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Abstract

We develop the theory of differential cohomology with local coefficients. We formulate it
within the axiomatic approach introduced by J. Simons and D. Sullivan. We prove de Rham
theorem for invariant forms valued in local systems. We construct twisted differential char-
acters, generalizing the original construction by J. Cheeger and J. Simons, and serving as a
model for the twisted cohomology. We prove essential uniqueness of the twisted character
functor. Finally, we conjecture that twisted differential characters of arbitrary degree form
a stack over the category of smooth connected based manifolds. We prove the assertion for
degree-2 twisted differential characters.
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Introduction

Differential cohomology theory [HS05] provides a natural differential enhancement of the
singular cohomology of manifolds. It grew out of the classical subject of differential characters,
which already appears in the seminal work of Cheeger and Simons [CS85]. It has a well-known
axiomatic characterization due to Simons and Sullivan [SS07] as a simultaneous extension of
singular cohomology by “nonintegral” differential forms and of integral differential forms by
circle-valued cohomology which fits into a hexagonal character diagram. Together with the
four maps defined by that diagram, it forms a so-called character functor – a notion which
enhances that of contravariant functor from the category of smooth manifolds to that of
graded abelian groups. The axiomatic characterization given by Simons and Sullivan fixes
this functor up to unique natural isomorphism, thus giving an abstract description of Cheeger-
Simons characters.

Differential cohomology theory has numerous applications to manifold topology and math-
ematical physics. In the second realm, it allows for a convenient description of higher rank
gauge fields which arise in various physical models pertinent to supergravity, string theory and
topological field theory and turns out to be useful in problems pertaining to their quantization
(see, for example, [Sza12]).

In this thesis, we generalize differential cohomology theory to produce a natural differential
enhancement of the singular cohomology of manifolds with local coefficients. This generalized
theory, which we call differential cohomology with local coefficients, arises in mathematics
and physics problems which depend on systems of local coefficients – such as the study of
various versions of higher gauge theory which involve certain types of nonabelian gerbe twist.
Such situations abound in supergravity, string theory and topological field theory and have
deep connections with topological problems of “non-principal type” – i.e. those where the
fundamental group of a manifold plays a crucial role and hence forces the use of non-principal
obstruction theory [Bau06]. One of the simplest classes of examples of this kind is provided
by weakly-abelian gauge theories – defined as those ordinary nonabelian gauge theories whose
structure group is weakly abelian in the sense that its Lie algebra is abelian (such a Lie group
is generally disconnected and it is necessarily an extension of a discrete group by a connected
abelian Lie group). As shown in [LS22], weakly-abelian gauge theories play a crucial role
in the self-dual formulation of N=1 supergravity theory in four dimensions and hence are
of major interest for the problem of classifying configurations and solutions of such theories
(including solutions of so-called “U-fold type”). In the application to N = 1, supergravity,
the relevant structure group is an extension of an even-dimensional torus group U(1)2n by a
so-called modified Siegel modular group Spt(2n,Z), a certain arithmetic group which contains
the ordinary modular group Sp(2n,Z) as a subgroup. Irrespective of any physics applications,
this generalization of differential cohomology is mathematically natural and bound to have
numerous applications to various problems in manifold topology.

Below, we provide an axiomatic characterization of differential cohomology with local
coefficients which extends the Simons-Sullivan characterization of ordinary differential coho-
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mology. We also give an explicit construction of this theory using an appropriately “twisted”
version of Cheeger-Simons characters, which depend on a choice of a local coefficient system
on the underlying manifold. After giving the proofs of functoriality, essential unicity and
existence of this theory (the last of which is by construction of the twisted Cheeger-Simons
characters), we show that twisted differential characters of degree two form an appropriate
stack over the category of manifolds; this generalizes a result proved by Lerman and Malkin
[LM07] for ordinary differential cohomology. We then discuss some applications, focusing on
the motivating example of Dirac quantization in weakly abelian gauge theories and briefly
point out some connections to problems in physics and number theory.

The thesis is organized as follows. Chapter 1 briefly recalls the definition of Cheeger-
Simons characters [CS85] and the axiomatic characterization of ordinary differential coho-
mology due to Simons and Sullivan [SS07]. Chapter 2 discusses differential cohomology with
local coefficients. The chapter starts with a brief review of cohomology with local coefficients.
Section 2.1 explains the precise sense in which such a cohomology theory is functorial while
Section 2.2 discusses twisted de Rham cohomology for forms valued in a local coefficient
system and proves a corresponding version of the de Rham theorem.

Chapter 3 introduces and studies the twisted character functor, which generalizes the
ordinary character functor of [SS07] to differential cohomology with local coefficients. After
showing that twisted differential characters provide such a functor, we prove in Section 3.1
the relevant essential uniqueness theorem for differential cohomology with local coefficients.
In Section 3.2 give a cohomological description of twisted differential characters in terms of
an appropriate presheaf of cochain complexes, which generalizes a similar description given
by Hopkins and Singer for ordinary differential cohomology [HS05]. Using the presheaf of
cochain complexes, in Section 3.3 we constuct an appropriate double complex on the Čech
nerve of an open cover, and we prove that its total cohomology classifies twisted differential
characters of degree-2 on the covered manifold. This amounts to the effective descent of the
respective cocycle category, or in other words – “stackiness” of twisted differential characters
of degree-2. The generalization to arbitrary natural degree is conjectured. Some of our results
require restrictions on the coefficient group of the local coefficients, which we state explicitly.
Finally, Chapter 4 discusses briefly a few applications that illustrate the general theory. In
particular, in Section 4.2 we show how the theory of twisted differential characters applies to
weakly-abelian gauge theories.
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Chapter 1

Ordinary Differential Characters

We assume every manifold and every map between manifolds to be smooth. We will denote by
C• the graded abelian group of smooth singular chains, and by Z•, B• its respective subgroups
of smooth singular cycles and smooth singular boundaries respectively. We make use of the
fact, that there is a chain homotopy equivalence between the complex of smooth singular
chains and the complex of continuous singular chains [Lee00, Ch. 18]. We will denote by
AbZ the category of graded abelian groups.

Definition 1.0.1. Let M be a manifold. The graded subalgebra Ω•
Z(M) ⊆ Ω•(M) of differen-

tial forms with integer periods is composed of those closed differential forms, whose integrals
over every cycle lie in Z. That is,

Ωk
Z(M) :=

{
ω ∈ Ωk(M)

∣∣ dω = 0 ∧ ∀c ∈ Zk(M) :

∫
c

ω ∈ Z
}
. (1.1)

Remark 1.0.2. By de Rham’s Theorem, the classes [ω] ∈ Ωk
Z(M)/dΩk−1(M) are in isomor-

phism with the image of i∗ : Hk(M,Z) → Hk(M,R) in singular cohomology, induced by the
coefficient morphism i : Z ↪→ R.

Lemma 1.0.3. The map ι : Ω•(M) → C•(M,R/Z) given by

ι(ω)(c) :=

∫
c

ω mod Z (1.2)

is an injection.

Proof. Suppose 0 ̸= ω ∈ ker ι. Then ω(p) ̸= 0 for p in some coordinate chart (U, ϕ). In local
coordinates ϕ = (x1, . . . , xn) on U , the form ω is expressed as

ω(x) = f(x) dxi1 ∧ . . . dxik + . . . (1.3)

Without loss of generality, we may assume that f(p) ̸= 0. By the continuity of f , there exist
δ > 0 and ε > 0 such that we can fit an n-cube

K = {x : |xj − pj | ⩽ ε, 1 ⩽ j ⩽ dimM} ⊆ U ∩ {x : |f(x)| ⩾ δ}. (1.4)

Consider a smooth k-simplex σ : ∆k →M defined in local coordinates as

σ(t1, . . . , tk) = ϕ−1(p1, . . . , pi1−1, pi1 + εt1, pi1+1, . . . , pik−1, pik + εtk, . . . , pn). (1.5)
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Clearly, σ(∆k) ⊆ K. The pullback of ω calculates as

σ∗ω =
(
f ◦ σ(t)

)
εk dt1 ∧ . . . ∧ dtk. (1.6)

We obtain ∫
σ

ω =

∫
∆k

(
f ◦ σ(t)

)
εk dt1 ∧ . . . ∧ dtk. (1.7)

Since
∣∣f ◦ σ(t)

∣∣ ⩾ δ on ∆k, we get an estimate∣∣∣∣∫
σ

ω

∣∣∣∣ ⩾ δ
εk

k!
. (1.8)

Combining this with another estimate∣∣∣∣∫
σ

ω

∣∣∣∣ ⩽ sup
x∈K

|f(x)|ε
k

k!
, (1.9)

which is finite by the compactness of K, we conclude that for sufficiently small ε > 0:

0 <

∣∣∣∣∫
σ

ω

∣∣∣∣ < 1, (1.10)

which contradicts the assumption that the value of any such integral lies in Z.

Corollary 1.0.4. In Definition 1.0.1 one does not have to assume the closedness of ω.

Proof. Let ω ∈ Ωk(M) be such that

∀c ∈ Zk(M) :

∫
c

ω ∈ Z. (1.11)

Then, by Stokes Theorem, for any c′ ∈ Ck+1(M) we have∫
∂c′

ω =

∫
c′

dω ∈ Z, (1.12)

and thus, dω = 0, by an argument similar to the one leading to 1.10.

