×λ1 M,G×λ2 N).
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Definition 1.0.9. We call a left action (µ,Λ) of a Lie groupoid (topological groupoid) G on
a manifold M (topological space X) smooth (continuous), whenever µ is smooth (continuous)
and

MorG s×µM ∋ (g,m) 7→ Λ(g)(m) ∈M (1.8)

is smooth (continuous). For a right smooth (continuous) action, replace s by t in 1.8. A
G-manifold is a triple (M,µ,Λ), where M is a manifold, and (µ,Λ) is a smooth action of G
on M .

Definition 1.0.10. A map φ between two G-manifolds (M1, µ1,Λ1) and (M2, µ2,Λ2) is called
G-equivariant if the collection {φ|Λ(a)}a∈ObG forms a natural transformation between Λ1 and
Λ2. In particular,

∀f ∈ MorG ∀x ∈M1 : φ(Λ1(f)(x)) = Λ2(f)
(
φ(x)

)
. (1.9)

Clearly, the above constructions compose a category G-Man of left G-manifolds and
G-equivariant maps. Analogously, we define the category Man-G of right G-manifolds. We
will write HomG to denote HomMan-G or HomG-Man, depending on the context.
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Chapter 2

Principaloid and Principal G-Bundles

2.1. Classification

Definition 2.1.1. A fiber-bundle object in the category Man-G is a G-equivariant surjective
submersion π : E ↠ B such that there exists an open cover

O =
⊔
i∈I

Oi ji : Oi ↪→ B ∈ HomG(Oi, B), (2.1)

and the following commutative diagram in Man-G:

O × F O ×B E E

O B.

≃

⌟
π

j

(2.2)

We call the G-module F the typical fiber of π, and the isomorphism τ : O ×B E → O × F a
local trivialization of π.

Definition 2.1.2 ([SS25]). Given a Lie groupoid G, a principaloid G-bundle is a fiber-bundle
object πP : P ↠ B in the category Man-G such that the typical fiber of πP is MorG with
the canonical right action

µ = s, ΛG(f)(g) = m(g, f) = g ◦ f, (2.3)

and B is trivial as a right G-module. In particular, πP is G-invariant. It also follows that,
for any trivializing cover, the transition maps are G-equivariant. A morphism between two
principaloid G-bundles πPA

: PA → BA, A ∈ {1, 2} is a bundle morphism in the category of
right G-spaces. Thus, principaloid G-bundles and their morphisms form a full subcategory of
fiber-bundle objects in the category of right G-spaces. We will continue to refer to principaloid
G-bundles and principaloid bundles interchangeably, whenever it does not cause confusion.

Definition 2.1.3. Given a Lie groupoid G, we say that a section β : ObG → MorG of the
source map s is a (global) bisection of G if t ◦ β ∈ Diff(ObG).
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Proposition 2.1.4. The set of bisections of G forms a group, denoted by B(G), with the
following structure maps:

• (β1 · β2)(x) = β1
(
t(β2(x))

)
◦ β2(x),

• Id(x) = idx,

• β−1(x) = β
(
(t ◦ β)−1(x)

)−1.

Lemma 2.1.5. The left (right) action (µ,Λ) of a groupoid G on a manifold M induces the
left (right) action of B(G) on M . The left induced action is given by

Lβ(x) := β ▷ x ≡ Λ
(
β(µ(x))

)
(x), (2.4)

and the right induced action is given by

Rβ(x) := x ◁ β ≡ Λ
((
β−1(µ(x))

)−1
)
(x). (2.5)

Proof. The right-hand side of 2.4 is well-defined, since

s
(
β(µ(x))

)
= µ(x). (2.6)

Obviously, for any x ∈ M we have Id ▷ x = x. Take β1, β2 ∈ B(G). Using Proposition 2.1.4,
we calculate

(β1 · β2) ▷ x = Λ
(
β1
(
t(β2(µ(x)))

)
◦ β2(µ(x))

)
(x)

=

(
Λ
(
β1
(
t(β2(µ(x)))

))
◦ Λ

(
β2(µ(x))

))
(x) = β1 ▷ (β2 ▷ x).

(2.7)

A similar proof for the right action can be found in [SS25, 2.20.].

Remark 2.1.6. Consider the canonical left and right actions of G on MorG. They induce left
and right actions of B(G), and the adjoint action, which we denote by C. The latter is defined
by

∀β ∈ B(G) ∀g ∈ MorG : Cβ(g) = β ▷ g ◁ β−1. (2.8)

By construction, it is a left action of B(G) on MorG.

Later in this chapter, we will state several results about principal and principaloid G-bundles
without providing proofs. However, they can be found in the cited papers.

Theorem 2.1.7 ([SS25, 2.14.]). Consider the canonical right action of G on MorG. Let
DiffG(MorG) := EndG(MorG) ∩ Diff(MorG) denote the group of right G-equivariant diffeo-
morphisms of MorG. Then, the commutant DiffG(MorG)′ in Diff(MorG) coincides with the
group of left actions of B(G) induced by the canonical left action of G on MorG.

Corollary 2.1.8. Any principaloid G-bundle admits a model

P ≃
⊔
i∈I

(
Oi ×MorG

)
/∼Lβij

∋ [(b, g, i)]
πP7−−→ b,

expressed in terms of a transition 1-cocycle
(
βij ∈ C∞(Oij ,B(G)) : i, j ∈ I

)
associated with

an open cover {Oi : i ∈ I} of the base B.
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Remark 2.1.9. Corollary 2.1.8 manifestly implies that P is an bundle associated to a prin-
cipal B(G)-bundle. However, note that just as B(G) ↪→ (MorG)ObG , the restriction of
L : B(G)×MorG → MorG to the identity submanifold Id(ObG) gives the inclusion

B(G) ↪→ (MorG)Id(ObG). (2.9)

This is a highly non-generic property for associated bundles, which implies one can recover
the transition cocycle βij of the original principal bundle from its realization Lβij .

Definition 2.1.10 ([MM03]). Given a Lie groupoid G, a right principal G-bundle is a
G-equivariant surjective submersion between two right G-manifolds π : E ↠ B such that

• B is trivial as a G-manifold,

• the map E µ×t MorG ∋ (e, f) 7→
(
e,Λ(f)(e)

)
∈ E π×π E is a diffeomorphism, where

(µ,Λ) is the right G action on E.

We say that the action (µ,Λ) on E is principal.

Remark 2.1.11. A principal G-bundle is not necessarily a fiber-bundle. Every such bundle is
locally trivial (in the sense of) [MM03, 5.7] with the local model being the unital bundle

t : MorG ↠ ObG. (2.10)

The t-fibers might well be non-diffeomorphic. For example, consider an action Lie groupoid
G×λM and its full subgroupoid obtained by restricting the object manifold M to its proper
submanifold M ′ such that some G-orbits are fully contained in M ′, and some only partially
so. The t-fibers are isomorphic to submanifolds in G whose action on points in M reproduces
intersections of orbits with M ′.

Theorem 2.1.12 ([SS25, 2.16.]). Every principaloid G-bundle πP : P ↠ B canonically in-
duces a fiber-bundle πF : F ↠ B with a model

F ≃
⊔
i∈I

(
Oi ×ObG

)
/∼t◦βij ,

written in terms of a trivializing cover {Oi}i∈I of B for P, and the corresponding transition
1-cocycle (βij : i, j ∈ I) of P. Moreover, there is a bundle map

P F

B,

πP

D

πF
(2.11)

which is locally modeled on t : MorG → ObG. Importantly, the map P D−→ F carries a
canonical structure of a right principal G-bundle object in the category of fiber-bundles over B.

Remark 2.1.13. It should be noted that, by The Godement Criterion (Theorem A.0.25), there
exists a smooth structure on the space of orbits

P/G :=
{
Λ
(
t−1(µ(p))

)
(p) : p ∈ P

}
, (2.12)

with respect to which the quotient map

P ∋ p 7→ Λ
(
t−1(µ(p))

)
(p) ∈ P/G (2.13)

is a submersion. Clearly, the bundle F is diffeomorphic to P/G.
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Example 2.1.14. If G ≃ BG is a groupoid over a point, then B(G) ≃ G, and a principaloid
G-bundle reduces to a standard principal G-bundle. Similarly, as F ≃ B, so does the induced
principal groupoid bundle.

Example 2.1.15. Let G = G×λM be the action groupoid (Example 1.0.7) associated with
an action λ of a Lie group G on a manifold M . Consider the embedding G ι−→ B(G) : g 7→ βg,
where βg(m) = (g,m). Let B0 := ι(G), and let P0 be a principaloid G-bundle with the
transition cocycle taking values in B0 ⊆ B(G). Clearly, the cocycle factors as βij = ι ◦ β′ij ,
where β′ij : Oij → G. Then P0 ≃ P × M , where P is a principal G-bundle with the
transition cocycle β′ij . Importantly, the induced fiber-bundle satisfies F ≃ P ×λ M , with
D : P×M → P×λM being the quotient map.

Keeping in mind that we are seeking a candidate for the set of matter fields of a gauged
field theory with groupoidal symmetry, we note that Example 2.1.15 suggests that going
from a group to groupoidal symmetry, one should replace Γ(P ×λ M) by Γ(F). A deeper
understanding of this fact comes from a careful study of Cartan’s construction of the homotopy
quotient of a group/groupoid action (see, e.g. [Tu20]), which, however, lies beyond the scope
of the present thesis.

2.2. Connective structures

Definition 2.2.1 ([SS25]). A compatible connection on a principaloid G-bundle P is an Ehres-
mann connection TP ≃ VP ⊕HP, with the vertical subbundle VP := kerTπP , and the hor-
izontal subbundle HP satisfying HP ⊆ kerTµ and G-invariant. The invariance means that,
for any g ∈ MorG and any p ∈ µ−1(t(g)), we have

Tp
(
Λ(g)

)(
HpP

)
= HΛ(g)(p)P. (2.14)

Note that as TΛ(g) : T
(
µ−1(t(g))

)
→ T

(
µ−1(s(g))

)
and Tµ−1(b) = kerTµ

∣∣
µ−1(b)

, the restric-
tion of HP to kerTµ is necessary. Since µ is modeled on s in a local trivialization Pτi, the
kernel kerTµ becomes pr∗1TOi ⊕ pr∗2 kerTs, which makes the restriction meaningful from the
point of view of the definition of a horizontal distribution.

Definition 2.2.2 ([SS25]). Let P be a principaloid G-bundle. A compatible connection 1-form
on P is a bundle morphism A : TP → VP satisfying:

• A
∣∣
VP = idVP ,

• Tµ ◦ A = Tµ,

• ∀g ∈ MorG : A ◦ T(Λ(g)) = T(Λ(g)) ◦ A.
Proposition 2.2.3 ([SS25, 3.4.]). Compatible connections on a principaloid G-bundle P are
in a one-to-one correspondence with compatible connection 1-forms on P.

Corollary 2.2.4. On every principaloid G-bundle, there exists a compatible connection. Given
an open cover {Oi : i ∈ I} of B, the corresponding local trivialisations {Pτi : i ∈ I}, and
a smooth partition of unity {hi : i ∈ I}, the corresponding compatible connection 1-form is
given by

A :=
∑
i∈I

(π∗Phi)Ai, (2.15)

where
Ai := TPτ−1

i ◦ j2 ◦ pr2 ◦ TPτi, (2.16)

with pr2 : T(Oi×MorG) ↠ T(MorG) and j2 : T(MorG) ↪→ T(Oi×MorG) ≃ TOi⊕T(MorG).
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Theorem 2.2.5 ([SS25, 3.7.]). A compatible connection on a principaloid G-bundle P canon-
ically induces an Ehresmann connection on the induced bundle F . It is defined as

HF := TD
(
HP

)
. (2.17)

Definition 2.2.6 ([SS25]). The induced connection on F is uniquely determined by a bundle
morphism AF : TF → VF satisfying TD(HP) = kerAF . We call this morphism the shadow
connection 1-form.

Theorem 2.2.7 ([SS25, 4.18.]). There is a canonical group homomorphism

F∗ : Aut(P) → Aut(F) (2.18)

satisfying ∀Φ ∈ Aut(P) : D ◦ Φ = F∗(Φ) ◦ D.

Definition 2.2.8. Vertical automorphisms (i.e., those covering idB) Autvert(P) form a sub-
group of Aut(P) that we call the group of gauge transformations and denote by Gauge(P).

Definition 2.2.9 ([SS25]). Let P be a principaloid bundle with compatible connection
1-form A. Given Φ ∈ Aut(P), we denote

AΦ := TΦ ◦ A ◦ (TΦ)−1. (2.19)

Let core
(
PBun∇(B)

)
be the maximal groupoid inside the category of principaloid bundles

with compatible connection over a fixed base B. Then, the maps

(P1,A) (P2,AΦ)

B B

πP1

Φ

πP2

ψ

(2.20)

form morphisms in core
(
PBun∇(B)

)
. Whenever Φ ∈ Gauge(P), the morphism AΦ is called

the gauge transform of A induced by Φ.

Thus, Theorem 2.2.7 provides us with the mechanism of induction of distinguished (gauge)
automorphisms of the shadow bundle (and so, also of gauge transformations of its sections)
from those of P.

Definition 2.2.10 ([SS25]). The covariant derivative of a section φ ∈ Γ(F) relative to a
compatible connection 1-form A on P is the R-linear mapping

∇Aφ : Γ(TΣ) → Γ(VF) : V 7→
(
AF ◦ Tφ

)
(V) =: ∇A

Vφ. (2.21)

Proposition 2.2.11 ([SS25, 4.34.]). For a section φ ∈ Γ(F) and a gauge transformation
Φ ∈ Gauge(P), let φΦ denote the corresponding gauge transform of φ:

φΦ := F∗(Φ) ◦ φ. (2.22)

The covariant derivative of φ relative to a compatible connection 1-form A on P transforms
covariantly as

∇AΦ
(φΦ) = T(F∗(Φ)) ◦ ∇Aφ. (2.23)
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Proposition 2.2.12 ([SS25]). A gauge transformation Φ ∈ Gauge(P) is locally presented by
a family of smooth maps

γi : Oi → B(G), i ∈ I (2.24)

as
Φ
∣∣
π−1
P (Oi)

: π−1
P (Oi)

≃−→ π−1
P (Oi) : Pτ−1

i (b, g) 7→ Pτ−1
i (b, Lγi(b)(g)). (2.25)

The maps are subject to the following gluing conditions over Oij:

γi
∣∣
Oij

=
(
βij · γj · βji

)∣∣
Oij
. (2.26)

Moreover, there is a one-to-one correspondence between such families and gauge transforma-
tions.

Proof. The existence of (γi) that represent Φ locally follows from Theorem 2.1.7 and the fact
that every gauge transformation is right G-equivariant. The gluing condition 2.26 translates
to the ordinary gluing condition of the Φ

∣∣
π−1
P (Oi)

’s on double intersections π−1
P (Oij).

Definition 2.2.13. Let M be a smooth manifold. A real Lie algebroid over M (of rank
N ∈ N+) is a tuple (E ,M,RN , πE , ρE , [ · , · ]E) composed of

• a vector bundle πE : E →M with typical fiber RN ,

• a vector bundle morphism

E TM

M,

πE

ρE

πTM
(2.27)

called the anchor,

• a Lie bracket [ · , · ]E : Γ(E)× Γ(E) → Γ(E) satisfying the Leibniz rule

∀e1, e2 ∈ Γ(E) ∀f ∈ C∞(M,R) : [e1, f ▷ e2]E = f ▷ [e1, e2]E + ρE(e1)(f) ▷ e2, (2.28)

where ▷ is the canonical action of C∞(M) on Γ(E).

Example 2.2.14. The tangent Lie algebroid of M is the canonical structure of a Lie algebroid
on the tangent bundle πTM : TM →M , that is (TM,M,RdimM , πTM , idTM , [ · , · ]TM ).

Example 2.2.15. Associated with an action groupoid G ×λ M is the corresponding action
algebroid :

g×M TM

M,

pr2

λ∗

πTM
(2.29)

where λ∗ is the fundamental vector field of λ. The Lie bracket is uniquely determined by the
Lie bracket on g and the Leibniz rule.
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Definition 2.2.16. The set of right-invariant vector fields on a Lie groupoid G is defined as

Γ(T(MorG))R := {V ∈ Γ(kerTs) : ∀g ∈ MorG ∀h ∈ s−1(t(g)) : Thrg(V(h)) = V(h ◦ g)}.
(2.30)

The (right) tangent algebroid of G is the pullback bundle

πEE
: ER := Id∗ kerTs = ObG Id×πTG kerTs

pr1−−→ ObG (2.31)

with the anchor
ρER

≡ Tt ◦ pr2, (2.32)

and the Lie bracket
[ · , · ]ER

≡ ι−1
R ◦ [ · , · ]TG ◦ (ιR × ιR) (2.33)

induced by the canonical R-linear isomorphism

ιR : Γ(ER) → Γ(T(MorG))R : (idObG , σ) 7→
(
g 7→ TId(t(g))rg(σ(t(g))

)
, (2.34)

with the inverse
ι−1
R (V) =

(
x 7→ (x,V(Id(x))

)
. (2.35)

Remark 2.2.17. The adjoint action of the group of bisections B(G) on MorG, defined in
Remark 2.1.6, induces the map β 7→ Cβ , where

Cβ := idM × TCβ
∣∣
kerTs

∣∣
Id(M)

. (2.36)

The latter is well-defined since TCβ(kerTs) ⊆ kerTs for any β ∈ B(G), and due to the
identity

Cβ ◦ Id = Id ◦ t ◦ β. (2.37)

The map 2.36 clearly induces the map on sections

Cβ : α 7→ Id∗TCβ(α) ∈ EndR(Γ(ER)), (2.38)

which we should denote by the same symbol.

Definition 2.2.18 ([FS14]). The right-invariant Maurer-Cartan form on G is the bundle
morphism

kerTs ER

MorG ObG,

θR

πT(MorG)|ker Ts πER

t

(2.39)

defined by
∀g ∈ MorG ∀w ∈ (kerTs)g : θR(w) ≡

(
t(g),Tgrg−1(w)

)
. (2.40)

Equivalently, we can think of the right-invariant Maurer-Cartan form as a section of

(kerTs)∗ ⊗ t∗ER → MorG. (2.41)
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Definition 2.2.19 ([SS25]). Let πP : P → B be a principaloid bundle, and let O := {Oi}i∈I
be a trivializing cover of B. The local connection data associated with O is a collection of
sections Ai ∈ Γ(pr∗1T

∗Oi ⊗ pr∗2ER) over Oi ×ObG, subject to the following gluing conditions
over Oij ×ObG := (Oi ∩Oj)×ObG:

Ai
(
b, (t ◦ βij(b))(x)

)
= TId(x)Cβij(b) ◦Aj(b, x)− θR ◦ Tb(evx ◦ βij), (2.42)

where (βij) is the transition 1-cocycle of P, and

ev : B(G)×ObG → MorG : (β, x) 7→ β(x). (2.43)

Theorem 2.2.20 ([SS25, 3.15.]). On P, connection 1-forms are in a one-to-one correspon-
dence with local connection data. The relation is given by(

(Pτ−1
i )∗A

)
(b, g) = idTG

∣∣
g
+TId(t(g))rg ◦Ai(b, t(g)), (b, g) ∈ Oi × G. (2.44)

Proposition 2.2.21 ([SS25, 4.17.]). Let A be a connection 1-form on a principaloid bundle
P. Given a trivializing cover {Oi}i∈I of the base B, let {Ai}i∈I be the local connection data
for A associated to O. Further, for a gauge transformation Φ ∈ Gauge(P), let {γi}i∈I be its
local presentation as in Proposition 2.2.12, and denote by {AΦ

i }i∈I the local connection data
for AΦ. Then, for each i ∈ I and every (b, x) ∈ Oi ×ObG the following equality holds:

AΦ
i

(
b, (t ◦ γi(b))(x)

)
= TId(x)Cγi(b) ◦Ai(b, x)− θR ◦ Tb(evx ◦ βij). (2.45)
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Chapter 3

Gauging Tensorial Sigma Models

Definition 3.0.1. An n-dimensional (closed) sigma model is a triple
(
Σ, (M, g, H),MDF

)
,

where:

• Σ is a compact, closed and oriented manifold with dimΣ = n, called the worldvolume,

• (M, g, H) is a Riemmannian manifold (M, g) together with a closed differential
(n+ 1)-form H with integer periods1; we call M the target space,

• MDF is a function, called the Dirac-Feynman amplitude (later the DF-amplitude), from
Γ(Σ ×M) := Γ(Σ ×M ↠ Σ), whose elements are called fields, into U(1) ≃ R/Z. The
DF-amplitude is defined below.

For any φ ∈ Γ(Σ×M) set ϕ := pr2 ◦ φ. The general form of the DF-amplitude is

MDF(φ) = exp
(
i

∫
Σ

√
det(ϕ∗g)

)
· χH(φ), (3.1)

where χH is a determined by the properties:

• independence of the metric g on M ,

• additivity on worldvolumes2,

• the variational contribution3:

1

i
δ logχH(φ) = ϕ∗(ιδϕH). (3.2)

Thus, the sigma model is a theory of minimal embeddings Σ →M perturbed by Lorentz-
type forces sourced by H from the topological term. Note that we adopt the Dirac’s quantum-
mechanical interpretation of the classical action functional, which leads us to replace S by
exp(iS) (for ℏ = 1) and proceed to generalize the amplitude through imposition of the above
properties – after Alvarez and Gawędzki [Alv85][Gaw88]. The definition of the sigma model
covers the natural prototypes: the theory of geodesic motions perturbed by Lorentz forces
(n = 1), and the theory of minimal surfaces perturbed by a background field of a 3-form
(n = 2). In what follows, we will discuss a concrete definition of χH .

1Definition 5.1.1
2Equivalent to the postulate of non-interaction of separate trajectories in the target space.
3Here, δ log is the logarithmic variation of χH induced by a variation δφ of the embedding field. We model

the latter by a smooth vector field in the neighborhood of φ(Σ).
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In our approach to the gauging of a rigid symmetry of a field theory, assume the target
space M to be the object manifold ObG of a Lie groupoid G. The target space admits the
action

t ◦ − : B(G) → Diff(M), (3.3)

which induces the following action on fields:

∀φ ∈ Γ(Σ×M) ∀β ∈ B(G) : β ▷ φ :=
(
idΣ × (t ◦ β)

)
◦ φ. (3.4)

We assume the DF-amplitude to be B(G)-invariant:

∀φ ∈ Γ(Σ×M) ∀β ∈ B(G) : MDF(β ▷ φ) = MDF(φ). (3.5)

We then call the action ϕ 7→ β ▷ ϕ a rigid symmetry of the sigma model.
An important class of examples of sigma models is given by those with H = dB, for B and g
both B(G)-invariant. In this case, we take

χH(φ) = exp
(
i

∫
Σ

ϕ∗B
)
. (3.6)

In order to gauge the rigid symmetry of such a sigma model, we choose a principaloid G-
bundle P over Σ with a trivializing open cover {Oi}i∈I . We also pick a smooth tessellation of
Σ, that is, a decomposition

Σ =
⋃
i∈I0

Σi (3.7)

into manifolds with boundary such that Dij := Σi ∩ Σj are codimension-1 manifolds with
boundary (whenever non-empty). Moreover, we want the tessellation to be subordinate to the
open cover {Oi}i∈I :

∀i ∈ I0 ∃j ∈ I : Σi ⊆ Oj . (3.8)

By compactness of Σ, one can assume finiteness of I0. Motivated by Example 2.1.15 and the
subsequent remark, we wish to construct a gauge-invariant DF-amplitude M̃DF : Γ(F) → U(1).
Let {Fτi} be the local trivializations of F over the same cover {Oi}. We set

S̃g(φ) :=
∑
i∈I0

∫
Σi

√
det(g ◦Ψ2

i ), (3.9)

and
S̃χH (φ) :=

∑
i∈I0

∫
Σi

B ◦Ψn
i , (3.10)

where
Ψk
i :=

(
T(pr2 ◦ Fτi)∇Aiφi

∣∣
Oi

)⊗k
: Γ(TΣ)⊗k → TM⊗k, k ∈ {2, n}. (3.11)

Then, we define
M̃DF(φ) := S̃g + S̃χH mod Z. (3.12)

Proposition 3.0.2. The theory governed by the DF-amplitude M̃DF does not depend on the
choice of the tessellation subordinate to the open cover {Oi}i∈I . Moreover, it is invariant with
respect to gauge transformations (φ,A) 7→ (φΦ,AΦ).
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Proof. Let T ∈ {g, B}. The gauge invariance of the DF-amplitude follows from Proposi-
tion 2.2.11, Proposition 2.2.12, the verticality of F(Φ), and the B(G)-invariance of T . Indeed,
we observe that

T(pr2 ◦ Fτi)∇AΦ
φΦ

∣∣
Oi
= T(pr2 ◦ Fτi) ◦ T(F∗(Φ)) ◦ ∇Aφ

∣∣
Oi

= T(t ◦ γi) ◦ T(pr2 ◦ Fτi) ◦ ∇Aφ
∣∣
Oi
.

(3.13)

To see the invariance under a change of tessellation, note that every such tessellation can be
realized as a fundamental cycle of Σ [Hat02, 3.3]. Since the transition maps can be expressed
in terms of a transition 1-cocycle, as

Fτi ◦ (Fτj)−1(b, x) = (b, (t ◦ βij)(b)(x)), (3.14)

and again, by the B(G)-invariance of T , the pullbacks (Fτi)∗pr∗2T glue to a global section over
F . Moreover, by Proposition 2.2.11, and by verticality of F∗(Φ), we know that on intersections
π−1
F (Oi)∩π−1

F (Oj) the respective restrictions of T (pr2 ◦Fτi)∇Aφ
∣∣
Oi

and T (pr2 ◦Fτj)∇Aφ
∣∣
Oj

differ by a left action by an element of the transition 1-cocycle. Consequently, the expressions
3.9 and 3.10 are integrals over a fundamental cycle of Σ. Since dimΣ = n, the n-forms are
closed, so 3.9,3.10 depend only on the fundamental class of Σ.

As can be seen from the proof of Proposition 3.0.2, the language of smooth singular chains
is not only more general and less rigid, but also arguably simpler than the one coming from
smooth tessellations. For this reason, we continue to adapt the smooth singular approach to
the theory of the gauging of sigma-model symmetries.
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Chapter 4

Notes on The Metric Term

Let us consider the metric term of a sigma model. In particular, let g ∈ Γ((TM ⊗ TM)∗) be
a metric on M–the object manifold of G. The following should convince us of the necessity
of reducing the structure group as B := B(G) ↘ Bg, where Bg denotes isometric bisections:

Bg = (t ◦ −)−1
(
Isom(M, g)

)
. (4.1)

Definition 4.0.1. We say that a Lie groupoid G is B-complete whenever there exists a global
bisection through every arrow of G. Precisely,

∀g ∈ MorG ∃β ∈ B : β(s(g)) = g. (4.2)

Proposition 4.0.2. Let G be B-complete. Suppose that t ◦ − : B → Isom(M, g) ⊆ Diff(M)
or, in other words,

∀β ∈ B : (t ◦ β)∗g = g. (4.3)

Then, all G-orbits in M are 0-dimensional.

Before we prove Proposition 4.0.2, we prove the following

Lemma 4.0.3. Let G be a transitive Lie groupoid (i.e., ∀x, y ∈ M : t−1(y) ∩ s−1(x) ̸= ∅).
Then, the map (t, s) : MorG →M ×M is a surjective submersion.

Proof. For dim(M) = 0 the hypothesis clearly holds. Thus, we can suppose dim(M) > 0.
Pick a point b ∈ M . Since tb := t|s−1(b) : s−1(b) → M is a surjection, by Sard’s Theo-
rem, there exists a regular point of tb. Combining this with the constancy of the rank of
tb [Mac87, Ch. III. Cor. 1.7.], we infer that it is a submersion, and, being such, it admits
smooth local sections. Pick arbitrary x, y ∈ M . Let x ∈ U

σU−−→ s−1(b) and y ∈ V
σV−−→ s−1(b)

be smooth local sections of tb. Take any g ∈ t−1(V ) ∩ s−1(U) and define

V × U ∋ (b, a) 7→ Σ(b, a) = σV (b).σV (t(g))
−1.g.σU (s(g)).σU (a)

−1 ∈ MorG. (4.4)

Clearly, the map Σ is smooth, and, moreover, it satisfies(
(t, s) ◦ Σ

)
(b, a) =

(
t(σV (b)), s(σU (a)

−1)
)
=

(
tb(σV (b)), tb(σU (a))

)
= (b, a), (4.5)

for each (b, a) ∈ V × U . Therefore, we have constructed a smooth local section of (t, s). A
standard argument

T
(
(t, s) ◦ Σ

)
= T(t, s) ◦ TΣ = idT(V×U) = idTV⊕TU (4.6)

shows that (t, s) is a submersion at (b, a), and since the choice of x, y was arbitrary, it is a
submersion everywhere.
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Remark 4.0.4. We can generalize this theorem to transitivity components (orbits) of a Lie
groupoid which is not necessarily globally transitive. This follows from the fact that, for a
transitivity component MT ⊆ M , there exists a manifold structure on t−1(MT ) ∩ s−1(MT )
with respect to which it is a submanifold of MorG and a Lie—now transitive—groupoid over
MT . This assertion is proven in [Mac87, III 1.8].

Let O ⊆ M be an orbit with dimO ⩾ 1. Take x, y ∈ O together with 0 ̸= u ∈ TxM and
0 ̸= v ∈ TyM . Then, by Lemma 4.0.3, there exists g ∈ MorG, and 0 ̸= w ∈ TgMorG such
that Tgs(w) = u and Tgt(w) = v.