Definition 1.0.5 ([CS85]). Let M be a manifold. The abelian group differential characters
of degree k ∈ Z>0 is defined as

Ĥk(M,R/Z) :=
{
f ∈ HomZ

(
Zk−1(M),R/Z

) ∣∣ ∃ ωf ∈ Ωk(M) : f ◦ ∂ = ι(ωf )
}
. (1.13)

That is, for any c ∈ Ck(M) we have

f(∂c) =

∫
c

ωf mod Z. (1.14)

It is clear from the construction that ωf ∈ Ωk
Z(M). Lemma 1.0.3 implies that ωf is uniquely

determined by f . Moreover, the assignment M 7→ Ĥk(M,R/Z) is functorial. Indeed, for a
map h :M → N we have

∀f ∈ Ĥk(N,R/Z) : f ◦ h∗ ◦ ∂ = f ◦ ∂ ◦ h∗ = ι(ωf ) ◦ h∗ = ι(h∗ωf ). (1.15)
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Definition 1.0.6 ([SS07]). A character functor is a 5-tuple (Ĝ•, i1, i2, δ1, δ2), where

Ĝ• : Manop → AbZ, (1.16)

and i1, i2, δ1, δ2 are natural transformations rendering the following character diagram com-
mutative, and its diagonal sequences exact for each k ∈ Z>0:

0 0

Hk−1( · ,R/Z) Hk( · ,Z)

Hk−1( · ,R) Ĝk Hk( · ,R)

Ωk−1/Ωk−1
Z Ωk

Z

0 0.

−B

i1 rα

β

δ2

δ1

d

i2
s

(1.17)

The maps α,B, r are obtained from the long exact sequence

. . .→ Hk( · ,Z) r−→ Hk( · ,R) α−→ Hk( · ,R/Z) B−→ Hk+1( · ,Z) → . . . (1.18)

associated to the coefficient short exact sequence of abelian groups 0 → Z → R → R/Z → 0,
and β,d, s are defined as follows. The map β-by

Hk−1( · ,R) ≃−→ Hk−1
dR ( · ) ↪→ Ωk−1/dΩk−2 ↠ Ωk−1/Ωk−1

Z , (1.19)

using de Rham Theorem, and the fact that dΩk−2 ⊆ Ωk−1
Z . Since dΩk−1

Z = 0, the de Rham
differential is well-defined on classes in Ωk−1/Ωk−1

Z . Finally,

s : Ωk
Z ↪→ ker dk ↠ ker dk/dΩk−1 = Hk

dR( · )
≃−→ Hk( · ,R). (1.20)

Proposition 1.0.7 ([SS07]). The differential characters Ĥ• substituted for Ĝ• fit into the
character diagram, and, as such, form a character functor together with appropriate natural
transformations i1, i2, δ1, δ2.

Proof. Fix a manifold M and let f ∈ Ĥk(M,R/Z). We begin by defining δ1(f) := ωf .
Naturality of this assignment follows from 1.15. For surjectivity, let ω ∈ Ωk

Z(M) be arbitrary.
Define

f(c) =

{
ι(ω)(b) c = ∂b ∈ Bk−1(M)

0 otherwise.
(1.21)

Then, δ1(f) = ω. Since R/Z is a divisible group, and thus an injective abelian group, Universal
Coefficient Theorem asserts

Hk−1(M,R/Z) ≃ HomZ
(
Hk−1(M),R/Z

)
. (1.22)

Therefore, by the left exactness of the left hom-functor, the canonical projection in the short
exact sequence

0 → Bk−1(M) ↪→ Zk−1(M) ↠ Zk−1(M)/Bk−1(M) = Hk−1(M) → 0 (1.23)
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induces the inclusion

Hk−1(M,R/Z) ≃ HomZ
(
Hk−1(M),R/Z

)
↪→ HomZ

(
Zk−1(M),R/Z

)
. (1.24)

This gives the map i1 : Hk−1(M,R/Z) ↪→ Ĥk(M,R/Z). Indeed, by construction for any
[r] ∈ Hk−1(M,R/Z) and any ∂b ∈ Bk−1(M) we have

i1([r])(∂b) = δr(b) = 0. (1.25)

Therefore, by Universal Coefficient Theorem and the left exactness of the hom-functor, the
image of i1 corresponds to differential characters with zero curvature. In other words, im(i1) =
ker(δ1).
The restriction

res : Ck−1(M,R/Z) = HomZ
(
Ck−1(M),R/Z

)
→ HomZ

(
Zk−1(M),R/Z

)
(1.26)

composed with ι gives a map

res ◦ ι : Ωk−1(M) → HomZ
(
Zk−1(M),R/Z

)
, (1.27)

whose kernel is composed of those (k−1)-forms, which integrate to integers on cycles. This is
precisely Ωk−1

Z (M) (Corollary 1.0.4). Note that, by Stokes Theorem, for any ∂b ∈ Bk−1(M),
we have

(res ◦ ι)(ω)(∂b) = ι(dω)(b). (1.28)

Thus, res ◦ ι defines a map to Ĥk(M,R/Z). We define i2 as its factorization through
Ωk−1(M)/Ωk−1

Z (M), which is manifestly injective. Moreover, 1.28 proves commutativity of
the bottom triangle in 1.17.
In order to define δ2 consider the following diagram:

R R/Z

Ck−1(M)

Zk−1(M).

T

ff̃

(1.29)

Given f ∈ Ĥk(M,R/Z), we use the fact that Zk−1(M) is a free abelian group to lift f to f̃ .
Then, we use the injectivity of R as an abelian group to factor f̃ through Ck−1(M), and we
call this factorization T . Observe that for any c ∈ Ck(M) we get

δT (c) mod Z = T (∂c) mod Z = f̃(∂c) mod Z = f(∂c) = ι(ωf )(c) = ωf (c) mod Z, (1.30)

where after the last equality we treat ωf as a cochain given by integration, i.e.,

ωf 7→
(
c 7→

∫
c

ωf

)
. (1.31)

Therefore, under this identification, ωf − δT ∈ Ck(M,Z) and it is closed, since ωf is closed.
Indeed, by de Rham Theorem, the cochain associated to ωf is closed if and only if ωf is
d-closed. Moreover, if T ′ is another map making 1.29 commutative, we compute

(T − T ′)
∣∣
Zk−1(M)

= f̃ − f̃ = 0 ⇒ T − T ′ = δd, d ∈ Ck−2(M,R). (1.32)
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Here, we used Universal Coefficient Theorem to infer from T −T ′ = 0 in HomZ
(
Hk−1(M),R

)
the equality [T − T ′] = 0 in Hk−1(M,R). If we pick a different lift f̃ ′, we get f̃ ′ − f̃ mod Z =
f − f = 0, so f̃ − f̃ ′ = c

∣∣
Zk−1(M)

for some c ∈ Ck−1(M,Z). We conclude that in general

T − T ′ = δd+ c ⇒ δ(T − T ′) = δc. (1.33)

This means that the cohomology class [ωf − δT ] ∈ Hk(M,Z) depends only on f . We define
δ2(f) := [ωf − δT ].
To see that it is surjective, let [u] ∈ Hk(M,Z) be arbitrary. By
Remark 1.0.2, there exists ω ∈ Ωk

Z(M) with [ω] = i∗[u] under indentification by de Rham’s iso-
morphism. Then, since [ω−i∗u] = 0, for any representative u, the cochain ω−i∗u ∈ Ck(M,R)
is exact, so we can find T ∈ Ck−1(M,R) with δT = ω− i∗u. By postcomposing the restricted
cochain T

∣∣
Zk−1(M)

with the natural projection R ↠ R/Z, we obtain

f ∈ HomZ
(
Zk−1(M),R/Z

)
, f ◦ ∂ = ι(ω), (1.34)

a differential character, which satisfies δ2(f) = [u]. Indeed, we have ω − δT = i∗u by con-
struction.
Now, suppose δ2(f) = 0, that is [ωf − δT ] = 0. Since δT is exact, using de Rham Theorem,
we infer that

∃θ ∈ Ωk−1(M) : dθ = ωf , (1.35)

and
∃e ∈ Ck−1(M,Z) : ωf − δT = δe. (1.36)

We calculate δ(θ − T − e) = 0, so there exists ζ ∈ Zk−1(M,R) such that

θ − T − e = ζ. (1.37)

By de Rham Theorem we can find

ϕ ∈ Ωk−1(M) : (θ − T − e)
∣∣
Zk−1(M)

= ϕ
∣∣
Zk−1(M)

. (1.38)

We have T
∣∣
Zk−1(M)

= (θ − ϕ − e)
∣∣
Zk−1(M)

. By postcomposing both sides with the natural
projection R ↠ R/Z, we obtain f = ι(θ − ϕ)

∣∣
Zk−1(M)

= ι(θ − ϕ)
∣∣
Zk−1(M)

= i2(θ − ϕ), as e
is Z-valued. Hence, f ∈ im(i2). We conclude that both diagonal sequences are exact. We
proceed by checking commutativity of the left side of the character diagram.
Since i2 was defined as a factorization of res ◦ ι through the quotient by its kernel, let
[r] ∈ Hk−1(M,R) and let us pick a representative ω ∈ Ωk−1(M) of β([r]) within the class
in Ωk−1(M)/Ωk−1

Z (M). Then, (i2 ◦ β)([r]) = (res ◦ ι)(ω). Using Universal Coefficient Theo-
rem, we identify α with

Hk−1(M,R) Hk−1(M,R/Z)

HomZ
(
Hk−1(M),R

)
HomZ

(
Hk−1(M),R/Z

)≃

α

≃

π∗

(1.39)

Now, it follows from de Rham Theorem that

(res ◦ ι)(ω) = pr∗ ◦ π∗([r]) = (i1 ◦ α)([r]), (1.40)
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where pr : Zk−1(M) ↠ Hk−1(M) of 1.23 was used to define i1.
We already showed under 1.28 that the bottom triangle commutes. The top triangle commutes
by the construction of δ2 above, where taking f ∈ im(i1) implies ωf = 0 by exactness of
the diagonal sequence in 1.17, and we recover the usual connecting homomorphism −B.
Finally, the right side of the diagram commutes by Remark 1.0.2, since, by construction,
r(δ2(f)) = r([ωf − δT ]) = [ωf ] ∈ Hk(M,R). The naturality of δ1 follows from 1.15. The
map i2 is a natural transformation by the change of variables formula for integrals. Pullbacks
and pushforwards induce natural transformation for groups of cochains, hence i1 is a natural
transformation. Finally, δ2 was built using universal constructions, so it is also natural.

Theorem 1.0.8 ([SS07]). For any character functor (Ĝ•, i1, i2, δ1, δ2) there exists a unique
natural isomorphism Φ : Ĝ• → Ĥ•( · ,R/Z), which commutes with identity transformations
on all other functors in the diagram. In other words, the diagram formed by two charac-
ter diagrams–corresponding to Ĝ• and Ĥ•–connected with identity transformations and Φ is
commutative.

We do not provide the proof, which we are about to generalize in Section 3.1.
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Chapter 2

Differential Cohomology with Local
Coefficients

There are numerous equivalent approaches to cohomology with local coefficients. In this
thesis, we adopt the so called “modular approach”. For a broader overview of cohomology
with local coefficients and the proofs of equivalence see [Hat02, 3.H.].

Definition 2.0.1 ([DK01, Ch. 5.]). Let π1(M) := π1(M, q) be the fundamental group of a
connected based smooth manifold (M, q). Denote by Zπ1(M) the induced group ring and let
A be a left Zπ1(M)-module. Consider the universal covering

p : M̃↠M (2.1)

and a smooth singular chain complex C•(M̃). Note that C•(M̃) carries a natural structure of a
left Zπ1(M)-module: for σ ∈ Ck(M̃) and g ∈ π1(M), we define g ·σ as Θ(g)◦σ ∈ C∞(∆k, M̃),
where Θ : π1(M)

≃−→ Deck(p) is the canonical isomorphism [Hat02, 1.3.]. This can be extended
to a Z-linear map. Importantly, the action of Zπ1(M) commutes with the boundary operation
∂ on C•(M̃). This makes it possible to define the cochain complex

C•(M ;A) := HomZπ1(M)

(
C•(M̃), A

)
. (2.2)

The cohomology of this complex is called the cohomology of M with local coefficients in A
and is denoted by H•(M ;A). We will also denote by Z•(M ;A) the subcomplex of closed
cochains, and by B•(M ;A) the subcomplex of exact cochains.

Remark 2.0.2. If we wish to emphasize the homomorphism ρ : π1(M) → AutZ(A) making
the abelian group A into a Zπ1(M)-module, we write H•(M ;Aρ), and call it the cohomology
of M twisted by ρ. If ρ is the trivial homomorphism, the map p• : C•(M̃) → C•(M) induces
a chain isomorphism HomZ

(
C•(M), A

) ≃−→ HomZπ1(M)

(
C•(M̃), A

)
, since Deck(p) acts freely

and transitively on the fibers of p. Therefore, in this case, H•(M ;Aρ) becomes the usual
cohomology of M with coefficients the abelian group A.

Lemma 2.0.3. Let
0 → Λ

i−→ A
p−→ A/Λ → 0 (2.3)

be a short exact sequence in Zπ1(M)-Mod. It induces a long exact sequence in cohomology of
M with local coefficients

. . .→Hk−1(M ;A/Λ)→Hk(M ; Λ)→Hk(M ;A)→Hk(M ;A/Λ)→Hk+1(M ; Λ)→ . . . (2.4)
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Proof. Since the maps i, p are Zπ1(M)-maps, they induce chain maps between the respective
cochain complexes. Moreover, the chain maps form a short exact sequence, because each
Ck(M̃) is a free Zπ1(M)-module. We have

0 → C•(M ; Λ) → C•(M ;A) → C•(M ;A/Λ) → 0. (2.5)

Hence, we obtain the long exact sequence in cohomology associated to the sequence of com-
plexes [Wei94, 1.3].

2.1. Functoriality

From now on, we assume all manifolds to be connected. In particular we will denote by Man∗
the category of based connected manifolds. One can extend the action deck transformations
trivially to other connected components of M̃ , but if the homomorphism ρ : π1(M) → AutZ(A)
is nontrivial, there is an isomorphism

HomZπ1(M)

(
C•(M̃), A

)
≃ HomZπ1(M)

(
C•(M̃∗), A

)
, (2.6)

where M̃∗ is the universal covering of the connected component of the chosen q ∈ M . This
makes the extension to disconnected manifolds uninteresting. In order to describe the functo-
riality of H•, note that for a fixed based manifold (M, q), any morphism of Zπ1(M)-modules
φ : A→ B, induces a chain map

HomZπ1(M)

(
C•(M̃), A

) φ∗−→ HomZπ1(M)

(
C•(M̃), B

)
, (2.7)

and thus, a morphism in cohomology. Therefore, each based manifold (M, q) corresponds to
a functor

FM : Zπ1(M)-Mod → AbZ. (2.8)

Let (M, qM ) → (N, qN ) be a map of based manifolds. By the lifting property of universal
coverings [Hat02, 1.3.], there exist functors

˜( · ) : Man∗ → Man∗ : (M, qM ) 7→ (M̃, q̃M ), (2.9)

parametrized by the choice of q̃M ∈ p−1(qM ). However, under the composition C• ◦ ˜( · ), any
two such functors are naturally isomorphic via an appropriate deck transformation. Moreover,
we can make use of the functor Zπ1-Mod : Manop

∗ → Cat, which sends a map of based
manifolds f : (M, qM ) → (N, qN ) to the functor

Zπ1-Mod(f) : Zπ1(N)-Mod → Zπ1(M)-Mod (2.10)

defined as the restriction of scalars for the morphism Zπ1(f) : Zπ1(M) → Zπ1(N). We argue
that the map f gives rise to a natural transformation

FN
H•

ch(ξ(f))======⇒ FM ◦ Zπ1-Mod(f). (2.11)

Pick A ∈ Zπ1(N)-Mod. We define

HomZπ1(N)

(
C•(Ñ), A

) ξ(f)A−−−→ HomZπ1(M)

(
C•(M̃),Zπ1-Mod(f)(A)

)
(2.12)

by setting
ξ(f)A(ψ)(σ) ≡ ψ(f̃∗σ) ∈ Zπ1-Mod(f)(A) (2.13)
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for σ ∈ Ck(M̃). To check equivariance we take g ∈ π1(M) and compute

ξ(f)A(ψ)(ΘM (g)∗σ) = ψ(f̃∗ΘM (g)∗σ) = ψ
(
(f̃ ◦ΘM (g))∗σ

)
= ψ

((
ΘN (π1(f)(g)) ◦ f̃

)
∗σ

)
= ψ

(
ΘN

(
π1(f)(g)

)
∗f̃∗σ

)
= π1(f)(g) · ψ(f̃∗σ),

(2.14)

where we used the lifting property of universal coverings again. By functoriality of Zπ1-Mod,
for any φ ∈ HomZπ1(N)(A,B) the diagram

HomZπ1(N)

(
C•(Ñ), A

)
HomZπ1(M)

(
C•(M̃),Zπ1-Mod(f)(A)

)
HomZπ1(N)

(
C•(Ñ), B

)
HomZπ1(M)

(
C•(M̃),Zπ1-Mod(f)(B)

)φ∗

ξ(f)A

(
Zπ1-Mod(f)(φ)

)
∗

ξ(f)B

(2.15)

is commutative, so ξ(f) is indeed a natural transformation. It is also clear that each ξ(f)A
is a chain map. Therefore, one can apply the chain cohomology functor1 H•

ch to obtain the
desired transformation. With the above data, we can construct a functor. Let∫

Manop
∗

Zπ1-Mod (2.16)

be the category of elements of Zπ1-Mod. That is, a category whose objects are pairs(
(M, q), A

)
with (M, q) ∈ Manop

∗ and A ∈ Zπ1-Mod((M, q)) = Zπ1(M)-Mod, and whose
morphisms are pairs

(f̄ , φ) :
(
(N, qN ), B

)
→

(
(M, qM ), A

)
, (2.17)

where f̄ ∈ HomManop
∗

(
(N, qN ), (M, qM )

)
and φ ∈ HomZπ1(M)

(
Zπ1-Mod(f̄ )(B), A

)
. From

now on, we will use the bar notation to denote morphisms in the opposite category. The law
of composition in

∫
Manop

∗
Zπ1-Mod is the following: for

(h̄, ψ) :
(
(M, qM ), A

)
→

(
(N, qN ), B

)
(2.18)

and
(f̄ , φ) :

(
(N, qN ), B

)
→

(
(P, qP ), C

)
(2.19)

we set
(f̄ , φ) ◦ (h̄, ψ) ≡

(
f̄ ◦ h̄, φ ◦ Zπ1-Mod(f̄ )(ψ)

)
. (2.20)

Finally, let us define the functor

H•
0 :

∫
Manop

∗

Zπ1-Mod → AbZ. (2.21)

We already know the definition on objects. We set

H•
0 (f̄ , φ) ≡ φ∗ ◦H•

ch(ξ(f)B) :

H•
0 (N ;B)

H•
ch(ξ(f)B)

−−−−−−−→ H•
0 (M ;Zπ1-Mod(f̄)(B))

φ∗−→ H•
0 (M ;A).