Proof of Proposition 4.0.2. We will show that there exists a global bisection β ∈ B satisfying

Tx(t ◦ β)(u) = v. (4.7)

The arbitrariness of u, v then contradicts t ◦ β ∈ Isom(M, g). In order to construct such β,
we start by invoking the assumption of B-completeness to assert the existence of a bisection
β′ ∈ B satisfying β′(x) = g. We have

Txβ
′(u) = w′ ∈ TgMorG. (4.8)

Importantly, w′ ̸= 0 as u ̸= 0. Note that if w′ = w we obtain

Tx(t ◦ β′)(u) = Tgt ◦ Txβ′(u) = Tgt(w) = v, (4.9)

and the hypothesis holds. Otherwise, we need to nontrivially deform the bisection β′ so that
the resulting β satisfies Txβ(u) = w. We will achieve it by finding ψ ∈ Diff(MorG) with the
property β = ψ ◦ β′. The source map s is a submersion, so, by the Constant Rank Theorem,
and for an open neighborhood g ∈ Og, there exists a local trivialization τg : Og → Rk×Rn−k,
where n = dimMorG, the first k coordinates parametrize s-fibers, and the remaining ones
parametrize the directions transverse to them. Note that under this trivialization we obtain

Tgτg(w) = (ws, uτ ), Tgτg(w
′) = (w′

s, uτ ), (4.10)

so the images of w,w′ differ only in the first k coordinates. Denote by prs : Rn ↠ Rk the
projection onto the coordinates parametrizing s-fibers, and by prt : Rn ↠ Rn−k the projection
onto the transverse part. We let g ∈ O′

g ⊆ O′′
g ⊆ Og be other open neighborhoods, and take

h : Rn−k → [0, 1] to be a smooth bump function with the property

h
∣∣
prt◦τg(O′

g)
≡ 1, h

∣∣
prt◦τg(Og\O′′

g )
≡ 0. (4.11)

It is always possible to choose such neighborhoods and a corresponding bump function on a
smooth manifold [Nes20, pp. 13-16]. Now, let f : Rn → Rn be equal to f̃ × idRn−k , where
f̃ : Rk → Rk is any invertible orientation-preserving linear function mapping w′

s to ws. It
certainly exists due to w,w′ ̸= 0. We use the fact that

GL+(k,R) := {A ∈ GL(k,R) : detA > 0} (4.12)

is path-connected [HN12, Cor. 2.1.8.] to pick a smooth path

γ : [0, 1] → GL+(k,R) : γ(0) = idRk , γ(1) = f̃ . (4.13)

It obviously corresponds to the map (its transpose)

γτ : Rk × [0, 1] → Rk : γ(t)(x) = γτ (x, t). (4.14)
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Observe that f preserves the τg images of s-fibers. We finally define ψ by

ψ =

{
τ−1
g ◦ (γτ × idRn−k) ◦ (idRk × (h, idRn−k)) ◦ τg on Og,
idMorG\Og

on MorG \Og.
(4.15)

Mind that by (h, idRn−k) we mean (h × idRn−k) ◦∆, where ∆ is the diagonal map. By con-
struction, the map ψ is smooth. Moreover, since h depends only on the transverse component,
the smooth inverse to ψ is obtained by inverting γ pointwise and inserting (γ−1)τ into 4.15.
Consequently, the map ψ is an s-fiber-preserving diffeomorphism of MorG, so the composition
ψ ◦ β′ is, indeed, a bisection. Crucially,

Tgψ(w
′) = Tg

(
τ−1
g ◦f◦τg

)
(w′) = Tτg(g)τ

−1
g ◦Tτg(g)f(w

′
s, uτ ) = Tτg(g)τ

−1
g (ws, uτ ) = w, (4.16)

so we managed to obtain the desired β = ψ ◦ β′.

It follows that in order for the G-orbits to be of non-zero dimension, we need the group
Isom(M, g) ∩ Diff(M) to be contained in t ◦ B(G). However, the transition maps must be
isometric, and hence, the structure group should be reduced.
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Chapter 5

The Gauging for Non-Tensorial Sigma
Models

Now, we consider the gauging of rigid Lie-groupoidal symmetries for more general sigma
model, whose action functionals are determined by differential characters. Before we define the
DF-amplitude, we give an axiomatic and a cohomological description of differential characters.

5.1. Differential Characters

Definition 5.1.1. Let M be a manifold. The graded subalgebra Ω•
Z(M) ⊆ Ω•(M) of differ-

ential forms with integer periods is composed of those closed differential forms whose integrals
over every cycle lie in Z. That is,

ΩkZ(M) :=
{
ω ∈ Ωk(M)

∣∣ dω = 0 ∧ ∀c ∈ Zk(M) :

∫
c

ω ∈ Z
}
. (5.1)

Remark 5.1.2. By de Rham’s Theorem, the classes [ω] ∈ ΩkZ(M)/dΩk−1(M) are in isomor-
phism with the image of i∗ : Hk(M,Z) → Hk(M,R) in singular cohomology, induced by the
coefficient morphism i : Z ↪→ R.

Lemma 5.1.3. The map ι : Ω•(M) → C•(M,R/Z) given by

ι(ω)(c) :=

∫
c

ω mod Z (5.2)

is an injection.

Proof. Suppose 0 ̸= ω ∈ ker ι. Then ω(p) ̸= 0 for p in some coordinate chart (U, ϕ). In local
coordinates ϕ = (x1, . . . , xn) on U , the form ω is expressed as

ω(x) = f(x) dxi1 ∧ . . . dxik + . . . (5.3)

Without loss of generality, we may assume that f(p) ̸= 0. By the continuity of f , there exist
δ > 0 and ε > 0 such that we can fit an n-cube

K = {x : |xj − pj | ⩽ ε, 1 ⩽ j ⩽ dimM} ⊆ U ∩ {x : |f(x)| ⩾ δ}. (5.4)

Consider a smooth k-simplex σ : ∆k →M defined in local coordinates as

σ(t1, . . . , tk) = ϕ−1(p1, . . . , pi1−1, pi1 + εt1, pi1+1, . . . , pik−1, pik + εtk, . . . , pn). (5.5)
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Clearly, σ(∆k) ⊆ K. The pullback of ω calculates as

σ∗ω =
(
f ◦ σ(t)

)
εk dt1 ∧ . . . ∧ dtk. (5.6)

We obtain ∫
σ

ω =

∫
∆k

(
f ◦ σ(t)

)
εk dt1 ∧ . . . ∧ dtk. (5.7)

Since
∣∣f ◦ σ(t)

∣∣ ⩾ δ on ∆k, we get an estimate∣∣∣∣∫
σ

ω

∣∣∣∣ ⩾ δ
εk

k!
. (5.8)

Combining this with another estimate∣∣∣∣∫
σ

ω

∣∣∣∣ ⩽ sup
x∈K

|f(x)|ε
k

k!
, (5.9)

which is finite by the compactness of K, we conclude that for sufficiently small ε > 0:

0 <

∣∣∣∣∫
σ

ω

∣∣∣∣ < 1, (5.10)

which contradicts the assumption that the value of any such integral lies in Z.

Corollary 5.1.4. In Definition 5.1.1 one does not have to assume closedness on ω.

Proof. Let ω ∈ Ωk(M) be such that

∀c ∈ Zk(M) :

∫
c

ω ∈ Z. (5.11)

Then, by Stokes Theorem, for any c′ ∈ Ck+1(M) we have∫
∂c′

ω =

∫
c′

dω ∈ Z, (5.12)

and thus, dω = 0.

Definition 5.1.5 ([CS85]). Let M be a manifold. The k-th group of differential characters
is defined as

Ĥk(M,R/Z) :=
{
f ∈ HomZ

(
Zk−1(M),R/Z

) ∣∣ ∃ ωf ∈ Ωk(M) : f ◦ ∂ = ι(ωf )
}
. (5.13)

That is, for any c ∈ Ck(M) we have

f(∂c) =

∫
c

ωf mod Z. (5.14)

It is clear from the construction that ωf ∈ ΩkZ(M). Lemma 5.1.3 implies that ωf is uniquely
determined by f . Moreover, the assignment M 7→ Ĥk(M,R/Z) is functorial. Indeed, for a
map h :M → N we have

∀f ∈ Ĥk(N,R/Z) : f ◦ h∗ ◦ ∂ = f ◦ ∂ ◦ h∗ = ι(ωf ) ◦ h∗ = ι(h∗ωf ). (5.15)

We will call the form ωf the curvature of f .
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Definition 5.1.6 ([SiSu07]). A character functor is a 5-tuple (Ĝ•, i1, i2, δ1, δ2), where Ĝ• is
a contravariant functor from the category of smooth manifolds to graded abelian groups, and
i1, i2, δ1, δ2 are natural transformations rendering the following character diagram commuta-
tive, and its diagonal sequences exact for each k:

0 0

Hk−1( · ,R/Z) Hk( · ,Z)

Hk−1( · ,R) Ĝk Hk( · ,R)

Ωk−1/Ωk−1
Z ΩkZ

0 0.

−B

i1 rα

β

δ2

δ1

d

i2
s

(5.16)

The maps α,B, r are obtained from the long exact sequence

. . .→ Hk( · ,Z) r−→ Hk( · ,R) α−→ Hk( · ,R/Z) B−→ Hk+1( · ,Z) → . . . (5.17)

associated to the coefficient short exact sequence of abelian groups 0 → Z → R → R/Z → 0,
and β,d, s are defined as follows. The map β-by

Hk−1( · ,R) ≃−→ Hk−1
dR ( · ) ↪→ Ωk−1/dΩk−2 ↠ Ωk−1/Ωk−1

Z , (5.18)

using de Rham Theorem, and the fact that dΩk−2 ⊆ Ωk−1
Z . Since dΩk−1

Z = 0, the de Rham
differential is well-defined on classes in Ωk−1/Ωk−1

Z . Finally,

s : ΩkZ ↪→ ker dk ↠ ker dk/dΩk−1 = Hk
dR( · )

≃−→ Hk( · ,R). (5.19)

Proposition 5.1.7 ([SiSu07]). The differential characters Ĥ• substituted for Ĝ• fit into the
character diagram, and, as such, form a character functor together with appropriate natural
transformations i1, i2, δ1, δ2.

Proof. Fix a manifold M and let f ∈ Ĥk(M,R/Z). We begin by defining δ1(f) := ωf .
Naturality of this assignment follows from 5.15. For surjectivity, let ω ∈ ΩkZ(M) be arbitrary.
Define

f(c) =

{
ι(ω)(b) c = ∂b ∈ Bk−1(M)

0 otherwise.
(5.20)

Then, δ1(f) = ω. Since R/Z is a divisible group, and thus an injective abelian group, the
Universal Coefficient Theorem asserts

Hk−1(M,R/Z) ≃ HomZ
(
Hk−1(M),R/Z

)
. (5.21)

Therefore, by the left exactness of the left hom-functor (Definition A.0.3), the canonical
projection in the short exact sequence

0 → Bk−1(M) ↪→ Zk−1(M) ↠ Zk−1(M)/Bk−1(M) = Hk−1(M) → 0 (5.22)
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induces the inclusion

Hk−1(M,R/Z) ≃ HomZ
(
Hk−1(M),R/Z

)
↪→ HomZ

(
Zk−1(M),R/Z

)
. (5.23)

This gives the map i1 : Hk−1(M,R/Z) ↪→ Ĥk(M,R/Z). Indeed, by construction for any
[r] ∈ Hk−1(M,R/Z) and any ∂b ∈ Bk−1(M) we have

i1([r])(∂b) = δr(b) = 0. (5.24)

Therefore, by Universal Coefficient Theorem and the left exactness of the hom-functor, the
image of i1 corresponds to the differential characters with zero curvature. In other words,
im(i1) = ker(δ1).
The restriction

res : Ck−1(M,R/Z) = HomZ
(
Ck−1(M),R/Z

)
→ HomZ

(
Zk−1(M),R/Z

)
(5.25)

composed with ι gives a map

res ◦ ι : Ωk−1(M) → HomZ
(
Zk−1(M),R/Z

)
, (5.26)

whose kernel is composed of those (k−1)-forms, which integrate to integers on cycles. This is
precisely Ωk−1

Z (M) (Corollary 5.1.4). Note that, by Stokes Theorem, for any ∂b ∈ Bk−1(M),
we have

(res ◦ ι)(ω)(∂b) = ι(dω)(b). (5.27)

Thus, res ◦ ι defines a map to Ĥk(M,R/Z). We define i2 as its factorization through
Ωk−1(M)/Ωk−1

Z (M), which is manifestly injective. Moreover, 5.27 proves commutativity of
the bottom triangle in 5.16.
In order to define δ2 consider the following diagram:

R R/Z

Ck−1(M)

Zk−1(M).

T

ff̃

(5.28)

Given f ∈ Ĥk(M,R/Z), we use the fact that Zk−1(M) is a free abelian group to lift f to f̃
(Proposition A.0.14). Then, we use the injectivity of R as an abelian group (Corollary A.0.17)
to factor f̃ through Ck−1(M), and we call this factorization T . Observe that for any c ∈ Ck(M)
we get

δT (c) mod Z = T (∂c) mod Z = f̃(∂c) mod Z = f(∂c) = ι(ωf )(c) = ωf (c) mod Z, (5.29)

where after the last equality we treat ωf as a cochain by integration, i.e.,

ωf 7→
(
c 7→

∫
c

ωf

)
. (5.30)

Therefore, under this identification, ωf − δT ∈ Ck(M,Z) and it is closed, since ωf is closed.
Indeed, by de Rham Theorem, the cochain associated to ωf is closed if and only if ωf is
d-closed. Moreover, if T ′ is another map making 5.28 commutative, we compute

(T − T ′)
∣∣
Zk−1(M)

= f̃ − f̃ = 0 ⇒ T − T ′ = δd, d ∈ Ck−2(M,R). (5.31)
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Here, we used Universal Coefficient Theorem to infer from T −T ′ = 0 in HomZ
(
Hk−1(M),R

)
the equality [T − T ′] = 0 in Hk−1(M,R). If we pick a different lift f̃ ′, we get f̃ ′ − f̃ mod Z =
f − f = 0, so f̃ − f̃ ′ = c

∣∣
Zk−1(M)

for some c ∈ Ck−1(M,Z). We conclude that in general

T − T ′ = δd+ c ⇒ δ(T − T ′) = δc. (5.32)

This means that the cohomology class [ωf − δT ] ∈ Hk(M,Z) depends only on f . We define
δ2(f) := [ωf − δT ].
To see that it is surjective, let [u] ∈ Hk(M,Z) be arbitrary. By
Remark 5.1.2, there exists ω ∈ ΩkZ(M) with [ω] = i∗[u] under indentification by de Rham’s iso-
morphism. Then, since [ω−i∗u] = 0, for any representative u, the cochain ω−i∗u ∈ Ck(M,R)
is exact, so we can find T ∈ Ck−1(M,R) with δT = ω− i∗u. By postcomposing the restricted
cochain T

∣∣
Zk−1(M)

with the natural projection R ↠ R/Z, we obtain

f ∈ HomZ
(
Zk−1(M),R/Z

)
, f ◦ ∂ = ι(ω), (5.33)

a differential character, which satisfies δ2(f) = [u]. Indeed, we have ω − δT = i∗u by con-
struction.
Now, suppose δ2(f) = 0, that is [ωf − δT ] = 0. Since δT is exact, using de Rham Theorem,
we infer that

∃θ ∈ Ωk−1(M) : dθ = ωf , (5.34)

and
∃e ∈ Ck−1(M,Z) : ωf − δT = δe. (5.35)

We calculate δ(θ − T − e) = 0, so there exists ζ ∈ Zk−1(M,R) such that

θ − T − e = ζ. (5.36)

By de Rham Theorem we can find

ϕ ∈ Ωk−1(M) : (θ − T − e)
∣∣
Zk−1(M)

= ϕ
∣∣
Zk−1(M)

. (5.37)

We have T
∣∣
Zk−1(M)

= (θ − ϕ − e)
∣∣
Zk−1(M)

. By postcomposing both sides with the natural
projection R ↠ R/Z, we obtain f = ι(θ − ϕ)

∣∣
Zk−1(M)

= ι(θ − ϕ)
∣∣
Zk−1(M)

= i2(θ − ϕ), as e
is Z-valued. Hence, f ∈ im(i2). We conclude that both diagonal sequences are exact. We
proceed by checking commutativity of the left side of the character diagram.
Since i2 was defined as a factorization of res ◦ ι through the quotient by its kernel, let
[r] ∈ Hk−1(M,R) and let us pick a representative ω ∈ Ωk−1(M) of β([r]) within the class
in Ωk−1(M)/Ωk−1

Z (M). Then, (i2 ◦ β)([r]) = (res ◦ ι)(ω). Using Universal Coefficient Theo-
rem we identify α with

Hk−1(M,R) Hk−1(M,R/Z)

HomZ
(
Hk−1(M),R

)
HomZ

(
Hk−1(M),R/Z

)≃

α

≃

π∗

(5.38)

Now, it follows from de Rham Theorem that

(res ◦ ι)(ω) = pr∗ ◦ π∗([r]) = (i1 ◦ α)([r]), (5.39)
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where pr : Zk−1(M) ↠ Hk−1(M) of 5.22 was used to define i1.
We already showed under 5.27 that the bottom triangle commutes. The top triangle commutes
by the construction of δ2 above, where taking f ∈ im(i1) implies ωf = 0 by exactness of
the diagonal sequence in 5.16, and we recover the usual connecting homomorphism −B.
Finally, the right side of the diagram commutes by Remark 5.1.2, since by construction,
r(δ2(f)) = r([ωf − δT ]) = [ωf ] ∈ Hk(M,R). Naturality of δ1 follows from 5.15. The map
i2 is a natural transformation by the change of variables formula for integrals. Pullbacks
and pushforwards induce natural transformation for groups of cochains, hence i1 is a natural
transformation. Finally, δ2 was built using universal constructions, so it is also natural.