(2.22)

Obviously, H•
0 (id(M,q), idA) = idH•

0 (M ;A). The preservation of composition can be stated as
follows:(

φ ◦ Zπ1-Mod(f̄ )(ψ)
)
∗ ◦H•

ch

(
ξ(f ◦ h)A

)
= φ∗ ◦H•

ch

(
ξ(f)B

)
◦ ψ∗ ◦H•

ch

(
ξ(h)A

)
. (2.23)

1Not to confuse with the cohomology functor being described.
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This reduces to

H•
ch

(
ξ(f)B

)
◦ ψ∗ = Zπ1-Mod(f̄ )(ψ) ◦H•

ch

(
ξ(f)Zπ1-Mod(h̄)(A)

)
, (2.24)

which is precisely the naturality condition for H•
ch

(
ξ(f)

)
, which we have already proved.

Therefore, we have given the cohomology with local coefficients a functor structure. However,
the functor structure described above does not yet exhaust the topological content. Let us fix(
(M, q), A

)
∈
∫
Manop

∗
Zπ1-Mod. It makes sense to define H•(U ;A) for U ⊆M as cohomology

of HomZπ1(M)

(
C•(p

−1(U)), A
)
, where the action on σ ∈ Ck(p

−1(U)) is

g · σ ≡ Θ(g)
∣∣
p−1(U)

◦ σ. (2.25)

This is well defined, because p ◦ Θ(g) = p for any g. In other words, the action by deck
transformations preserves fibers. Moreover, a map i : V ↪→ U gives rise to the inclusion

p−1(V ) ↪→ p−1(U), (2.26)

which induces a Zπ1(M)-equivariant chain map

C•(p
−1(V ))

i∗−→ C•(p
−1(U)). (2.27)

Using 2.27 we define the cochain map

C•(U ;A) :=HomZπ1(M)

(
C•(p

−1(U)), A
) i∗−→ HomZπ1(M)

(
C•(p

−1(V )), A
)
=:C•(V ;A). (2.28)

Also, it is obvious that for

W
j
↪−→ V

i
↪−→ U (2.29)

we have (i ◦ j)∗ = j∗ ◦ i∗. Applying H•
ch, we obtain a functor Top(M)op → AbZ, where

Top(M) is the category of open subsets of M and inclusions. We will refer to this structure
as the presheaf structure. The crucial observation is that the two functor structures are
compatible, in the following sense. Let

(f̄ , φ) :
(
(N, qN ), B

)
→

(
(M, qM ), A

)
, (2.30)

and take any open V ⊆ N . Examining 2.12 and 2.13, we see that ξ(f)A restricts to

HomZπ1(N)

(
C•(p

−1
N (V )), A

) ξ(f)A

∣∣
V−−−−−→HomZπ1(M)

(
C•

(
f̃−1(p−1

N (V ))
)
,Zπ1-Mod(f)(A)

)
= HomZπ1(M)

(
C•

(
p−1
M (f−1(V ))

)
,Zπ1-Mod(f)(A)

)
,

(2.31)

where pM , pN denote the respective universal covering maps. Moreover, upon restricting the
actions of Zπ1(M) and Zπ1(N) as in 2.25, the restrictions ξ(f)A

∣∣
V

compose a natural trans-
formation in the sense of 2.15, and the restriction of 2.22 to open V preserves compositions.
Thus, we have just obtained an extension of the functor H•

0 . That is, together with H•(U ;A)
for open subsets U ⊆M , a collection of maps

H•
0 (f̄ , φ)V : H•(V ;B)

H•
ch

(
ξ(f)B

∣∣
V

)
−−−−−−−−−→ H•(f−1(V );Zπ1-Mod(f̄ )(B))

φ∗−→
φ∗−→ H•(f−1(V );A),

(2.32)
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which preserve compositions in
∫
Manop

∗
Zπ1-Mod. This seemingly chaotic structure will be

fitted neatly once we establish the following. Let jN : V ↪→ U and jM : f−1(V ) ↪→ f−1(U) be
inclusions of open sets in N and M respectively. Then, the following diagram is commutative:

H•(U ;B) H•(V ;B)

H•(f−1(U);A) H•(f−1(V );A).

j∗N

H•
0 (f̄ ,φ)U H•

0 (f̄ ,φ)V

j∗M

(2.33)

This simply follows from f
∣∣
f−1(U)

◦ jM = jN ◦ f
∣∣
f−1(V )

. In consequence, the collection
{H•

0 (f̄ , φ)U}U∈Top(M) forms a natural transformation between the two presheaf structures
on N and M respectively. The above is precisely the necessary data to construct a functor

H• :

∫
Manop

∗

Zπ1-Mod×Topop → AbZ, (2.34)

where the domain is the category of elements of the product functor Zπ1-Mod×Topop. The
functor

Topop : Manop
∗ → Cat (2.35)

has the object component (M, q) 7→ Topop(M) and for any f : (M, qM ) → (N, qN ) the
corresponding functor Topop(f̄ ) is defined by

∀V ∈ Topop(N) : Topop(f̄ )(V ) = f−1(V ) ∈ Topop(M), (2.36)

and

∀j̄ ∈ HomTopop(N)(U, V ) : Topop(f̄ )(j̄) =: f−1(j̄) ∈ HomTopop(N)

(
f−1(U), f−1(V )

)
. (2.37)

The functoriality is obvious. The objects in
∫
Manop

∗
Zπ1-Mod×Topop are triples

(
(M, q), A, U

)
where

(
(M, q), A

)
∈
∫
Manop

∗
Zπ1-Mod and U ∈ Topop(M, q). The morphisms between(

(N, qN ), B, V
)

and
(
(M, qM ), A, U

)
are triples (f̄ , φ, j̄) such that

(f̄ , φ) ∈ Hom∫
Man

op
∗

Zπ1-Mod

((
(N, qN ), B

)
,
(
(M, qM ), A

))
, (2.38)

and
j̄ ∈ HomTopop(M)

(
Topop(f̄ )(V ), U

)
= HomTopop(M)

(
f−1(V ), U

)
, (2.39)

corresponding to an inclusion j : U ↪→ f−1(V ) in M . The composition is as follows: for

(h̄, ψ, ī) :
(
(M, qM ), A, U

)
→

(
(N, qN ), B, V

)
(2.40)

and
(f̄ , φ, j̄) :

(
(N, qN ), B, V

)
→

(
(P, qP ), C,W

)
, (2.41)

we set

(f̄ , φ, j̄) ◦ (h̄, ψ, ī) ≡
(
f̄ ◦ h̄, φ ◦ Zπ1-Mod(f̄ )(ψ), j̄ ◦ Topop(f̄ )(̄i)

)
=

(
f̄ ◦ h̄, φ ◦ Zπ1-Mod(f̄ )(ψ), j̄ ◦ f−1(̄i)

)
.

(2.42)

We define the object component of H• by

H•(U ;A) := H•((M, q), A, U
)
≡ H•

ch(C
•(U ;A)). (2.43)
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On morphisms we set

H•(f̄ , φ, j̄) ≡ j∗ ◦ φ∗ ◦H•
ch

(
ξ(f)B

∣∣
V

)
= j∗ ◦H•(f̄ , φ)V :

H•(V ;B)
H•(f̄ ,φ)V−−−−−−→ H•(f−1(V );A)

j∗−→ H•(U ;A).
(2.44)

Clearly, H•(id(M,q), idA, idM ) = idH•(M ;A). The preservation of composition follows from 2.33.
Indeed,

H•(f̄ ◦ h̄, φ ◦ Zπ1-Mod(f̄ )(ψ), j̄ ◦ f−1(̄i)
)

= j∗ ◦ f−1(i)∗ ◦H•
0

(
f̄ ◦ h̄, φ ◦ Zπ1-Mod(f̄ )(ψ)

)
U

= j∗ ◦ f−1(i)∗ ◦H•
0 (f̄ , φ)h−1(U) ◦H•

0 (h̄, ψ)U

= j∗ ◦H•
0 (f̄ , φ)V ◦ i∗ ◦H•

0 (h̄, ψ)U

= H•
0 (f̄ , φ, j̄) ◦H•

0 (h̄, ψ, ī).

(2.45)

This completes the construction of the functor structure of cohomology with local coefficients.

2.2. Differential Forms Valued in Zπ1(M)-R-Bimodules

Note that the differential graded algebra of differential forms Ω•(M̃) admits a right action of
π1(M) defined by ω · g := Θ(g)∗ω, which extends to a right action of Zπ1(M). Suppose A is
an Zπ1(M)-R-bimodule. In other words, a real vector space equipped with a linear left action
of Zπ1(M). Then, the differential graded algebra of A-valued differential forms Ω•(M̃)⊗R A
can de viewed as a Zπ1(M)-module in two ways–with respect to the first and the second
component. Moreover, these two actions commute. Therefore, it is natural to give

Definition 2.2.1. The graded abelian group of Zπ1(M)-invariant A-valued differential forms
is defined as

Ω•
I (M ;A) := Ω•(M̃ ;A)Zπ1(M) ⊆ Ω•(M̃)⊗R A (2.46)

satisfying ∑
i

Θ(g)∗ωi ⊗R ai =
∑
i

ωi ⊗R g · ai (2.47)

for every g ∈ π1(M). We define a differential d• : Ω•
I (M ;A) → Ω•+1

I (M ;A) as a linear
extension of

d(ω ⊗R a) := d(ω)⊗R a. (2.48)

We check its well-definedness using the fact that the de Rham differential commutes with
pullbacks:

Θ(g)∗dω ⊗R a =
(
dΘ(g)∗ω

)
⊗R a = d

(
Θ(g)∗ω ⊗R a

)
= d(ω ⊗R g · a) = dω ⊗R (g · a). (2.49)

Clearly, d2 = 0 which makes Ω•
I (M ;A) into a cochain complex. We will call its cohomology

the twisted de Rham cohomology with values in A, and denote it by H•
dR(M ;A).

We make invariant module-valued differential forms into a functor
∫
Manop

∗
Zπ1-Mod → AbZ

in a similar fashion. First, we observe the functoriality Zπ1(M)-Mod ∋ A 7→ Ω•
I (M̃ ;A) for a

fixed M . Then, we check that for each map f :M → N and every∑
i

ωi ⊗R bi ∈ Ω•
I (N,B), (2.50)
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the form ∑
i

f̃∗ωi ⊗R bi ∈ Ω•(M̃)⊗R Zπ1-Mod(f̄ )(B) (2.51)

is invariant under Zπ1(M), because

∀g ∈ π1(M) : f̃ ◦ΘM (g) = ΘN (π1(f)(g)) ◦ f̃ (2.52)

(cf. 2.14). Therefore, by applying φ∗ : Ω•
I

(
M ;Zπ1-Mod(f̄ )(B)

)
→ Ω•

I (M ;A), we complete
the construction. Since both of the above operations commute with the differential, the
functoriality descends to the twisted de Rham cohomology, which gives a functor

H•
0,dR :

∫
Manop

∗

Zπ1-Mod → AbZ. (2.53)

Note that again, any choice of ˜( · ) functor yields the same algebra of differential forms, up to
an isomorphism. To introduce the presheaf structure, we define H•

dR(U ;A) as cohomology of

Ω•
I (U ;A) := Ω•(p−1(U);A)Zπ1(M), (2.54)

where the action on differential forms is ω · g ≡ Θ(g)
∣∣∗
p−1(U)

ω. For i : V ↪→ U , the restriction
map i∗ is an equivariant cochain map. Indeed, one has

Θ(g)
∣∣∗
p−1(V )

i∗ω = i∗Θ(g)
∣∣∗
p−1(U)

ω, (2.55)

as a consequence of p ◦Θ(g) = p. This way we gave the invariant forms a presheaf structure.
Essentially by repeating the reasoning used for cohomology with local coefficients, we obtain
the functor structure

H•
dR :

∫
Manop

∗

Zπ1-Mod×Topop → AbZ. (2.56)

Note that the constructions ofH• andH•
dR are practically the same, with cochain maps arising

from chain maps being replaced with pullbacks. From now on, we will adopt a shorthand
notation ω ⊗R a when denoting a general invariant form in Ω•(M̃)⊗R A.

Lemma 2.2.2. For a fixed manifold M and a π1(M)−R-bimodule A, the invariant A-valued
differential forms Ω•

I ( · ;A) form a sheaf on M .

Proof. Let {Oi}i∈I be an open cover of M . We shall show that Ω•
I satisfies locality and gluing

axioms. Consider a collection of forms

ωi ⊗R ai ∈ Ωk
I (Oi;A), (2.57)

which agree over the intersections Oij := Oi ∩Oj :

resOi
Oij

(ωi ⊗R ai) = res
Oj

Oij
(ωj ⊗R aj), (2.58)

where resUV = j∗ with j : V ↪→ U . Gluing axiom states that there exists a form
ω ⊗R a ∈ Ωk

I (M ;A) which restricts to ωi ⊗R ai over Oi. The locality axioms states that
such a form is unique. But since ωi ⊗R ai represent finite sums of tensor products of k-forms
and vectors from A:

ωi ⊗R ai =

mi∑
l=1

ωl
i ⊗R a

l
i ωl

i ∈ Ωk(p−1(Oi)), a
l
i ∈ A, (2.59)
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we have
mi∑
l=1

res
p−1(Oi)
p−1(Oij)

(ωl
i)⊗R a

l
i =

mj∑
l=1

res
p−1(Oj)

p−1(Oij)
(ωl

j)⊗R a
l
j (2.60)

for all i, j ∈ I. It follows that mi = mj , and up to a permutation

resOi
Oij

(ωl
i)⊗R a

l
i = res

Oj

Oij
(ωl

j)⊗R a
l
j . (2.61)

Now, using the fact that Ω• forms a sheaf on M̃ , we know that there exists a unique form

ω ⊗R a ∈ Ωk(M̃ ;A) (2.62)

restricting to ωi ⊗R ai over Oi. What remains to show is that this form is invariant. By
assumption, for every g ∈ π1(M), upon restricting to each Oi, the forms Θ(g)∗ω ⊗R a and
ω ⊗R g · a agree. But using locality of Ω• we infer that

Θ(g)∗ω ⊗R a = ω ⊗R g · a (2.63)

over entire M .

2.3. Twisted de Rham Theorem

Theorem 2.3.1. If A is a Zπ1(M)–R-bimodule injective as a Zπ1(M)-module, the twisted de
Rham Theorem holds:

H•(M ;A) ≃ H•
dR(M ;A). (2.64)

Proof. Injectivity of A implies the isomorphism H•(U ;A) ≃ HomZπ1(M)

(
H•(p

−1(U)), A
)

in
the Universal Coefficient Theorem for any open U ⊆M . Now we are able to define a map

Hk
dR(U ;A) ∋ [ω ⊗ a]

I7−→
(
Hk(p

−1(U)) ∋ [c] 7→
∫
c

ω ⊗R a ∈ A

)
∈ Hk(U ;A). (2.65)

We check its well-definedness. The integral is defined as∫
c

ω ⊗R a :=

( ∫
c

ω

)
⊗R a ∈ R⊗R A ≃ A. (2.66)

Its value does not depend on the choice of a representative of [c] by Stokes Theorem. For
the same reason, it only depends on the class [ω ⊗ a] ∈ Hk

dR(U ;A). It remains to see that
I ([ω ⊗ a]) is Zπ1(M)-equivariant. This is demonstrated in the following calculation:∫

g·c

ω ⊗R a =

∫
Θ(g)◦c

ω ⊗R a =

∫
c

Θ(g)∗ω ⊗R a =

∫
c

ω ⊗R g · a. (2.67)

In order to prove that I is an isomorphism, we refer to the proof of the ordinary de Rham’s
Theorem in [Par17]. We start by proving that both cohomologies considered here fit into
Mayer-Vietoris sequences. Consider the sequence

Ck(p
−1(U ∩ V ))

α−→ Ck(p
−1(U))⊕ Ck(p

−1(V ))
β−→ Ck(p

−1(U ∪ V )), (2.68)
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where α(σ) = (σ,−σ) and β(σ1, σ2) = σ1 + σ2. It is clear, that α, β are equivariant, and
using the property p−1(U ∩V ) = p−1(U)∩ p−1(V ) as well as p−1(U ∪V ) = p−1(U)∪ p−1(V ),
we can apply the standard argument for exactness of the above sequence. This allows us to
construct the Mayer-Vietoris sequence

. . .→ Hk(M ;A) → Hk(U ;A)⊕Hk(V ;A) → Hk(U ∩ V ;A) → Hk+1(M ;A) → . . . (2.69)

Now, we turn to the sequence

Ω•
I (U ∪ V )

(i∗U ,i∗V )
−−−−→ Ω•

I (U)⊕ Ω•
I (V )

j∗U−j∗V−−−−→ Ω•
I (U ∩ V ), (2.70)

where iT : T ↪→ U ∪ V, T ∈ {U, V } and jT : U ∩ V ↪→ T, T ∈ {U, V }. Note that
2.70 is a sequence of subcomplexes of vector valued differential forms. We know that on
full complexes the sequence is exact, since vector spaces are flat modules. Therefore, the
map (i∗U , i

∗
V ) is an injection as a restriction of such. For surjectivity of j∗U − j∗V we give

the explicit form of the preimage. For a smooth distribution of unity ρU , ρV on U ∪ V , let
ρ̃U := ρU ◦ p and ρ̃V := ρV ◦ p form a smooth partition of unity on p−1(U ∪ V ). Then we
have ω ⊗R a = (j∗U − j∗V )(ωU ⊗R a, ωV ⊗R a), where ωU is the extension by zero of ρ̃V ω ⊗R a,
and ωV is the extension by zero of ρ̃Uω⊗R a. Both of these forms are manifestly invariant, as
ρ̃U , ρ̃V are p-fiberwise constant. We find that 2.70 is exact, so there exists a Mayer-Vietoris
sequence for twisted de Rham cohomology. Let i : V ↪→ U be an inclusion of open subsets of
M . Then,

Hk
dR(U ;A) Hk

dR(V ;A)

Hk(U ;A) Hk(V ;A)

I

i∗

I

i∗

(2.71)

commutes by ∫
i∗c

ω ⊗R a =

∫
c

i∗ω ⊗R a. (2.72)

Similarly, by Stokes Theorem, the following diagram commutes:

Hk−1
dR (U ∩ V ;A) Hk

dR(U ∪ V ;A)

Hk−1(U ∩ V ;A) Hk(U ∪ V ;A),

I

δ

I

ξ

(2.73)

where δ, ξ are connecting homomorphisms in the respective Mayer-Vietoris sequences. There-
fore, in order to complete the proof, it suffices to show that

Hk
dR(U ;A)

I−→ Hk(U ;A) (2.74)

is an isomorphism for small contractible sets U . Here, small means that p−1(U) is a disjoint
union of sets diffeomorphic to U . We rely on p being a covering map to infer that the manifold
M has a basis formed by such sets. Let⊔

i∈I
Ui = p−1(U) (2.75)

denote the decomposition into connected components. Consider a contraction

ψ : [0, 1]× U → U, ψ(0,m) = m, ψ(1,m) = m0, (2.76)
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where m0 ∈ U is fixed. We lift it to a map Ψ : [0, 1] × p−1(U) → p−1(U) as follows:
for a point m̃ ∈ Ui set Ψ(t, m̃) = ñ, where {ñ} = p−1