Definition 5.1.8. For any f ∈ Ĥk(M,R/Z) we call δ2(f) the characteristic class of f .

In fact, the axiomatic description of differential characters we just laid down is exhaustive,
and therefore we may interchangeably refer to the functor of differential characters and the
associated character functor. This result is expressed in

Theorem 5.1.9 ([SiSu07]). For every character functor (Ĝ•, i1, i2, δ1, δ2), there exists a
unique natural isomorphism Φ : Ĝ• → Ĥ•( · ,R/Z), which commutes with identity trans-
formations on all other functors in the diagram. In other words, the diagram formed by two
character diagrams–corresponding to Ĝ• and Ĥ•–connected with identity transformations and
Φ is commutative.

Besides the axiomatic functorial description of differential characters given in [SiSu07], a
cohomological classification was developed by Hopkins and Singer in [HS05]. Despite the fact
that Ĥ•( · ,R/Z) does not form a genuine sheaf over Man, it has been shown [LM08a] that the
cocycle category associated to Ĥ2( · ,R/Z) forms a stack over Man. What this means is that
given a collection of local characters on elements of an open cover such that their restrictions
to double intersections match, there might not be a global character which restricts to the
local ones. Stackiness, however, guarantees that given particular extra structure on double
and triple intersections, rendering the local characters "coherently aligned", there does indeed
exist a unique global gluing. In what follows, we will delineate what we mean by "coherenly
aligned". In this thesis, we only give proofs of assertions for the case of degree-2 characters.
However, we believe that a generalization to arbitrary k ∈ N should be straightforward, albeit
technically involved.

Definition 5.1.10 ([HS05]). Let M be a manifold and let s ∈ N. The cochain complex
DC•

s(M) is defined by

DCns (M) = {(c, h, ω) : ω = 0 for n < s} ⊆ Cn(M,Z)× Cn−1(M,R)× Ωn(M), (5.40)

and
d(c, h, ω) = (δc, ω − c− δh,dω), (5.41)

where we identify ω with its real cochain given by integration. We note that DC•
s forms a

presheaf of complexes on Man (Definition A.0.22), as a product of such presheaves.

Proposition 5.1.11. For each n ∈ N there is a natural isomorphism Hn(DC•
n) ≃ Ĥn(·,R/Z)

Proof. Let M ∈ Man. We set

ψM : Hn(DC•
n(M)) ∋ [(c, h, ω)] 7→ h

∣∣
Zn−1(M)

mod Z ∈ Ĥn(M,R/Z). (5.42)
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It is a linear map, so its well-definedness follows from

ψM (d(c, h, 0)) = ψM (δc,−c− δh, 0) = (−c− δh)
∣∣
Zn−1(M)

mod Z = 0, (5.43)

and

ψM ([(c, h, ω)])(∂b) = δh(b) mod Z = ω(b)− c(b) mod Z = ω(b) mod Z = ι(ω)(b). (5.44)

To construct the inverse, given f ∈ Ĥn(M,R/Z), we take T (f) ∈ Cn−1(M,R) as in 5.28. For
ω simply take ωf = δ1(f) (5.16). Just as it was shown in the proof of Proposition 5.1.7, the
cochain T (f) satisfies

δT (f) = ωf − c, (5.45)

where c ∈ Zn(M,Z) is a representative of δ2(f). Moreover, T (f) is determined up to

c′ + δd, c′ ∈ Cn−1(M,Z), d ∈ Cn−2(M,R). (5.46)

This makes the class [(c, T (f), ωf )] uniquely determined. Indeed, let (c̃, T̃ (f), ωf ) be a different
choice. Then,

(c̃, T̃ (f), ωf )− (c, T (f), ωf ) =
(
δ(T (f)− T̃ (f)), T̃ (f)− T (f), 0

)
=

(
−δc′, c′ + δd, 0)

= d(−c′,−d, 0).
(5.47)

We should check that ψ−1
M ◦ψM = idHn(DC•

n(M)). But this follows from the fact that the class
[(c, h, ω)] is uniquely determined by f = h

∣∣
Zn−1(M)

mod Z. The equality ψM ◦ψ−1
M = idĤn(M)

follows directly from the construction of T (f). Naturality of ψ is straightforward.

For an open cover O =
⊔
i∈I Oi of a manifold M we construct the Čech nerve

(Remark A.0.24), which is a simplicial manifold O• : ∆ → Man whose object component is

On = O ×M O ×M . . .×M O︸ ︷︷ ︸
n+1

, (5.48)

and the morphism component is fixed by the choice of the face and degeneracy maps (Defini-
tion A.0.23). The face maps are the canonical projections

d
(n)
i : On → On−1 : (x0, x1, . . . , xn) 7→ (x0, . . . , xi−1, xi+1, . . . , xn) 0 ⩽ i ⩽ n. (5.49)

The degeneracy maps are

s
(n)
i : On → On+1 : (x0, x1, . . . , xn) 7→ (x0, . . . , xi, xi, . . . , xn) 0 ⩽ i ⩽ n. (5.50)

Note that there are diffeomorphisms

On ≃
⊔
ī∈In+1

Oi0i1...in ī = (i0, . . . , in), (5.51)

where Oi0i1...in := Oi1 ∩Oi2 ∩ . . .∩Oin . We tacitly assume that X ⊔ ∅ = X, and the same for
an infinite disjoint union of empty sets. Any smooth map ψ : N → M induces a pullback of
the Čech nerve:

(ψ−1O)• → O•. (5.52)
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The simplicial manifold (ψ−1O)• is just the Čech nerve of the pullback cover

ψ−1O =
⊔
i∈I

ψ−1(Oi). (5.53)

Clearly,
(ψ−1O)n ≃

⊔
ī∈In+1

ψ−1(Oi0i1...in) =
⊔
ī∈In+1

ψ−1(Oi0) ∩ . . . ∩ ψ−1(Oin). (5.54)

The canonical morphism (ψ−1O)• → O• is given by

ψn = ψ×(n+1) : (ψ−1O)n → On. (5.55)

Denote by j the covering map O → M , which is defined as the respective inclusion on every
connected component of O. Using the Čech nerve, we construct the double complex:

...
...

...

DC0
2(O2) DC1

2(O2) DC2
2(O2) . . .

DC0
2(O1) DC1

2(O1) DC2
2(O1) . . .

DC0
2(O0) DC1

2(O0) DC2
2(O0) . . .

DC0
2(M) DC1

2(M) DC2
2(M) . . .

0 0 0

d d

δ1

−d

δ1

−d

δ1

δ0

d

δ0

d

δ0

j∗

−d

j∗

−d

j∗

(5.56)

where

δk :=

k+1∑
i=0

(−1)i
(
d
(k+1)
i

)∗
. (5.57)

We call δk the (k-th) Dupont operator. The fact that columns of 5.56 form cochain complexes
follows from simplicial identities of the Čech nerve. The fact that d and δk commute is a
consequence of the fact that d commutes with pullbacks. Note that for any representative
(c, h, ω) of a class in H2(DC•

2(M)), the chain map j∗ induces a cocycle in the total complex
of the truncation

0 0 0

DC0
2(O2) DC1

2(O2) DC2
2(O2) . . .

DC0
2(O1) DC1

2(O1) DC2
2(O1) . . .

DC0
2(O0) DC1

2(O0) DC2
2(O0) . . .

0

d

0

d

0

δ1

−d

δ1

−d

δ1

δ0

d

δ0

d

δ0

(5.58)
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Simply take j∗(c, h, ω) ∈ DC2
2(O0), and (0, 0, 0) in DC1

2(O1) and DC0
1(O2):

(0, 0, 0)

(0, 0, 0)

j∗(c, h, ω).

(5.59)

This defines a map
p : H2(DC•

2(M)) → H2
tot

(
DC•

2(O•)T
)
, (5.60)

where DC•
2(O•)T is the truncated double complex 5.58.

Theorem 5.1.12 ([LM08a]). For any M ∈ Man and any open cover O of M , the map
p : H2(DC•

2(M)) → H2
tot

(
DC•

2(O•)T
)

is an isomorphism.

Theorem 5.1.12 gives us the necessary and sufficient conditions for a collection of characters
of degree-2 on the elements of a cover that agree on double overlaps to glue to a global
character. Later in this thesis, we will use the gluing of characters to construct a sigma
model with a groupoidal symmetry gauged. However, the proof which appears in [LM08a]
is not constructive, and an explicit construction of the inverse to p will prove important in
subsequent sections. This is why we give a

Proof of Theorem 5.1.12. Let

(cijk, 0, 0) 0

(cij , hij , 0) 0

(ci, hi, ωi) 0

(5.61)

be a general cocycle in the total complex of DC•
2(O•)T. The second component in (cijk, 0, 0)

is zero for dimensional reasons – by definition it belongs to C−1(O2,R). Note that we use
5.51 and interpret ai0,...,in , a ∈ {c, h, ω} as collection of objects on connected components of
On. We can give the inverse to p as an assignment to the class of 5.61 of a homomorphism

f ∈ HomZ(Z1(M),R/Z), f ◦ ∂ = ι(ωf ), (5.62)

where ωf comes from the class [(ci, hi, ωi)]. We will rely on the Subdivision Theorem (Theo-
rem A.0.12), and write every 1-cycle z on M as a sum zO + ∂b for zO subordinate to O. We
will denote by ZO

• (M) the group of subordinate cycles on M . We can define f by introducing
f ′ ∈ HomZ(Z

O
1 (M),R/Z), and set

f(z) = f ′(zO) + ι(ωf )(b). (5.63)

As long as f ′ ◦ ∂ = ι(ωf )
∣∣
∂−1ZO

1 (M)
, the expression 5.63 does not depend on the choice of a

decomposition of z. Indeed, let z = z′O + ∂b′ be another decomposition. We have

zO − z′O = ∂(b′ − b). (5.64)
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Since both sides are subordinate to O, we can use Lemma A.0.13 to find bO ∈ CO
2 (M)

satisfying ∂bO = ∂(b′ − b), and get zO − z′O = ∂bO, and thus ∃d ∈ Z2(M) : b′ − b − bO = z.
Applying 5.63 yields

f ′(zO) + ι(ωf )(b) = f ′(z′O + ∂bO) + ι(ωf )(b) = f ′(z′O) + ι(ωf )(bO + b)

= f ′(z′O) + ι(ωf )(b
′ − b+ b− d) = f ′(z′O) + ι(ωf )(b

′).
(5.65)

We read off the equations affirming cocyclicity of 5.61:

(δci, ωi − ci − δhi,dωi) = 0, (5.66)

(cj − ci − δcij , hj − hi + cij + δhij , ωj − ωi) = 0, (5.67)

(cjk − cik + cij + δcijk, hjk − hik + hij − cijk, 0) = 0. (5.68)

It follows that the local forms ωi agree on double intersections. Since Ω• forms a sheaf, this is
enough to define ωf as the unique gluing of the ωi. In order to construct f ′, let zO ∈ ZO

1 (M)
decompose into individual simplices as

zO =

mz∑
j=1

zj im(zj) ⊆ Oij . (5.69)

This comes with a choice of a function

{1, . . . ,mz} ∋ j 7→ ij ∈ I. (5.70)

We will have to prove that f ′(zO) does not depend on this choice. Let d0, d1 denote the face
maps defining the boundary maps

∂zj = d0zj − d1zj . (5.71)

Because zO is a cycle, for any zj there exists a zj′ such that

d0zj = d1zj′ . (5.72)

This also involves a choice, which—as we will show—does not change f ′(zO). We set

f ′(zO) =

mz∑
j=1

hij (zj) + hij′ ij (d0zj) mod Z. (5.73)

Note that the expression is well-defined since im(d0zj) ⊆ Oij′ ij . Moreover, 5.73 is linear in
the cocycle 5.61. Therefore, in order to prove that f ′ only depends on the class in total
cohomology of 5.58, it is enough to show that 5.73 vanishes on any coboundary (the upper
diagonal):

(djk − dik + dij , 0, 0)

(dij , 0, 0) (aj − ai − δdij , bj − bi + dij , 0)

(ai, bi, 0) (δai,−ai − δbi, 0).

(5.74)
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The expression for f ′ becomes

f ′(zO) =

mz∑
j=1

−aij (zj)− δbij (zj) + bij (d0zj)− bij′ (d0zj) + dij′ ij (d0zj) mod Z

=

mz∑
j=1

−bij (d0zj) + bij (d1zj) + bij (d0zj)− bij′ (d0zj) mod Z

=

mz∑
j=1

bij (d1zj)− bij′ (d1zj′) mod Z = 0,

(5.75)

where we use ai, dij ∈ C•(M,Z), and the fact that zO is a cycle (a sum over j′ is just a shifted
sum over j). Now, let us consider a different choice function

{1, . . . ,mz} ∋ j 7→ i′j ∈ I. (5.76)

Using 5.67 and 5.68 we compute

mz∑
j=1

hij (zj)− hi′j (zj) + hij′ ij (d0zj)− hi′
j′ i

′
j
(d0zj) mod Z

=

mz∑
j=1

δhiji′j (zj) + ciji′j (zj) + hij′ ij (d0zj)− hi′
j′ i

′
j
(d0zj) mod Z

mz∑
j=1

hiji′j (d0zj)− hiji′j (d1zj) + hij′ ij (d0zj)− hi′
j′ i

′
j
(d0zj) mod Z

=

mz∑
j=1

hiji′j (d0zj)− hij′ i′j′
(d0zj) + hij′ ij (d0zj)− hi′

j′ i
′
j
(d0zj) mod Z

=

mz∑
j=1

(
hiji′j − hi′

j′ i
′
j

)
(d0zj) +

(
hij′ ij − hij′ i′j′

)
(d0zj) mod Z

=

mz∑
j=1

(
hiji′j′

− ciji′j′ i
′
j

)
(d0zj) +

(
hi′

j′ ij
− cij′ i′j′ ij

)
(d0zj) mod Z

=

mz∑
j=1

(
hiji′j′

+ hi′
j′ ij

)
(d0zj) mod Z =

mz∑
j=1

(
ciji′j′ ij

+ cijiji′j′
)
(d0zj) mod Z = 0.