(
{ψ(t, p(m̃))}

)
∩ Ui. Since, as a

covering map, p maps Ui onto U diffeomorphically, Ψ is a well defined smooth map satisfying
Ψ0(m̃) := Ψ(0, m̃) = m̃ and Ψ1(m̃) := Ψ(1, m̃) = m̃0 with p(m̃0) = m0. Now, by the Poincaré
Lemma, for any ω ∈ Ωk(p−1(U)) we have

Ψ∗
1ω −Ψ∗

0ω = d

∫
[0,1]

(
ι∂tΨ

∗ω
)
dt−

∫
[0,1]

(
ι∂tΨ

∗dω
)
dt. (2.77)

Ψ∗
1ω−Ψ∗

0ω reduces to −ω because p−1(m0) is discrete, and for a closed form ω ∈ Ωk
cl(p

−1(U))
we get

ω = −d

∫
[0,1]

(
ι∂tΨ

∗ω
)
dt. (2.78)

Note that for any g ∈ π1(M), the diffeomorphism Θ(g) commutes with Ψ in the following
sense:

Θ(g) ◦Ψ = Ψ ◦ (id[0,1] ×Θ(g)). (2.79)

This is because Θ(g) preserves p-fibers. Moreover, Θ(g) maps Ui
≃−→ Uτ(i) diffeomorphically,

were τ : I → I is a bijection. Therefore, Θ(g)∗∂t = ∂t and we compute

Θ(g)∗ω = −dΘ∗
∫

[0,1]

ι∂tΨ
∗ω dt = −d

∫
[0,1]

ι∂t(id[0,1] ×Θ(g))∗Ψ∗ω dt

= −d

∫
[0,1]

ι∂tΨ
∗Θ(g)∗ω dt.

(2.80)

The homotopy operator is linear, and we conclude that each invariant form∑
i

ωi ⊗R ai ∈ Ωk
I (U ;A) (2.81)

has an invariant primitive, so ∀k > 0 : Hk
dR(M ;A) = 0. Similarly, for k > 0

Hk(U ;A) ≃ HomZπ1(M)

(
Hk(p

−1(U)), A
)
= 0. (2.82)

Let us focus on the nontrivial case k = 0. Denote by τg the map I → I for which
Θ(g)(Ui) = Uτg(i) for any i ∈ I. The zeroth twisted de Rham cohomology group is

H0
dR(U ;A) = Ω0

I,cl

(
U ;A

)
≃ Ω0

cl

(⊔
i∈I

Ui;A

)Zπ1(M)

≃
{
f : I → A | ∀i ∈ I : f ◦ τ(i) = g · f(i)

}
.

(2.83)

The analogous calculation for the twisted singular cohomology yields:

H0(U ;A) ≃ HomZπ1(M)

(
H0(p

−1(U)), A
)
≃ HomZπ1(M)

(⊕
i∈I

Z , A
)

≃
{
f : I → A | ∀i ∈ I : f ◦ τ(i) = g · f(i)

}
.

(2.84)
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Finally, let [σ] ∈ H0

(
p−1(U)

)
. The image of any of its representatives is a point, and in some

Uj . Let

[ω ⊗R a] :=

[∑
i∈I

ci ⊗R ai

]
∈ H0

dR(U ;A) (2.85)

denote a class in twisted de Rham cohomology. We can assume that each ci is a locally
constant function with supp ci = Ui. The sum is locally finite, and one can even assume
ci(m) ∈ {0, 1}. This way, we identify the class with an appropriate f : I → A. We calculate

I
(
[ω ⊗R a]

)
([σ]) =

∫
σ

∑
i∈I

ci ⊗R ai =

∫
∆0

∑
i∈I

σ∗ci ⊗R ai = aj = f(j), (2.86)

and arrive at I : H•
dR(U ;A)

≃−→ H•(U ;A). Following [Par17] and using 2.71, 2.73 we easily
conclude that

I : H•
dR(M ;A)

≃−→ H•(M ;A) (2.87)

for any M . It is clear, looking at 2.65, that this isomorphism lifts to a natural isomorphism
of functors restricted to the full subcategory∫

Manop
∗

Zπ1-ModR,inj ×Topop (2.88)

of
∫
Manop

∗
Zπ1-Mod × Topop consisting only of Zπ1( · )–R-bimodules injective as

Zπ1( · )-modules.
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Chapter 3

Twisted Character Functor

To define the twisted character functor, we need to find candidates for every vertex in a
diagram analogous to 1.17, but with local coefficients. The remaining vertices are the ones
on the bottom of the diagram.

Definition 3.0.1. Let M be a smooth manifold and let A be a Zπ1(M)–R-bimodule, injective
as a Zπ1(M)-module. Consider its sub-Zπ1(M)-module Λ. For any open U ⊆ M , we will
denote by Ω•

I,Λ(U ;A) the subalgebra of Ω•
I (U ;A) consisting of closed invariant forms with

periods in Λ. That is, whose integrals over all cycles in p−1(U) lie in Λ. Precisely,

Ωk
I,Λ(U ;A) :=

{
ω ⊗R a ∈ Ωk

I,cl(U ;A)

∣∣∣∣ ∀σ ∈ Zk(p
−1(U)) :

∫
σ

ω ⊗R a ∈ Λ

}
. (3.1)

Note that
Ω•
I,Λ(U ;A)/dΩ•

I (U ;A) ≃ I −1
(
i∗H

•(U ; Λ)
)
, (3.2)

where i : Λ ↪→ A.

In order to generalize the character functor, we need to slightly modify the category∫
Manop

∗
Zπ1-Mod×Topop. We define the category∫

Manop
∗

Zπ1-Modpair ×Topop (3.3)

that consists of objects
(
(M, q), A,Λ, U

)
, where

(
(M, q), A, U

)
∈

∫
Manop

∗
Zπ1-Mod × Topop

and Λ is a Zπ1(M)-submodule ofA. The morphisms in this category between
(
(N, qN ), B,Γ, V

)
and

(
(M, qM ), A,Λ, U

)
are those

(f̄ , φ, j̄) ∈ Hom∫
Man

op
∗

Zπ1-Mod×Topop

((
(N, qN ), B, V

)
,
(
(M, qM ), A, U

))
, (3.4)

which satisfy
φ
(
Zπ1-Mod(f̄ )(Γ)

)
= Λ. (3.5)

Note that we can view Zπ1-Mod(f̄ )(Γ) as a Zπ1(M)-submodule of Zπ1-Mod(f̄ )(B). Ob-
serve that respectively restricting and factorizing φ in the definition of H• we can construct
functors H•

s and H•
q from

∫
Manop

∗
Zπ1-Modpair ×Topop, mapping

H•
s

(
(M, q), A,Λ, U

)
≡ H•(U ; Λ), (3.6)
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and
H•

q

(
(M, q), A,Λ, U

)
≡ H•(U ;A/Λ). (3.7)

From now on, we will treat H• as a functor from the above category of pairs or its full
subcategories. Now, the maps from 2.4 give rise to natural transformations between H•

s , H
•

and H•
q . Note that the assignment

Ω•
I,per :

(
(M, q), A,Λ, U

)
7→ Ω•

I,Λ(U ;A) (3.8)

extends to the functor with the same morphism component as in Ω•
I .

We will denote by ∫
Manop

∗

Zπ1-Modpair
R,inj ×Topop (3.9)

the full subcategory of
∫
Manop

∗
Zπ1-Modpair ×Topop consisting of objects

(
(M, q), A,Λ, U

)
such that A is a Zπ1(M)–R-bimodule injective as a Zπ1(M)-module, and A/Λ is injective as
an induced Zπ1(M)-module.

Definition 3.0.2. With these constructions in mind, we are ready to define a twisted character
functor as a 5-tuple (Ĝ •, i1, i2, δ1, δ2), where

Ĝ • :

∫
Manop

∗

Zπ1-Modpair
R,inj ×Topop → AbZ, (3.10)

and i1, i2, δ1, δ2 are natural transformations rendering the following twisted character diagram
commutative, and its diagonal sequences exact for each k ∈ Z>0:

0 0

Hk−1
q Hk

s

Hk−1 Ĝ k Hk

Ωk−1
I /Ωk−1

I,per Ωk
I,per

0 0.

−B

i1 rα

β

δ2

δ1

d

i2 s

(3.11)

Here, all the functors are restricted to the category
∫
Manop

∗
Zπ1-Modpair

R,inj×Topop. The maps
α,B, r come from 2.4, and the maps β,d, s are defined using Theorem 2.3.1 and fit into a
long exact sequence.

Before we state the next definition, we need to yet again restrict the category∫
Manop

∗
Zπ1-Modpair

R,inj ×Topop. Just as in the ordinary case, we need the map

ι : Ω•
I → C• :

Ωk
I (U ;A) ∋ ω ⊗R a 7→

(
c 7→

∫
c

ω ⊗R a mod Λ

)
∈ HomZπ1(M)

(
Ck(p

−1(U)), A/Λ
) (3.12)
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to be injective. Therefore, we define
∫
Manop

∗
Zπ1-Modpair,ι

R,inj × Topop as the full subcategory
of

∫
Manop

∗
Zπ1-Modpair

R,inj ×Topop consisting of those objects, which render ι injective.
Note that, under the restriction, we can relax the assumption that invariant forms with periods
in respective submodules be closed. The closedness follows fom injectivity of ι just as in the
ordinary case (cf. Corollary 1.0.4).

Definition 3.0.3. The twisted differential characters form the functor

Ĥ • :

∫
Manop

∗

Zπ1-Modpair,ι
R,inj ×Topop → AbZ, (3.13)

defined on objects by

Ĥ k(U ;A/Λ) := Ĥ k
(
(M, q), A,Λ, U

)
=
{
f ∈HomZπ1(M)

(
Zk−1(p

−1(U)), A/Λ
)∣∣∃ωf ⊗R a∈Ωk

I,Λ(U ;A) :f ◦ ∂ = ι(ωf ⊗R a)
}
.

(3.14)

Just like in the standard case, we do not need to assume that ωf ⊗R a has periods in Λ.
Moreover, because of injectivity of ι in the domain category, the form ωf ⊗R a is unique
for every f ∈ Ĥ k(U ;A/Λ). The morphism component of Ĥ • is just the restriction of the
morphism component of C•. One only needs to show that for any

(h̄, φ, j̄) :
(
(N, qN ), B,Γ, V

)
→

(
(M, qM ), A,Λ, U

)
(3.15)

the condition
∀f ∈ Ĥ k(V ;B/Γ) : Ĥ k(h̄, φ, j̄)(f) ∈ Ĥ k(U ;A/Λ) (3.16)

is satisfied. But this follows from the calculation(
j∗ ◦ φ∗ ◦ ξ(h)

∣∣
V

)
(f) ◦ ∂ =

(
j∗ ◦ φ∗ ◦ ξ(h)

∣∣
V

)
(f ◦ ∂)

=
(
j∗ ◦ φ∗ ◦ ξ(h)

∣∣
V

)(
ι(ωf ⊗R b)

)
= ι

(
Ω•
I (h̄, φ, j̄)(ωf ⊗R a)

)
,

Ω•
I,per(h̄, φ, j̄)(ωf ⊗R b) ∈ Ωk

I,Λ(U ;A),

(3.17)

where we restrict j∗ and ξ(h)
∣∣
V

to HomZπ1(N)

(
Z•(p

−1(V )), B/Γ
)

and use compatibility of the
functor structure of Ω•

I .

Proposition 3.0.4. Under the restriction of the domain category to∫
Manop

∗

Zπ1-Modpair,ι
R,inj ×Topop, (3.18)

the twisted differential characters functor H • substituted for G • fits into the twisted character
diagram and as such, together with appropriate natural transformations i1, i2, δ1, δ2, forms a
twisted character functor.

Proof. For clarity, we fix
(
(M, q), A,Λ, U

)
. Functoriality will be clear at each step. We begin

by defining δ1(f) := ωf ⊗R a. Just as in the untwisted case, δ1 is surjective – just pick

f(c) =

{
ι(ωf ⊗R a)(b) c = ∂b ∈ Bk−1(p

−1(U))

0 otherwise.
(3.19)

By the left-exactness of the hom-functor we obtain the inclusion

℘∗ : HomZπ1(M)

(
Hk−1(p

−1(U)), A/Λ
)
↪→ HomZπ1(M)

(
Zk−1(p

−1(U)), A/Λ
)
,

℘ : Zk−1(p
−1(U)) ↠ Hk−1(p

−1(U)),
(3.20)
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which we compose with the isomorphism

ϕ : Hk−1(U ;A/Λ)
≃−→ HomZπ1(M)

(
Hk−1(p

−1(U)), A/Λ
)

(3.21)

to define i1. Note that we used the injectivity of A/Λ as a Zπ1(M)-module. By construction,
the map i2 is injective, and the left-exactness of the hom-functor together with the isomor-
phism in the Universal Coefficient Theorem imply that im i1 = ker δ1.
The restriction

j∗ : Ck−1(U ;A/Λ) → HomZπ1(M)

(
Zk−1(p

−1(U)), A/Λ
)

(3.22)

composed with ι gives a map whose kernel is precisely Ωk−1
I,Λ (U ;A). We define i2 as its factor-

ization through Ωk−1
I (U ;A)/Ωk−1

I,Λ (U ;A), which is manifestly injective. The Stokes Theorem
guarantees that for every ω ⊗R a ∈ Ωk−1

I (U ;A), we have i2(ω ⊗R a) ◦ ∂ = ι(dω ⊗R a). Thus,
i2 is a well defined map to Ĥ k(U ;A/Λ), making the bottom triangle in 3.11 commutative.
In order to define δ2 consider the following diagram in Zπ1(M)-Mod:

A A/Λ

Ck−1(p
−1(U))

Zk−1(p
−1(U)).

T

ff̃

(3.23)

Given f ∈ Ĥ k(U ;A/Λ), we use the fact that Zk−1(p
−1(U)) is free as a Zπ1(M)-module, to lift

f to f̃ . Then, we use injectivity of A as a Zπ1(M)-module, to factor f̃ through Ck−1(p
−1(U)),

and we call this factorization T . Observe that for any c ∈ Ck(p
−1(U)) we get

δT (c) modΛ = T (∂c) modΛ = f̃(∂c) modΛ = f(∂c) = ι(ωf ⊗R a)(c)

= ωf ⊗R a modΛ,
(3.24)

where after the last equality we treat ωf ⊗R a as a cochain given by integration.
Therefore, ωf ⊗R a− δT ∈ Ck(U ; Λ) and it is closed. Moreover, if T ′ is another map making
the above diagram commutative, we compute

(T − T ′)
∣∣
Zk−1(M)

= f̃ − f̃ = 0 ⇒ T − T ′ = δd, d ∈ Ck−2(U ;A). (3.25)

Here, we used the Universal Coefficient Theorem for A to infer from T − T ′ = 0 in
HomZπ1(M)

(
Hk−1(p

−1(U)), A
)

the equality [T − T ′] = 0 in Hk−1(U ;A). If we pick a dif-
ferent lift f̃ ′, we get f̃ ′ − f̃ mod Z = f − f = 0, so f̃ − f̃ ′ = c

∣∣
Zk−1(p−1(U))

for some
c ∈ Ck−1(U ; Λ). We conclude that in general

T − T ′ = δd+ c ⇒ δ(T − T ′) = δc. (3.26)

This means that the cohomology class [ωf ⊗R a − δT ] ∈ Hk(U ; Λ) depends only on f . We
define δ2(f) ≡ [ωf ⊗R a− δT ].
To see that it is surjective, let [u] ∈ Hk(U ; Λ) be arbitrary. By 3.2, there exists ω ⊗R a ∈
Ωk
I,Λ(U ;A) with [ω⊗R a] = i∗[u], identified using Theorem 2.3.1. Then, for any representative

u, the cochain ω ⊗R a − i∗u ∈ Ck(U ;A) is exact and we can find T ∈ Ck−1(U ;A) with
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δT = ω ⊗R a− i∗u. By postcomposing the restricted cochain T
∣∣
Zk−1(p−1(U))

with the natural
projection A↠ A/Λ, we obtain

f ∈ HomZπ1(M)

(
Zk−1(p

−1(U)), A/Λ
)
, f ◦ ∂ = ι(ω ⊗R a), (3.27)

making it a twisted differential character, which satisfies δ2(f) = [u].
Now, suppose δ2(f) = 0, that is [ωf ⊗R a− δT ] = 0. Since δT is exact, this means that

∃θ ⊗R b ∈ Ωk−1
I (U ;A) : dθ ⊗R b = ω ⊗R a, (3.28)

and
∃e ∈ Ck−1(U ; Λ) : ω ⊗R a− δT = δe. (3.29)

We calculate δ(θ ⊗R b− T − e) = 0, so there exists ζ ∈ Zk−1(U ;A) such that

θ ⊗R b− T − e = ζ. (3.30)

By Theorem 2.3.1 we can find

ϕ⊗R g ∈ Ωk−1
I (U ;A) : (θ ⊗R b− T − e)

∣∣
Zk−1(p−1(U))

= (ϕ⊗R g)
∣∣
Zk−1(p−1(U))

. (3.31)

We have T
∣∣
Zk−1(p−1(U))

= (θ ⊗R b − ϕ ⊗R g − e)
∣∣
Zk−1(p−1(U))

. By postcomposing both sides
with the natural projection A↠ A/Λ, we obtain

f = ι
(
θ ⊗R b− ϕ⊗R g − e

)∣∣
Zk−1(p−1(U))

= i2
(
θ ⊗R b− ϕ⊗R g

)
, (3.32)

as e is Λ-valued. Hence, f ∈ im i2. We conclude that both diagonal sequences are exact.
We proceed by checking the commutativity of the left side of the twisted character diagram.
It follows from Theorem 2.3.1 and the fact that the map

res ◦ ι
∣∣
ker dk−1 , res : Ck−1(U ;A/Λ) → HomZπ1(M)

(
Zk−1(p

−1(U)), A/Λ
)

(3.33)

factorizes as ι̂k−1 through Hk−1
dR (U ;A), and ι̂k−1([ω ⊗R a]) coincides with the image of

α([ω ⊗R a]) under i1 : Hk−1(U ;A/Λ) → Ĥ k(U ;A/Λ). The top triangle commutes by the
construction of δ2 above, with ωf ⊗R a = 0 in the image of i1. Finally, the right side of the
diagram commutes by 3.2.

3.1. Uniqueness Theorem

Before we assert the uniqueness theorem for the twisted character functor, we prove the
following important technical lemma, which generalizes the result in [SS07].

Lemma 3.1.1. Let σ ∈ Ck(M̃). Then every neighborhood U of p(im(σ)) ⊆ M contains a
smaller neighborhood U ′ satisfying Hk′(U ′; Λ) = 0 for all k′ > k. We call such U ′ a k-good
neighborhood of p(im(σ)).