(5.77)

That 5.73 is invariant under the change of assignment j 7→ j′ to j 7→ j′′ follows by replacing
j 7→ ij so that i′j′′ = ij′ , the invariance under which we just showed. Now suppose zO = ∂(bO)
for a subordinate 2-chain bO. Note that

∂bO = ∂

mb∑
j=1

bj =

mb∑
j=1

∂bj , (5.78)

so one can decompose ∂bO into simplices as follows:

∂(bO) =

mb∑
l=1

d0bl − d1bl + d2bl =

m∂b∑
j=1

zj . (5.79)

39



Importantly, as im(∂bj) ⊆ Oij and it is a boundary, we can choose ij′ = ij in the latter
decomposition of 5.79. By the linearity of hi and hij , one can write

f ′(∂(bO)) =

mb∑
j=1

hij (∂bj) + hijij (d0∂bj) mod Z =

mb∑
j=1

δhij (bj) + cijijij (d0∂bj) mod Z

=

mb∑
j=1

(
ωij − cij

)
(bj) mod Z = ωf (bO) mod Z = ι(ωf )(bO),

(5.80)

where we use ciii = hii − hii + hii = hii. This completes the proof of well-definedness of 5.63.
It remains to show that the assignment of f is an isomorphism. First, let fM ∈ Ĥ2(M,R/Z)
be a character represented by a cocycle (c, h, ω) ∈ DC2

2(M), i.e., fM = h
∣∣
Z1(M)

mod Z. On
the other hand, the character assigned to p([(c, h, ω)]) can be written as (cf. 5.59)

f(zO + ∂b) =

mz∑
j=1

hij (zj) mod Z+ ι(ω)(b)

=

mz∑
j=1

h
∣∣
Oij

(zj) mod Z+ ι(ω)(b)

=

mz∑
j=1

h(zj) mod Z+ ι(ω)(b)

= fM (zO + ∂b).

(5.81)

It follows that our map H2
tot

(
DC•

2(O•)T
)
→ H2(DC•

2(M)) is surjective. It is now enough to
show injectivity. Suppose that for a cocycle 5.61 the corresponding character f is zero. That
is, in particular

f ′(zO) =

mz∑
j=1

hij (zj) + hij′ ij (d0zj) mod Z = 0 (5.82)

for each zO ∈ ZO
1 (M). Note that for z = zO, we may take b = 0. By considering a cycle

zOi supported in Oi, picking ij′ = ij , and using the fact that hii = ciii ∈ C0(O1,Z) we find
that hi(zOi) ≡ 0 (mod Z) for any such zOi . Therefore, by Universal Coefficient Theorem,
there exist bi ∈ C0(O0,R) and c′i ∈ C1(O0,Z) such that hi = −δbi+ c′i. The expression for f ′

becomes

f ′(zO) =

mz∑
j=1

bij (d1zj)− bij (d0zj) + hij′ ij (d0zj) mod Z

=

mz∑
j=1

bij′ (d1zj′)− bij (d0zj) + hij′ ij (d0zj) mod Z

=

mz∑
j=1

bij′ (d0zj)− bij (d0zj) + hij′ ij (d0zj) mod Z

=

mz∑
j=1

(
−(δ0b)ij′ ij + hij′ ij

)
(d0zj) mod Z.

(5.83)

Since the zj are arbitrary, it follows that hij = (δ0b)ij + dij for dij ∈ C0(M,Z). Moreover, by
cocyclicity d(ci, hi, ωi) = 0, we obtain

d(ci,−δbi + c′i, ωi) = (δci, ωi − ci − δc′i,dωi) = 0, (5.84)
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so, by Lemma 5.1.3 ωi = 0. Combining all the above, we infer that ci = −δc′i, and then
(ci,−δbi+ c′i, ωi) = d(−c′i, bi, 0), so the cocycle 5.61 is a coboundary 5.74. Hence, the proof is
complete.

Not all characters on O0 whose class maps to zero under δ0 can be glued to a character
on M . Consider a torus S1 × S1 parametrized by (θ, ϕ), and a 2-form dθ ∧ dϕ. Clearly, this
form does not belong to Ω2

Z(S
1×S1). Let O be a good open cover of the torus. The pullback

j∗(dθ ∧ dϕ) is exact, and by H1(O0,R/Z) = 0 and exactness of

0 → H1(O0,R/Z) → Ĥ2(O0,R/Z) → Ω2
Z(O0) → 0, (5.85)

it follows that there exists a character f0 on O0 whose curvature is j∗(dθ ∧ dϕ), and which
satisfies δ0(f0) = 0. However, it cannot be glued to a character on M , because the curvature
of such gluing would have to be dθ ∧ dϕ.
Remark 5.1.13. There are two cohomological obstructions to the existence of a cocycle in
DC•

2(O•)T extending a character f ∈ Ĥ2(O0,R/Z). Let [(ci, hi, ωi)] ∈ H2(DC•
2(O0)) be the

class corresponding to f (Proposition 5.1.11). The first step in the extension requires the
existence of an element (cij , hij , 0) ∈ DC1

2(O1) satisfying

d(cij , hij , 0) = δ0(ci, hi, ωi), (5.86)

for some representative (ci, hi, ωi) of [(ci, hi, ωi)]. This translates to the condition

[δ0(ci, hi, ωi)] = δ0[(ci, hi, ωi)] = 0 ∈ H2(DC•
2(O1)), (5.87)

or, written in terms of a character, δ0f = 0. Thus, the class δ0[(ci, hi, ωi] ∈ H2(DC•
2(O1))

measures the first cohomological obstruction to the extension.
Suppose the first obstruction vanishes and there exists (cij , hij , 0) as in 5.86. Note that there
is a freedom of choice of an element (c′ij , h

′
ij , 0) ∈ ker(d : DC1

2(O1) → DC2
2(O1)), which we

can add to (cij , hij , 0), without violating 5.86. To complete the extension, there has to exist
(cijk, 0, 0) ∈ DC0

2(O2) satisfying

d(cijk, 0, 0) = δ1(cij + c′ij , hij + h′ij , 0), (5.88)

which can be rewritten as

[δ1(cij + c′ij , hij + h′ij , 0)] = 0 ∈ H1(DC•
2(O2)). (5.89)

We say that the second cohomological obstruction to the extension vanishes if there exists
(c′ij , h

′
ij , 0) ∈ ker(d : DC1

2(O1) → DC2
2(O1)) such that 5.89 holds.

Whenever both cohomological obstructions to the extension vanish, there exists a cocycle

(cijk, 0, 0) 0

(cij , hij , 0) 0

(ci, hi, ωi) 0

(5.90)

in the double complex DC•
2(O•)T, extending f ∈ Ĥ2(O0,R/Z). By Theorem 5.1.12 the

cocycle 5.90 corresponds to a differential character fM ∈ Ĥ2(M,R/Z) restricting to f on
every element of the cover O. We say that f descends to M . In the physical nomenclature,
the obstructions are often referred to as anomalies [GSW10].
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5.2. Equivariant Structures on G
The authors of [GSW13] establish a fundamental link between equivariant structures on the
action groupoid (formulated in terms of geometric realizations of differential characters – bun-
dle gerbes), including a weaker condition, in which a gerbe is equivariant up to a trivial gerbe
corresponding to a global differential 2-form, which is known to satisfy an extra condition of
multiplicativity to be defined (for more general Lie-groupoid) below. Here, we translate their
constructions to the language of differential characters, and we replace the action groupoid
by an arbitrary Lie groupoid.
We observe that any Lie groupoid comes with a structure of a simplicial manifold. In-
deed, since s, t are surjective submersions, the fibered product of composable morphisms
MorG t×s MorG t×s . . . t×s MorG is in fact a smooth manifold. This enables us to state the
following

Definition 5.2.1. Given a Lie groupoid G we construct a simplicial manifold ([GM02, Ch. I])
G• : ∆ → Man with the object component

Gn ≡


ObG n = 0,

MorG t×s MorG t×s . . . t×s MorG︸ ︷︷ ︸
n

n ̸= 0, (5.91)

and the morphism component fixed by a choice of the face and degeneracy maps. For n = 1

the face maps are d(1)0 = s and d(1)1 = t. For n > 1 we define them as

d
(n)
i : Gn → Gn−1 : (g1, g2, . . . , gn) 7→


(g2, g3, . . . , gn) i = 0,

(g1, . . . , gi ◦ gi+1, . . . , gn) 0 < i < n,

(g1, g2, . . . , gn−1) i = n.

(5.92)

The degeneracy maps are

s
(n)
i : Gn → Gn+1 : (g1, g2, . . . , gn) 7→ (g1, g2, . . . , gi, Id(t(gi)), gi+1, . . . , gn) (5.93)

for n > 0 and 0 ⩽ i ⩽ n, and s
(0)
0 = Id. From now on, we will use the shorthand notation G

for G1 = MorG.

Definition 5.2.2 ([BSS76]). The Bott-Shulman-Stasheff complex of a Lie groupoid G is the
double complex

...
...

...

Ω0(G2) Ω1(G2) Ω2(G2) · · ·

Ω0(G1) Ω1(G1) Ω2(G1) · · ·

Ω0(G0) Ω1(G0) Ω2(G0) · · · ,

δ2

d0

δ2

d1

δ2

d2

−d0

δ1

−d1

δ1

−d2

δ1

d0

δ0

d1

δ0

d2

δ0

(5.94)
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where the horizontal arrows are just signed components of the de Rham differential, while

δk :=
k+1∑
i=0

(−1)i
(
d
(k+1)
i

)∗
(5.95)

is the Dupont operator. We say that a form ρ ∈ Ωk(G) is multiplicative if δ1(ρ) = 0. Com-
paring with Definition 5.2.1, we see that this condition is equivalent to

m∗ρ = pr∗1ρ+ pr∗2ρ, (5.96)

where pri : G2 = MorG t×s MorG → MorG are the canonical projections. If ϕ ∈ Ωk+1(ObG)
is closed, we say that ρ ∈ Ωk(G) is ϕ-relatively closed if

dρ = δ0(ϕ), (5.97)

or, in other words, dρ = s∗ϕ − t∗ϕ. Note that a multiplicative ϕ-relatively closed form ρ
amounts to the condition that ρ + ϕ be a (k + 1)-cocycle with respect to the differential of
the total Bott-Shulman-Stasheff complex:

Dk =
k∑
i=0

(
δi + (−1)idk−i

)
. (5.98)

Definition 5.2.3. Given a multiplicative form ρ ∈ Ωk−1(G), we call a differential character
f ∈ Ĥk(ObG,R/Z) ρ-pre-equivariant if

s∗f − t∗f = i2([ρ]). (5.99)

By naturality of the map δ1, the following diagram is commutative:

Ĥk(G,R/Z) ΩkZ(G)

Ĥk(ObG,R/Z) ΩkZ(ObG),

δ1

δ0
Ĥk

δ1

δ0 (5.100)

where
δ0
Ĥk := Ĥk(s,R/Z)− Ĥk(t,R/Z). (5.101)

Now, since δ1 ◦ i2 = d, the commutativity of the above diagram shows that whenever f is
ρ-pre-equivariant, the form ρ is δ1(f)-relatively closed.

Remark 5.2.4. By the exactness of the sequence

0 → Ωk−1/Ωk−1
Z

i2−→ Ĥk( · ,R/Z) δ2−→ Hk( · ,Z) → 0 (5.102)

we observe that for any f ∈ Ĥk(M,R/Z), a form ρ ∈ Ωk(G) satisfying 5.99 exists if and only
if

δ2

(
δ0
Ĥk(f)

)
= 0. (5.103)

In other words, the characteristic class of δ0
Ĥk

(f) measures the obstruction to the pre-equivariance
of f . We will say that a character f satisfying 5.103 is relatively pre-equivariant.
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In order to define equivariant differential characters, we construct a double complex DC•
k(G•)T:

0 0 0

DC0
k(Gk) DC1

k(Gk) DC2
k(Gk) . . .

...
...

...

DC0
k(G2) DC1

k(G2) DC2
k(G2) . . .

DC0
k(G1) DC1

k(G1) DC2
k(G1) . . .

DC0
k(G0) DC1

k(G0) DC2
k(G0) . . .

0

(−1)kd

0

(−1)kd

0

δk−1 δk−1 δk−1

δ2

d

δ2

d

δ2

δ1

−d

δ1

−d

δ1

δ0

d

δ0

d

δ0

(5.104)

Definition 5.2.5. An equivariant differential character on G is a character f ∈ Ĥk(G0,R/Z),
whose class extends to a class in Hk

tot(DC•
k(G•)T). Given a multiplicative ρ ∈ Ωk−1(G), we say

that f is ρ-equivariant if one can extend any cocycle representing f to a cochain C in DC•
k(G•)T

whose total derivative is concentrated in DCkk(G1) and equals (0, ρ,dρ). This means that DC
equals

. . .

(0, 0, 0)

(0, ρ,dρ).

(5.105)

Remark 5.2.6. Any ρ-equivariant character f is also ρ-pre-equivariant. Indeed, let (c, h, ω) be
a cocycle representing f . Then, by Definition 5.2.5,

s∗(c, h, ω)− t∗(c, h, ω)− d(a, b, 0) = (0, ρ,dρ), (5.106)

where (a, b, 0) is the first step of the extension of (c, h, ω). Taking classes in cohomology
of both sides in 5.106 we see that s∗f − t∗f = i2([ρ]), as d(a, b, 0) is exact. Clearly, a 0-
equivariant character is just an equivariant character. In this sense, we generalize the notion
of equivariance of characters studied in [LM08b].

We will consider a special class of bisections, to which we will later reduce the structure group
of a principaloid bundle. We expect the rigid symmetries from B(G), modeled by the γi, to
preserve ωf , which has a concrete interpretation of the (Maxwell) field strength. We calculate

0
!
= (t ◦ β)∗ωf − ωf = (t ◦ β)∗ωf − (s ◦ β)∗ωf = β∗

(
t∗ωf − s∗ωf

)
. (5.107)

44



But for a ρ-pre-equivariant character this translates to (5.106):

0 = β∗(δ2(0, ρ,dρ)) = β∗dρ. (5.108)

In [GSW13], the distinguished bisections from Example 2.1.15 were used to model gauged
transformations. These can be shown to satisfy the stronger condition β∗ρ = 0. This moti-
vates us to restrict our attention to this class of bisections in what follows.

Lemma 5.2.7. Given a multiplicative form ρ ∈ Ωk(G), the set

Bρ(G) := {β ∈ B(G) : β∗ρ = 0} (5.109)

is a subgroup of B(G).

Proof. Since m ◦ (Id, Id) = Id, we get

Id∗ρ = Id∗ρ+ Id∗ρ, (5.110)

so Id∗ρ = 0 and Id ∈ Bρ(G). Now, let β1, β2 ∈ Bρ(G). We compute

(β1 · β2)∗ρ =
(
m ◦

(
β1 ◦ t ◦ β2, β2

))∗
ρ = (t ◦ β2)∗β∗1ρ+ β∗2ρ = 0. (5.111)

Finally, for β ∈ Bρ(G) we check(
β−1

)∗
ρ =

(
i ◦ β ◦ (t ◦ β)−1

)∗
ρ =

(
(t ◦ β)−1

)∗
β∗i∗ρ

=
(
(t ◦ β)−1

)∗
β∗

(
(m ◦ (i, idG))∗ρ− ρ

)
=

(
(t ◦ β)−1

)∗
β∗

(
Id∗ρ− ρ) = 0.

(5.112)

This completes the proof.

We will refer to elements of Bρ(G) as ρ-holonomic bisections. It is worth noting that holonomic
bisections play a role in the study of the structural relation [CSS12] between multiplicative
forms and the Spencer operators on Lie groupoids. The relation will be implicit in our con-
siderations below.

Proposition 5.2.8. Let G be a Lie groupoid equipped with a multiplicative form ρ ∈ Ωk(G).
Then for any β ∈ Bρ(G) we have C∗

βρ = ρ, where Cβ denotes the adjoint action of B(G) on G:

∀g ∈ G : Cβ(g) ≡ β(t(g)) ◦ g ◦ β(s(g))−1. (5.113)

Proof. Consider a map F : G → G s×t G s×t G given by

F (g) ≡
(
β(t(g)), g, β(s(g))−1

)
. (5.114)

The action Cβ(g) can be viewed as the composition (m(3) ◦F )(g), where m(3) = m◦(m× idG).
Thus, we have

C∗
βρ = (m(3) ◦ F )∗ρ = F ∗(m(3))∗ρ = F ∗(pr∗1ρ+ pr∗2ρ+ pr∗3ρ

)
, (5.115)

where the last equality follows from the multiplicativity of ρ. Indeed,

(m(3))∗ρ = (m× idG)
∗m∗ρ = (m× idG)

∗(pr∗1ρ+ pr∗2ρ) = pr∗1ρ+ pr∗2ρ+ pr∗3ρ. (5.116)

We compute
pr1 ◦ F = β ◦ t, (5.117)
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pr2 ◦ F = idG , (5.118)

pr3 ◦ F = i ◦ β ◦ s. (5.119)

This applies to ρ as follows:

(pr1 ◦ F )∗ρ = (β ◦ t)∗ρ = t∗β∗ρ = 0, (5.120)

(pr2 ◦ F )∗ρ = id∗Gρ = ρ, (5.121)

(pr3 ◦ F )∗ρ = (i ◦ β ◦ s)∗ρ = s∗β∗i∗ρ = s∗β∗(−ρ) = 0. (5.122)

These results yield
C∗
βρ = ρ. (5.123)

Whenever there exists a ρ-equivariant structure on G, we will consider another subgroup of
B(G).

Lemma 5.2.9 ([CSS12]). Let ρ ∈ Ωk(G) be a multiplicative form and let v1 ∈ (kerTs)g for
some g ∈ G. Then for any v2, . . . , vk ∈ TgG the following equality holds:

ρ(g)(v1, v2, . . . , vk)

= ρ
(
Id(t(g))

)(
Tgrg−1(v1), (Tt(g)Id ◦ Tgt)(v2), . . . , (Tt(g)Id ◦ Tgt)(vk)

)
.

(5.124)

Proof. We invoke the identity

T(g,h)m(vg, vh) = Thlg(vh) + Tgrh(vg). (5.125)

Note that, unlike for Lie groups, we must choose g and h to be composable, and we must
demand that (vg, vh) ∈ (kerTs)g ⊕ (kerTt)h ⊆ T(g,h)

(
G s×t G

)
. Otherwise, 5.125 is not

well-defined. Using 5.125, we express

v1 =
(
TId(t(g))rg ◦ Tgrg−1

)
(v1) = T(

Id(t(g)),g
)m(

Tgrg−1(v1), 0g
)
. (5.126)

Then, we differentiate
idG = m ◦

(
(Id ◦ t)× idG

)
(5.127)

to obtain
vj = T(

Id(t(g)),g
)m(

(Tt(g)Id ◦ Tgt)(vj), vj
)
, 2 ⩽ j ⩽ k. (5.128)

Equation 5.124 is obtained by acting with ρ on 5.126 and 5.128, and using the multiplicativity
of the ρ.

Lemma 5.2.10. Let ρ ∈ Ω1(G) be multiplicative, and let θR be the right-invariant Maurer-
Cartan form (Definition 2.2.18). Then, for every g ∈ G and v ∈ (kerTs)g, the following
equality holds:

Id∗
(
ι(ιR(θR(v)))ρ)(t(g)) = ρ(g)(v), (5.129)

where we make use of the isomorphism ιR introduced in 2.34 of Definition 2.2.16.

Proof. This follows by direct calculation and using Lemma 5.2.9:

Id∗
(
ι(ιR(θR(v)))ρ)(t(g)) = ρ(Id(t(g))

(
Tgrg−1(v)

)
= ρ(g)(v). (5.130)
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5.3. Constructing the DF-amplitude

If Σ is a compact, oriented and (cohomologically) closed1 n-dimensional smooth manifold,
then there exists a smooth triangulation of Σ, and the corresponding fundamental chain cΣ
is a smooth cycle [Hat02, 3.3]. Consequently, any smooth map ϕ ∈ C∞(Σ,M) induces a
smooth cycle ϕ∗cΣ ∈ Zn(M). Consider f ∈ Ĥn+1(M,R/Z), and

(
Σ, (M, g, H),MDF

)
be an

n-dimensional sigma model. Define the topological term of the DF-amplitude as

χωf
(ϕ) = f(ϕ∗cΣ). (5.131)

A physical justification for adopting the above form of the topological term of the DF-
amplitude follows from the condition imposed on χωf

by Definition 3.0.1. The postulate
of non-interaction of trajectories separated in the target space implies additivity (in U(1)) in
ϕ∗cΣ. The other condition is that the variational contribution of the topological term should
be

1

i
δ logχωf

(φ) = ϕ∗(ιδϕωf ). (5.132)

We model the variation on a smooth vector field δϕ ≡ V ∈ Γ(TM) and the corresponding
flow ΦtV . Let Kt(ϕ, cΣ) :=

{
(Φt

′
V ◦ ϕ)∗cΣ : 0 ⩽ t′ ⩽ t

}
and calculate:

d

dt

∣∣∣∣∣
t=0

log f
(
(ΦtV ◦ ϕ)∗cΣ

)
= lim

t→0

1

t

(
log f

(
(ΦtV ◦ ϕ)∗cΣ

)
− log f

(
ϕ∗cΣ

))
= lim

t→0

1

t
log f

(
∂
{
(Φt

′
V ◦ ϕ)∗cΣ : 0 ⩽ t′ ⩽ t

})
= lim

t→0

1

t

( ∫
Kt(ϕ,cΣ)

ωf

)
= ϕ∗ιV(ωf ).

(5.133)

The purpose of the gauging is to construct a gauge-invariant DF-amplitude on sections
of the shadow bundle F of a principaloid G-bundle for ObG = M . This is conceptually
motivated by Example 2.1.15 and the subsequent remark. The case when G is an action
groupoid and n = 2 was studied exhaustively in [GSW10] and [GSW13], and it is known
that, in that case, the bundle F coincides with a smooth realization P ×λM of the homotopy
quotient of [Car50] (see also [Tu20]).

1The assumtion of closedness for the spacetime Σ of the sigma model does not correspond to ordinary
trajectiories of the probe charge, but instead to compositions of cobordant trajectories in a model of Aharonov-
Bohm type experiment. We make the assumption for the sake of simplicity. The variant with spacetimes with
boundary calls for relative version of characters. See [RS09],[GSW13] for the 2-dimensional analogue.
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Conjecture 5.3.1. For any n ⩾ 1, let ρ ∈ Ωn(G) be a multiplicative form on a Lie groupoid
G and let f ∈ Ĥn+1(M,R/Z) be a ρ-pre-equivariant differential character on M = ObG. For
any principaloid G-bundle P ↠ Σ with compatible connection 1-form A and structure group
reduced to Bρ(G), there exists a gauge-invariant differential character fAi on the pullback of a
trivializing cover π−1

F O → F , satisfying δ0(fAi ) = 0. Its characteristic class is a pullback of
that of f .

Theorem 5.3.2. Conjecture 5.3.1 holds for n = 1.

Proof. Note that the form ρ induces the following morphism:

κ : Γ(ER) → C∞(M) : α 7→ Id∗
(
ιιR(α)(ρ)

)
, (5.134)

Let O =
⊔
i∈I Oi be a common trivializing cover of the base Σ for the bundles P and F , and let

π−1
F O be its pullback by πF . Fix a trivialization {Fτi} of F . Let {Ai ∈ Γ(pr∗1T

∗Oi⊗pr∗2ER)}
be the local connection data of A for O. We define forms ρAi ∈ Ω1(Oi ×M) by

ρAi(σ,m) = κ(m) ◦Ai(σ,m), (5.135)

which we will write, in a shorthand notation, as pr∗2κ ◦Ai.
We construct a collection of differential characters fAi (in what follows we write i2(ω) := i2([ω])
for any differential form ω). Over π−1

F (Oi), we set

fAi := (Fτi)∗
(
pr∗2f − i2(ρ

Ai)
)
∈ Ĥ2(π−1

F (Oi),R/Z). (5.136)

Our next goal is to show that these characters agree on intersections, so that δ0(fAi ) = 0.
Note that the characteristic class of fAi is

δ2(f
A
i ) = (pr2 ◦ Fτi)∗δ2(f), (5.137)

because im(i2) ⊆ ker(δ2). Consider an intersection π−1
F (Oij) = π−1

F (Oi) ∩ π−1
F (Oj). We

observe that Fτi ◦ Fτ−1
j

∣∣
Oij×M

= Λβij , where

Λβij =
(
pr1, t◦ev◦ (βij× idM )

)
: Oij×M → Oij×M : (σ,m) 7→

(
σ, (t◦βij(σ))(m)

)
, (5.138)

with βij : Oij → Bρ(G) being elements of the transition 1-cocycle of P. In order for

fAi = fAj (5.139)

over π−1
F (Oij), it suffices that

(Fτi)∗
(
pr∗2f − i2(ρ

Ai)
)∣∣
π−1
F (Oij)

= (Fτj)∗Λ∗
βij

(
pr∗2f − i2(ρ

Ai)
)∣∣
π−1
F (Oij)

!
= (Fτj)∗

(
pr∗2f − i2(ρ

Aj )
)∣∣
π−1
F (Oij)

,
(5.140)

which reduces to the condition that

Λ∗
βij

(
pr∗2f − i2(ρ

Ai)
)∣∣
Oij×M

=
(
pr∗2f − i2(ρ

Aj )
)∣∣
Oij×M

. (5.141)

We proceed with the calculation of the left-hand side:

Λ∗
βij

(
pr∗2f − i2(ρ

Ai)
)
= (t ◦ ev ◦ (βij × idM ))∗f − i2(Λ

∗
βij
ρAi)

= (ev ◦ (βij × idM ))∗t∗f − i2(Λ
∗
βij
ρAi)

= (ev ◦ (βij × idM ))∗s∗f − (ev ◦ (βij × idM ))∗i2(ρ)− i2(Λ
∗
βij
ρAi)

= (s ◦ ev ◦ (βij × idM ))∗f − i2
(
(ev ◦ (βij × idM ))∗ρ

)
− i2(Λ

∗
βij
ρAi)

= pr∗2f − i2
(
(ev ◦ (βij × idM ))∗ρ+ Λ∗

βij
ρAi

)
,

(5.142)
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where we use the ρ-pre-equivariance of f and the naturality2 of i2 (5.16). Clearly, it is enough
to show that

(ev ◦ (βij × idM ))∗ρ+ Λ∗
βij
ρAi = ρAj . (5.143)

Before continuing, note that while im
(
T(ev ◦ (βij × idM ))

)
⊈ kerTs, when we investigate the

decomposition into kerTs and its transverse:

T(σ,m)(ev ◦ (βij × idM ))(v, w) = Tσ(evm ◦ βij)(v) + Tmβij(σ)(w), (5.144)

where (v, w) ∈ TσOij⊕TmM ≃ T(σ,m)(Oij×M), the ρ-holonomicity of βij(σ) for any σ ∈ Oij
implies3 that only the first term in 5.144 gives a nonzero contribution to the pullback of the
1-form ρ by ev◦(βij×idM ). Now, we are ready to apply 2.42 to Λ∗

βij
ρAi . Let (σ,m) ∈ Oij×M ,

and compute

Λ∗
βij
ρAi(σ,m) = pr∗2

(
κ ◦ TId(m)Cβij(σ)

)
◦Aj(σ,m)− pr∗2

(
κ ◦ θR ◦ Tσ(evm ◦ βij)

)
= pr∗2

(
κ ◦ TId(m)Cβij(σ)

)
◦Aj(σ,m)− pr∗2

(
ρ ◦ Tσ(evm ◦ βij)

)
= pr∗2

(
κ ◦ TId(m)Cβij(σ)

)
◦Aj(σ,m)−

(
ev ◦ (βij × idM )

)∗
ρ,

(5.145)

where we used Lemma 5.2.10 and the remark about holonomicity.
Comparing the result in 5.145 with 5.143, we make yet another reduction

pr∗2
(
κ ◦ TId(m)Cβij(σ)

)
◦Aj(σ,m) = ρAj , (5.146)

Note that, by Proposition 5.2.8,

∀g ∈ G ∀v ∈ TgG ∀σ ∈ Oij : ρ(g)(v) = ρ(Cβij(σ)(g))(TgCβij(σ)(v)), (5.147)

so, in particular, for any m ∈M and w ∈ TmM , we have

ρ(Id(m))(TmId(w)) = ρ
(
(Cβij(σ) ◦ Id)(m)

)(
(TId(m)Cβij(σ) ◦ TmId)(w)

)
. (5.148)

Combining this with 2.37 we obtain

ρ
(
Id(m)

)(
TmId(w)

)
= ρ

(
Id
(
t(βij(σ)(m))

))(
(TId(m)Cβij(σ) ◦ TmId)(w)

)
, (5.149)

which proves 5.146. Thus, we managed to show that the local characters fAi agree on all
intersections. Next, we prove that fAi are gauge-invariant:

∀Φ ∈ Gauge(P) :
(
F∗(Φ)

∣∣
π−1
F (Oi)

)∗
fA

Φ

i = fAi . (5.150)

This follows simply from Proposition 2.2.21 and the fact that in 2.42 and 2.45 the maps βij
play essentially the same role as the γi, the equality on intersections being now replaced by the
equality on each element of the cover. Importantly, for each i ∈ I, we have im(γi) ⊆ Bρ(G).

Example 5.3.3. The naturality of i2 (5.16) implies that, whenever there exists B ∈ Ωn(M)
such that f = i2(B), the character f ρ-pre-equivariant, with ρ = δ0(B). Moreover, so defined
ρ is manifestly multiplicative, as δ1 ◦ δ0 = 0. This means that, for tensorial couplings, the
ρ-pre-equivariance is automatic.

2This follows from the formula
∫
c

f∗ω =
∫

f∗c
ω.

3The second term is of the kind β∗ρ, which is zero by ρ-holonomicity.
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Theorem 5.3.4. A differential character fAi ∈ Ĥ2(π−1
F O,R/Z) that descends to F induces

the topological term of a DF-amplitude MA
DF on Γ(F), which does not depend on the choice of

a fundamental cycle of Σ. Moreover, for any Φ ∈ Gauge(P), the character fAΦ

i also descends
to F , and the topological term MA

DF,top is gauge-invariant:

∀φ ∈ Γ(F) : MAΦ

DF,top(φ
Φ) = MA

DF,top(φ). (5.151)

Proof. Let fA ∈ Ĥ2(F ,R/Z) be the descended character, and let cΣ be a fundamental cycle
of Σ. We define MA

DF,top by

MA
DF,top(φ) := fA(φ∗cΣ) = φ∗fA(cΣ). (5.152)

By the exactness of

0 → H1(Σ,R/Z) → Ĥ2(Σ,R/Z) → Ω2
Z(Σ) → 0, (5.153)

and since Σ is 1-dimensional, the character φ∗fA is given by a class in cohomology of Σ with
coefficients in R/Z. It follows, that φ∗fA(cΣ) depends only on the fundamental class [cΣ],
that is–only on the topology of Σ. Now, let

(cAijk, 0, 0) 0

(cAij , h
A
ij , 0) 0

(cAi , h
A
i , ω

A
i ) 0

(5.154)

be a chosen cocycle representing fA. By 5.150, there exists (cΦi , h
Φ
i , 0) ∈ DC1

2((π
−1
F O)0) such

that

(F∗(Φ))
∗(cA

Φ

i , hA
Φ

i , ωAΦ

i ) :=
(
F∗(Φ))

∣∣
π−1
F (Oi)

)∗
(cA

Φ

i , hA
Φ

i , ωAΦ

i )

= (cAi , h
A
i , ω

A
i ) + d(cΦi , h

Φ
i , 0),

(5.155)

where (cA
Φ

i , hA
Φ

i , ωAΦ

i ) represents fAΦ

i . Thus, we may pick the cocycle

(cAijk, 0, 0)

(cAij , h
A
ij , 0) + δ0(cΦi , h

Φ
i , 0)

(F∗(Φ))
∗(cA

Φ

i , hA
Φ

i , ωAΦ

i ),

(5.156)

which is cohomologous to 5.154. Using the fact that F∗(Φ) is a vertical automorphism of F ,
we may pull back the above cocycle by F∗(Φ

−1) = F∗(Φ)
−1 and obtain a cocycle

(F∗(Φ
−1))∗(cAijk, 0, 0)

(F∗(Φ
−1))∗

(
(cAij , h

A
ij , 0) + δ0(cΦi , h

Φ
i , 0)

)
(cA

Φ

i , hA
Φ

i , ωAΦ

i ).

(5.157)
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We choose its global character as the descent of fAΦ

i . Again, by the verticality of F∗(Φ), the
local pullbacks commute through j with the global ones. We have constructed fAΦ such that

(F∗(Φ))
∗fA

Φ
= fA. (5.158)

Therefore, we compute

MAΦ

DF,top(φ
Φ) = fA

Φ(
(F∗(Φ) ◦ φ)∗cΣ

)
= (F∗(Φ))

∗fA
Φ
(φ∗cΣ) = fA(φ∗cΣ)

= MA
DF,top(φ).

(5.159)

Conjecture 5.3.5. For any n ⩾ 1, let ρ ∈ Ωn(G) be a multiplicative form on a Lie groupoid
G, and let f ∈ Ĥn+1(M,R/Z) be a ρ-equivariant differential character on M = ObG. For any
principaloid G-bundle P ↠ Σ with compatible connection 1-form A and structure group reduced
to Bρ(G), the differential character fAi from Theorem 5.3.2 descends to F in a canonical way.

Theorem 5.3.6. Conjecture 5.3.5 holds for n = 1.

Proof. We are going to utilize a simplicial manifold (Fτ)• : ∆ → Man induced by a trivializa-
tion Fτ : F → O×M , and the fact that it is isomorphic to (π−1

F O)•. The object component
of (Fτ)• is defined as

(Fτ)n = On ×M. (5.160)

The degeneracy maps are simply s
(n)
i × idM , where s

(n)
i are the degeneracy maps of O•.

To define face maps, recall the diffeomorphisms

On ≃
⊔
ī∈In+1

Oi0i1...in ī = (i0, . . . , in). (5.161)

We can write elements of On as (i0, . . . , in, x) with x ∈ Oi0i1...in . In this notation, we set

d
(n)
k : (Fτ)n → (Fτ)n−1 :

(i0, . . . , in, x,m) 7→

{
(i0, . . . , ik−1, ik+1, . . . , in, x,m) 0 ⩽ k ⩽ n− 1,

(i0, . . . , in−1,Λβin−1in
(x,m)) k = n,

(5.162)

where Λβij = Fτi ◦ Fτ−1
j are the transition maps 5.138. It is an easy check to verify that the

above maps satisfy simplicial identities (Definition A.0.23), making (Fτ)• into a simplicial
manifold. One uses the fact that O• is a simplicial manifold, leaving only the identities
involving d(n)n to be checked. But those follow from the cocyclicity of Λβij :

Λβik = Λβij ◦ Λβjk over Oijk. (5.163)

The isomorphism α : (Fτ)• → (π−1
F O)• has components

αn : (Fτ)n → (π−1
F O)n : (i0, . . . , in, x,m) 7→

(
i0, . . . , in,Fτ−1

in
(x,m)

)
. (5.164)

Each component is, clearly, an isomorphism, since the Fτi are isomorphisms onto their images.
To see that α is a map of simplicial manifolds, the only nontrivial check to be made is that

(Fτ)n−1 (Fτ)n

(π−1
F O)n−1 (π−1

F O)n

αn−1 αn

d
(n)
n

d
(n)
n

(5.165)
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commutes. We compute

αn−1 ◦ d(n)n (i0, . . . , in, x,m) = αn−1(i0, . . . , in−1,Λβin−1in
(x,m))

=
(
i0, . . . , in−1,Fτ−1

in−1
◦ Λβin−1in

(x,m)
)
=

(
i0, . . . , in−1,Fτ−1

in
(x,m)

)
= d(n)n ◦ αn(i0, . . . , in, x,m).

(5.166)

Now, let us consider a ρ-equivariant character f ∈ Ĥ2(M,R/Z). By Definition 5.2.5, it is
represented by a cochain

(d, 0, 0) 0

(a, b, 0) (0, ρ,dρ)

(c, h, ω) 0.

(5.167)

Replacing characters by their respective cocycles in 5.142, we obtain

Λ∗
βij

(
pr∗2(c, h, ω)− (0, ρAi , dρAi)

)
= (t ◦ ev ◦ (βij × idM ))∗(c, h, ω)− Λ∗

βij
(0, ρAi , dρAi)

= (ev ◦ (βij × idM ))∗t∗(c, h, ω)− Λ∗
βij

(0, ρAi ,dρAi)

= (ev ◦ (βij × idM ))∗s∗(c, h, ω)− (ev ◦ (βij × idM ))∗(0, ρ,dρ)− Λ∗
βij

(0, ρAi ,dρAi)

+(ev ◦ (βij × idM ))∗d(a, b, 0)

= pr∗2(c, h, ω)− (ev ◦ (βij × idM ))∗(0, ρ,dρ)− Λ∗
βij

(0, ρAi ,dρAi)

+(ev ◦ (βij × idM ))∗d(a, b, 0).

(5.168)

Following the proof of Theorem 5.3.2, we know that

(ev ◦ (βij × idM ))∗ρ+ Λ∗
βij
ρAi = ρAj , (5.169)

and so we conclude that

Λ∗
βij

(
pr∗2(c, h, ω)− (0, ρAi , dρAi)

)
= pr∗2(c, h, ω)− (0, ρAj , dρAj ) + (ev ◦ (βij × idM ))∗d(a, b, 0).

(5.170)

If we consider pr∗2(c, h, ω)− (0, ρAi , dρAi) as components of an element in DC2
2

(
(Fτ)0

)
, we see

that 5.170 translates to

δ0
(
pr∗2(c, h, ω)− (0, ρAi , dρAi)

)
= −d

(
(ev ◦ (βij × idM ))∗(a, b, 0)

)
, (5.171)

where δ0 is the Dupont operator for (Fτ)•. We view

(aij , bij , 0) := (ev ◦ (βij × idM ))∗(a, b, 0) (5.172)

as components of an element in DC1
2

(
(Fτ)1

)
. From the isomorphism (Fτ)• ≃ (π−1

F O)•, it is
clear that the next step is to calculate δ1(aij , bij , 0) and see whether it is exact in the relevant
Hopkins-Singer complex. We adopt the notation

gij := (ev ◦ (βij × idM )), (5.173)
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and
g̃ijk :=

(
gij ◦ Λβjk

∣∣
Oijk

, gjk
∣∣
Oijk

)
: Oijk ×M → G2. (5.174)

Moreover, in virtue of the multiplication law in B(G), we have m ◦ g̃ijk = gik. Now, we are
ready to compute:(

δ1(aij , bij , 0)
)
ijk

= (ajk, bjk, 0)− (aik, bik, 0) + Λ∗
βjk

(aij , bij , 0)

= (pr2 ◦ g̃ijk)∗(a, b, 0) + (pr1 ◦ g̃ijk)∗(a, b, 0)− (m ◦ g̃ijk)∗(a, b, 0)
= g̃∗ijk

(
pr∗2 + pr∗1 −m∗)(a, b, 0) = g̃∗ijkd(d, 0, 0) = d(g̃∗ijkd, 0, 0).

(5.175)

We conclude that
(
δ1(aij , bij , 0)

)
∈ d

(
DC0

2

(
(Fτ)2

))
. Therefore, the isomorphic pullback of

the above cocycle by α−1 : (π−1
F O)• → (Fτ)• defines a unique class in H2

tot

(
DC•

2

(
(π−1

F O)•
)
T

)
,

which descends to a character fA on F . The proof is complete.

Remark 5.3.7. Since the symmetry of the metric can be gauged through minimal coupling, de-
scribed in Chapter 5, under the assumptions of Conjecture 5.3.5, and upon further restriction
of the structure group to Bρ(G) ∩ Bg(G), one can canonically gauge the full sigma model.

For a ρ-equivariant character f ∈ Ĥ2(M,R/Z) and its cochain 5.167, the descended char-
acter fA takes the form

fA(zπ−1
F O + ∂v)

=

mz∑
j=1

(Fτ)∗ij
(
pr∗2h− ρAi

)
(zj) + (Fτ)∗ij

(
ev ◦ (βij′ ij × idM )

)∗
b mod Z+ ι(ωfA)(v)

(5.176)

where ωfA is the gluing of the (Fτi)∗
(
pr∗2ωf + dρAi

)
.

From the point of view of finding an explicit expression for MA
DF,top, it might be useful

to obtain the local data of φ∗fA on a convenient open cover of Σ. Note that since φ ∈ Γ(F),
we have

φ−1π−1
F O = (πF ◦ φ)−1O = O. (5.177)

We may use the canonical pullback map 5.52

φ : O• → π−1
F O• (5.178)

to pull back the cocycle in the total complex of DC•
2(π

−1
F (O)•)T. Indeed, the components

5.55 of φ are smooth, and thus induce chain maps

φ∗
k :=

(
φ×(k+1)

)∗
: DC•

2((π
−1
F O)k) → DC•

2(Ok). (5.179)

Moreover, since φ is a map of simplicial manifolds, the above pullbacks commute with δk of
the double complexes. Finally, the diagram

DC•
2((π

−1
F O)0) DC•

2(O0)

DC•
2(F) DC•

2(Σ),

φ∗
0

j∗

φ∗

(φ−1j)∗ (5.180)

where φ−1j is the covering map of the pullback cover, is commutative. We just showed that
we can pull back a class j∗[f ] ∈ H2

tot

(
DC•

2((π
−1
F O)•)T

)
by the simplicial map φ, and that the
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resultant class in H2
tot

(
DC•

2(O•)T
)

descends to φ∗[f ]. We will discuss the case where O is a
good cover. You can always find a finite good trivializing cover of Σ [BT82, Theorem 5.1.].
We consider the pullback

φ∗
2(c

A
ijk, 0, 0) 0

φ∗
1(c

A
ij , h

A
ij , 0) 0

φ∗
0(c

A
i , h

A
i , ω

A
i ) 0

(5.181)

in DC•
2(O•)T. For dimensional reasons, φ∗

0c
A
i = 0 = φ∗

0ω
A
i . The cocyclicity of 5.181 then

implies δ(φ∗
0hi) = 0, and so, by the goodness of O, we get φ∗

0hi = δbi, for bi ∈ C1(O0,R). Let
us add the coboundary of

(0, 0, 0)

(0, bi, 0)

(5.182)

to 5.181. We arrive at the following cocycle

(φ∗
2c

A
ijk, 0, 0) 0

(φ∗
1c

A
ij , φ

∗
1h

A
ij + bi − bj , 0) 0

(0, 0, 0) 0.

(5.183)

Again, by the cocyclicity and the goodness, we obtain φ∗
1c

A
ij = δdij , d ∈ C0(O1,Z). Adding

the coboundary of
(dij , 0, 0)

(0, 0, 0)

(5.184)

to 5.183 leads us to

(φ∗
2c

A
ijk + djk − dik + dij , 0, 0)

(0, φ∗
1h

A
ij + bj − bi + dij , 0)

(0, 0, 0).

(5.185)

The cocyclicity of 5.185 implies

φ∗
1h

A
ij + bj − bi + dij ∈ H0(O1,R) (5.186)
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and
φ∗
2(h

A
jk − hAik + hAij) = φ∗

2c
A
ijk. (5.187)

In particular, the amplitude MA
DF,top can be expressed as

MA
DF,top(φ) = φ∗fA(cΣ) =

mz∑
j=1

(
φ∗
1h

A
ij′ ij

+ bij − bij′
)
(d0zj) mod Z, (5.188)

where

cΣ =

mz∑
j=1

zj (5.189)

is a decomposition of a subordinate fundamental cycle into simplices. The data fixing the
amplitude is a Čech [BT82, Ch. II. §10] cocycle

(φ∗
1h

A
ij + bj − bi) ∈ Ž1(O,R/Z). (5.190)

Clearly, every Čech coboundary (δ0b′)ij for b′i ∈ Č0(O,R/Z) can be extended by zero to a
coboundary with respect to the total derivative of DC•

2(O•)T, and, thus, it does not affect
the character φ∗fA. In fact, we just provided an explicit construction of a map

Ĥ2(Σ,R/Z) → Ȟ1(O,R/Z) ≃ H1(Σ,R/Z), (5.191)

where the last isomorphism follows from Leray’s Acyclicity Theorem and the goodness of
O ([Bry07, 1.3.6.]). This map is an isomorphism, inverse to i1 in the short exact sequence
(5.153):

0 → H1(Σ,R/Z) → Ĥ2(Σ,R/Z) → Ω2
Z(Σ) → 0. (5.192)

In summary, the map fA 7→ φ∗fA factors through Ȟ1(Σ,R/Z) and 5.188 is the explicit form
of this factorization.

The differential-topological approach adopted in the present thesis proves itself useful and
arguably simpler than the one utilizing geometric realizations whose generalized holonomies
replace differential characters in defining the DF-amplitude. Although the category of iso-
classes of bundle gerbes is equivalent to the cocycle category of differential characters, there are
a few additional difficulties in applying the theory of the former to the gauging of groupoidal
symmetries. For once, in order to describe equivariant structures using Beilinson-Deligne
hypercohomology, one needs to choose particular refinements of the cover, the existence of
which is far from straightforward to prove. Moreover, an important tool, easily applicable
when working with differential characters, and which has not been used in the theory of
gauging so far, is the Subdivision Theorem. This theorem lies at the core of the proof of the
effective descent of characters given in this thesis. Finally, the language of defects can be
successfully translated to the language of (higher) stacks, providing an accessible bridge in
communication between theoretical physicists and mathematicians.
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Appendix A

Prerequisites in Homological and
Categorial Algebra, and Topology

Definition A.0.1. A chain complex of abelian groups is a graded abelian group
C• =

⊕
k∈ZCk together with a degree-(−1) endomorphism ∂ of C• satisfying ∂ ◦ ∂ = 0.

We call it the boundary operator for C•. A morphism of chain complexes is a degree-0 mor-
phism f : C• → D• of graded abelian groups which commutes with the boundary operators:
f ◦ ∂C = ∂D ◦ f . A cochain complex is defined analogously, but with the degree-(−1) bound-
ary replaced by a degree-1 coboundary δ. We also use an upper index C•. A morphism
of cochain complexes must commute with the coboundary operators. Chain complexes and
cochain complexes of abelian groups form categories denoted by Ch(Ab) and CCh(Ab),
respectively.

Definition A.0.2. We say that a chain (cochain) complex is exact if ker ∂ = im ∂ (ker δ = im δ).
We call the elements of ker ∂ (ker δ) cycles (cocycles) and the elements of im ∂ (im δ) bound-
aries (coboundaries).

Definition A.0.3. A functor F : Ab → Ab is called left exact if it sends any short exact
sequence

0 → A→ B → C → 0 (A.1)

in Ab into an exact sequence

0 → F (A) → F (B) → F (C). (A.2)

For a contravariant functor F : Abop → Ab, left exactness means that, for the short exact
sequence A.1, the following sequence is exact:

0 → F (C) → F (B) → F (A). (A.3)

Proposition A.0.4. For every abelian group A, the functor

HomZ( · , A) : C 7→ HomZ(C,A) (A.4)

is left exact.
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Definition A.0.5. A double cochain complex is a diagram C•,•:

...
...

. . . Cn,m+1 Cn+1,m+1 . . .

. . . Cn,m Cn+1,m . . . ,

...
...

δnh

δmv

δnh

δmv (A.5)

in which each row and each column is a complex and δv ◦ δh = −δh ◦ δv. Any double complex
defines the total complex

Tot(C•,•)n =
⊕
n=p+q

Cp,q, (A.6)

whose coboundary is
Dn =

∑
n=p+q

(
δpv + (−1)pδqh

)
. (A.7)

It is easy to check that D ◦ D = 0. We denote the cohomology of the total complex by
Hn

tot(C
•,•). By a cocycle resp. a coboundary in a double complex we mean a cocycle resp. a

coboundary relative to D.

Definition A.0.6. We say that chain complexes (C•, ∂C) and (D•, ∂D) are chain-homotopy
equivalent if there exist chain maps f : (C•, ∂C) → (D•, ∂D) and g : (D•, ∂D) → (C•, ∂C),
together with degree-1 morphisms of graded abelian groups hC : C• → C• and hD : D• → D•
satisfying

g ◦ f − idC• = ∂C ◦ hC + hC ◦ ∂C , (A.8)

and
f ◦ g − idD• = ∂D ◦ hD + hD ◦ ∂D. (A.9)

We then say that f ◦ g and g ◦ f are homotopic to identities.

Definition A.0.7. Homology is a functor H : Ch(Ab) → AbZ into the category of graded
abelian groups. It is defined on objects as

H(C•) = ker ∂/im ∂. (A.10)

This is well-defined since ∂ ◦∂ = 0. Similarly, cohomology is a functor H : CCh(Ab) → AbZ

defined on objects as
H(C•) = ker δ/im δ. (A.11)

We often consider a single degree. Then we write

(H(C•))n =: Hn(C•), (A.12)

resp.
(H(C•))n =: Hn(C•). (A.13)

For a chain map f : (C•, ∂C) → (D•, ∂D) and the canonical projection
πD : ker ∂D ↠ ker ∂D/im ∂D, the mapH(f) is defined as a factorization of πD◦f

∣∣
ker ∂C

through
ker ∂C/im ∂C . This factorization relies on the condition that chain maps commute with bound-
ary and coboundary maps.
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Proposition A.0.8. Chain-homotopy equivalences induce isomorphisms in homology/cohomology.

Definition A.0.9. A (smooth) singular n-simplex in a manifold M is a continuous (smooth)
map from the standard n-simplex

∆n := {(x0, . . . , xn) ∈ Rn+1
⩾0 : x0 + . . .+ xn = 1} (A.14)

to M . For n > 0 and 0 ⩽ i ⩽ n, we define faces of the standard n-simplex:

∆n
i := {(x0, . . . , xn) ∈ ∆n : xi = 0} ≃ ∆n−1. (A.15)

The faces of a singular simplex σ : ∆n →M are given as

diσ = σ
∣∣
∆n

i
: ∆n

i →M. (A.16)

We treat them as singular (n−1)-simplices. Denote by Cn(M) the free abelian group generated
by singular simplices in M . We construct a chain complex, called the singular chain complex,
by introducing a boundary operator:

∀σ ∈ Cn(M) : ∂σ =
n∑
i=0

(−1)idiσ ∈ Cn−1(M). (A.17)

It is an easy check that ∂ ◦ ∂ = 0. We denote

Zk(M) := ker
(
Ck(M)

∂−→ Ck−1(M)
)

Bk(M) := im
(
Ck+1(M)

∂−→ Ck(M)
)
, (A.18)

and the homology of C•(M) by Hn(M). For an abelian group Λ, we define a singular cochain
(of degree n) with values in Λ as a map c ∈ HomZ

(
Cn(M),Λ

)
. By linearity, they form a

graded abelian group of singular cochains, and we make it into a cochain complex by setting

δc(σ) = c(∂σ). (A.19)

It is clear that δ ◦ δ = 0. We denote

Zk(M,Λ) := ker
(
Ck(M,Λ)

δ−→ Ck+1(M,Λ)
)
, (A.20)

Bk(M,Λ) := im
(
Ck−1(M,Λ)

δ−→ Ck(M,Λ)
)
, (A.21)

and the cohomology of C•(M,Λ) by Hn(M,Λ). For n < 0 we set all the groups to zero.

Proposition A.0.10. Let M be a manifold and let

0 → A
i−→ B

p−→ C → 0 (A.22)

be a short exact sequence of abelian groups. Then, there exists a degree-1 morphism of graded
abelian groups

B : H•(M,C) → H•+1(M,A), (A.23)

called the connecting homomorphism or the Bockstein homomorphism, rendering the following
sequence exact

. . .→ Hk(M,A)
H(i)−−−→ Hk(M,B)

H(p)−−−→ Hk(M,C)
B−→ Hk+1(M,A) → . . . (A.24)
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Definition A.0.11. Let O = {Oi}i∈I be an open cover of a manifold M . We say that
a (smooth) singular chain c is subordinate to O if every simplex of c is supported in some
element of O. Denote by CO

• (M) the group of subordinate chains in M . It is clear that, upon
restricting ∂, the graded group CO

• (M) forms a chain complex.

Theorem A.0.12 ([Hat02, Proposition 2.21.]). The inclusion

ι : CO
• (M) ↪→ C•(M) (A.25)

is a chain-homotopy equivalence. In particular, there exists a map

ρ : C•(M) → CO
• (M) (A.26)

such that ρ ◦ ι and ι ◦ ρ are homotopic to identities. As a consequence, if z ∈ Zk(M), we can
write

(ι ◦ ρ)(z)− z = (∂ ◦ h)(z) + h(∂z) = ∂(h(z)), (A.27)

for some degree-1 morphism of abelian groups h : C•(M) → C•(M). Thus, the cycle z differs
from a subordinate cycle zO := (ι ◦ ρ)(z) by a boundary.

Lemma A.0.13. Let b ∈ Ck(M) be such that ∂b ∈ CO
k−1(M). Then, there exists b′ ∈ CO

k (M)
satisfying ∂b′ = ∂b.

Proof. We write down the homotopy

ρ ◦ ι− idCO
•
= ∂ ◦ h+ h ◦ ∂. (A.28)

Now, define b′ := ρ(b)− h(∂b). This lies in CO
k (M), since ∂b ∈ CO

k−1(M). We compute

∂b′ = ∂ρ(b)− ∂(h(∂b)) = ρ(∂b)−
(
(ρ ◦ ι− idCO

•
)(∂b)− h(∂(∂b))

)
= ρ(∂b)− ρ(ι(∂b)) + ∂b = ρ(∂b)− ρ(∂b) + ∂b = ∂b,

(A.29)

where we used the fact that ρ is a chain map, and that ι(∂b) = ∂b.

Proposition A.0.14. Every free abelian group C satisfies the following property. For every
epimorphism of abelian groups p : A ↠ B, and every morphism f : C → B, there exists a
morphism g : C → A satisfying f = p ◦ g. We say that every free abelian group is projective.

Definition A.0.15. An abelian group C is called injective if, for every monomorphism of
abelian groups j : A ↪→ B, and any morphism f : A→ C, there exists a morphism g : B → C
satisfying f = g ◦ j.

Proposition A.0.16. An abelian group C is called divisible if the following condition is
satisfied:

∀n ∈ N ∀c ∈ C ∃c′ ∈ C : nc′ = c, (A.30)

where by nc′ we understand the n-fold sum of c′. Any abelian group is divisible if and only if
it is injective.

Corollary A.0.17. The abelian groups R and R/Z ≃ U(1) are injective.
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Proposition A.0.18 (A special case of Universal Coefficient Theorem). Let M be a manifold
and let Λ be an injective abelian group. Then, the natural map

Hn(M,Λ) → HomZ
(
Hn(M),Λ

)
: [c] 7→

(
[σ] 7→ c(σ)

)
(A.31)

is an isomorphism. To see that the map is well-defined, note that, for σ ∈ Zn(M) and
c′ ∈ Cn(M,Λ), we have δc′(σ) = c′(∂σ) = 0, and that, for c ∈ Zn(M,Λ) and σ′ ∈ Cn(M),
we have c(∂σ′) = δc(σ′) = 0. In fact, the map A.31 gives rise to a natural isomorphism of
functors H•( · ,Λ) ≃ HomZ

(
H•( · ),Λ

)
.

Theorem A.0.19 (de Rham Theorem). Let Hn
dR(M) be the cohomology of the cochain com-

plex (Ω•(M),d) of differential forms with the exterior derivative. There is a natural isomor-
phism

Hn(M,R) ≃ Hn
dR(M) (A.32)

for all n ∈ N.

Definition A.0.20. When M is a connected orientable closed manifold of dimension n, the
top homology group Hn(M) ≃ Z, and an orientation is a choice of the generator. The chosen
generator is called the fundamental class of M . Any of its representatives c ∈ Zn(M) is called
a fundamental chain/cycle. For every n-form ω on M and every fundamental cycle c we have∫

c

ω =

∫
M

ω. (A.33)

In this manner, fundamental cycles correspond to integration over the whole manifold.

Proposition A.0.21. The constructions C•, Z•, B•, H• are covariant functors on Man. The
constructions C•( · ,Λ), Z•( · ,Λ), B•( · ,Λ), H•( · ,Λ),Ω•( · ,Λ), H•

dR( · ,Λ) are contravariant
functors on Man, and covariant functors in the coefficient group.

Definition A.0.22. A presheaf on a category C valued in a category D is a functor F : Cop →
D.

Definition A.0.23. The simplex category ∆ is a category whose objects are sets

[n] = {0, 1, . . . , n}, n ∈ N, (A.34)

and whose morphisms are order-preserving functions f : [n] → [m]. Every such map is a
composition of coface and codegeneracy maps. The coface maps are

δ
(n)
i : [n] → [n+ 1] : δ

(n)
i (k) =

{
k k < i

k + 1 k ⩾ i,
0 ⩽ i ⩽ n. (A.35)

The codegeneracy maps are

σ
(n)
i : [n] → [n− 1] : σ

(n)
i (k) =

{
k k ⩽ i

k − 1 k > i,
0 ⩽ i ⩽ n− 1. (A.36)

A simplicial object is a presheaf on ∆. Note that every simplicial object is defined by specifying
the object component and the images of coface and codegeneracy maps, which we call face
and degeneracy maps, respectively. For example, to specify a simplicial manifold M•, we fix
Mn = M•([n]), the maps d(n)i = M•

(
δ
(n)
i

)
, and the maps s(n)i = M•

(
σ
(n+1)
i

)
. In fact, one
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can show that different morphism components of a simplicial manifold with a fixed object
component are in a one-to-one correspondence with a collection of maps

d
(n)
i :Mn →Mn−1 s

(n)
i :Mn →Mn+1 (A.37)

satisfying the following simplicial identities, true, whenever well-defined:

1. d(n−1)
i ◦ d(n)j = d

(n−1)
j ◦ d(n)i for i < j,

2. d(n+1)
i ◦ s(n)j = s

(n−1)
j−1 ◦ d(n)i for i < j,

3. d(n+1)
i ◦ s(n)j = id if i = j or i = j + 1,

4. d(n+1)
i ◦ s(n)j = s

(n−1)
j ◦ d(n)i−1 for i > j + 1,

5. s(n−1)
i ◦ s(n)j = s

(n−1)
j+1 ◦ s(n)i for i ⩽ j.

A morphism of simplicial manifolds is a natural transformation φ :M• → N•.

Remark A.0.24. To every category C, one can associate a simplicial object N(C), called the
nerve of C, in the following manner. The object component is

N(C)n = {X0 → X1 → . . .→ Xn : Xi ∈ Ob C for 0 ⩽ i ⩽ n}, (A.38)

the set of composable arrows in C. The degeneracy maps of the nerve are

d
(n)
i : (X0 → . . .→ Xn) 7→ (X0 → . . .→ Xi−1 → Xi+1 → . . .→ Xn), (A.39)

where we obtain Xi−1 → Xi+1 by composing Xi−1 → Xi → Xi+1. The degeneracy maps are

s
(n)
i : (X0 → . . .→ Xn) 7→ (X0 → . . .→ Xi → Xi → Xi+1 → . . .→ Xn), (A.40)

where we insert the identity map Xi → Xi.
An example of a nerve of a category is the Čech nerve [GM02, Ch. I] of an open cover O of
M . The underlying category for that nerve is the Čech groupoid PairM (O), which is the pair
groupoid but with morphisms restricted to only those pairs (u1, u2) which map to the same
point in M under the covering map.

Theorem A.0.25 ([Ser92, LG 3.27]). Let M be a manifold and let ∼ be an equivalence
relation on M , with graph

R∼ M ×M

M M.

pr1

pr2 (A.41)

There exists a smooth structure on the quotient

M//∼ :=
{
[m]∼ : m ∈M

}
, (A.42)

compatible with the quotient topology, and such that π : M → M//∼ is a submersion, if and
only if the graph R∼ is a proper submanifold of M ×M and the restriction of the projection
pr1 :M ×M →M to R∼ is a submersion.
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