Proof. We start by observing that p(im(σ)) is an image of a smooth map

p ◦ σ :

l⊔
i=1

∆k →M (3.34)
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from a finite disjoint union of geometric k-simplices. Since the topological dimension of this
union is k, it follows from [SS07, Fact 2.1] that for any open U ⊇ p(im(σ)) there exists an
open p(im(σ)) ⊆ U ′ ⊆ U for which

Hk′(U ′;Z) = 0, k′ > k, (3.35)

where Z is a trivial Zπ1(M)-module. In other words, the ordinary integral cohomology van-
ishes above k. Since U ′ has a structure of a smooth manifold, it is homotopy equivalent to
a CW-complex. Moreover, it can be realized as a k-dimensional CW-complex. The space
p−1(U ′) is a covering space of U ′ and as such, can be given a structure of a k-dimensional
CW-complex, up to homotopy equivalence [Hat02, 4.1.]. Thus, the cohomology of the cochain
complex

HomZ
(
C•(p

−1(U ′)),Λ
)

(3.36)

vanishes above k. This means that for any k′ > k and any c ∈ HomZ
(
Ck′(p

−1(U ′)),Λ
)

such
that c◦∂ = 0 there exists c′ ∈ HomZ

(
Ck′−1(p

−1(U ′)),Λ
)

satisfying c = δc′. If we assume that
c is equivariant with respect to the restricted action of Zπ1(M), we check that

∀γ ∈ Zπ1(M)∀s ∈ C ′
k(p

−1(U ′)) : c′(γ ·∂s) = c′(∂(γ ·s)) = c(γ ·s) = γ ·c(s) = γ ·c′(∂s), (3.37)

where we use the fact that ∂ commutes with the action of Zπ1(M) on chains. Using this fact
once again, we argue that one can construct another cochain

c′′ ∈ HomZ
(
Ck′−1(p

−1(U ′)),Λ
)
: c′′(s) =

{
c′(s) s ∈ Bk′−1(p

−1(U ′)),

0 otherwise,
(3.38)

which is manifestly equivariant and satisfies c = δc′′. Therefore, we conclude that

∀k′ > k : Hk′(U ; Λ) = 0. (3.39)

Theorem 3.1.2. For any twisted character functor (Ĝ •, i1, i2, δ1, δ2) restricted to the category∫
Manop

∗
Zπ1-Modpair,ι

R,inj ×Topop there exists a unique natural isomorphism Φ : Ĝ • → Ĥ • and
a unique natural automorphism Ψ : H•

s → H•
s such that Φ commutes with Ψ on H•

s and
with identity transformations on all other functors in the diagram. In other words, the dia-
gram formed by two character diagrams–corresponding to Ĝ • and Ĥ •–connected with identity
transformations, Ψ, and Φ–is commutative.

Proof. Let f ∈ Ĝ k(V ;A/Λ) with V ⊆M open, and take σ ∈ Zk−1(p
−1(V )). Let U ⊆ V be a

(k − 1)-good neighborhood of p(im(σ)), which exists by Lemma 3.1.1, and let j : U ↪→ V be
an inclusion. Since Hk(U ; Λ) = 0, the exactness of a diagonal in the diagram 3.11 guarantees
the existence of [θ ⊗R a] ∈ Ωk−1

I (U ;A)/Ωk−1
I,Λ (U ;A) such that

j∗f = i2([θ ⊗R a]). (3.40)

We set
Φ(V ;A/Λ)(f)(σ) := ι(θ ⊗R a)(σ). (3.41)

First we show that Φ(V ;A/Λ) is a well defined homomorphism

Ĝ k(V ;A/Λ) → HomZπ1(M)

(
Zk−1(p

−1(V )), A/Λ
)
. (3.42)

30



It is clear that 3.41 does not depend on the choice of a representative of [θ ⊗R a]. The
independence of the choice of U follows from Lemma 3.1.1. Indeed, let U ′ be another open
set satisfying the asserted conditions. Then we can find a third such U ′′ ⊆ U ∩ U ′. Let

U ′′ j′−→ U
j−→ V (3.43)

be the inclusion maps. Then,

(j ◦ j′)∗f = j′∗j∗f = j′∗(i2([θ ⊗R a]) = i2(j
′∗[θ ⊗R a]) = i2([j

′∗θ ⊗R a]), (3.44)

where we used naturality of i2. Since

ι(j′∗θ ⊗R a)(σ) = ι(θ ⊗R a)(σ), (3.45)

we see that the definitions of Φ(V ;A/Λ) using U and U ′′ agree. Since the same is true for U ′

and U ′′, we have shown that the definition of Φ(V ;A/Λ) is independent of the choice of U . To
show that Φ(V ;A/Λ)(f) ∈ HomZπ1(M)

(
Zk−1(p

−1(V )), A/Λ
)

it is enough to check additivity, as
π1(M) equivariance follows from invariance of θ ⊗R a. To see that

∀σ1, σ2 ∈ Zk−1(p
−1(V )) : Φ(V ;A/Λ)(f)(σ1 + σ2) = Φ(V ;A/Λ)(f)(σ1) + Φ(V ;A/Λ)(f)(σ2), (3.46)

let σ be a chain such that im(σ1) ∪ im(σ2) ⊆ im(σ). Pick U , a (k − 1)-good neighborhood
of p(im(σ)). Since im(σ1 + σ2) ⊆ im(σ1) ∪ im(σ2) we have each of p(im(σ1)), p(im(σ2)),
p(im(σ1 + σ2)) ⊆ U . Choosing [θ ⊗R a] as in 3.40 we find

Φ(V ;A/Λ)(f)(σ1 + σ2) = ι(θ ⊗R a)(σ1) + ι(θ ⊗R a)(σ2)

= Φ(V ;A/Λ)(f)(σ1) + Φ(V ;A/Λ)(f)(σ2).
(3.47)

Moreover, clearly, Φ(V ;A/Λ)(f1 + f2) = Φ(V ;A/Λ)(f1) + Φ(V ;A/Λ)(f2). Then, we want to show
that im

(
Φ(V ;A/Λ)

∣∣
Ĝ k(V ;A/Λ)

)
⊆ Ĥ (V ;A/Λ). Precisely, we will prove that if σ = ∂s for some

s ∈ Ck(p
−1(V )), then

Φ(V ;A/Λ)(f)(σ) = ι(δ1(f))(s). (3.48)

Since both sides vanish when k − 1 = dim p−1(V ), we may assume k − 1 < dim p−1(V ).
Let U be a (k − 1)-good neighborhood of p(im(σ)). Using [SS07, Fact 2.2] we can find a
(k−1)-dimensional embedded pseudomanifold P ⊆ p−1(U) and a k-chain w with p(im(w)) ⊆ U
such that

σ = ∂w + P, (3.49)

where we identify P with its fundamental cycle. Letting [θ ⊗R a] be defined as in 3.40 we
calculate

Φ(V ;A/Λ)(f)(σ) = ι(θ ⊗R a)(∂w) + Φ(V ;A/Λ)(f)(P )

= ι(dθ ⊗R a)(w) + Φ(V ;A/Λ)(f)(P )

= ι(δ1(j
∗f))(w) + Φ(V ;A/Λ)(f)(P )

= ι(j∗δ1(f))(w) + Φ(V ;A/Λ)(f)(P )

= ι(δ1(f))(w) + Φ(V ;A/Λ)(f)(P ),

(3.50)

where we invoke Stokes Theorem, the fact that d = δ1 ◦ i2, and naturality of δ1. Since
σ is a boundary in p−1(V ) and P is homologous to σ, P is itself a boundary in p−1(V ).
We use [SS07, Fact 2.3] to find a (k − 1)-good neighborhood U ′ of p(P ) with the inclusion
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λ : U ′ ↪→ V , together with u ∈ Ck(p
−1(V )) satisfying p(im(u)) ⊆ U ′ and P = ∂u. Once again

λ∗f = i2([ω ⊗R a]) for some ω ⊗R a ∈ Ωk−1
I (U ′;A). Using the same arguments as above, we

find
Φ(V ;A/Λ)(f)(P ) = ι(ω ⊗R a)(∂u) = ι(δ1(f))(u). (3.51)

Together with 3.50 this yields

Φ(V ;A/Λ)(f)(σ) = ι(δ1(f))(w) + ι(δ1(f))(u)

=
(
ι(δ1(f))(w) + ι(δ1(f))(u)− ι(δ1(f))(s)

)
+ ι(δ1(f))(s).

(3.52)

Note that ∂(w + u) = σ = ∂s, and δ1(f) ∈ Ωk
I,Λ(V,A), so the first term vanishes, and we

managed to prove 3.48. Now, we wish to show that Φ is indeed a natural transformation
between two functors

∫
Manop

∗
Zπ1-Modpair,ι

R,inj ×Topop → AbZ. Consider any morphism

(h̄, φ, j̄) :
(
(N, qN ), B,Γ, V

)
→

(
(M, qM ), A,Λ, U

)
(3.53)

in
∫
Manop

∗
Zπ1-Modpair,ι

R,inj ×Topop. Then the following diagram should be commutative:

Ĝ k(V ;B/Γ) Ĝ k(U ;A/Λ)

Ĥ k(V ;B/Γ) Ĥ k(U ;A/Λ).

Ĝ •(h̄,φ,j̄)

Φ(V ;B/Γ) Φ(U ;A/Λ)

Ĥ •(h̄,φ,j̄)

(3.54)

Take f ∈ Ĝ k(V ;B/Γ). Let σ ∈ Ck−1(p
−1
M (U)). Consider a (k − 1)-good neighborhood

V ′ ⊇ h(pM (im(σ))) and a (k − 1)-good neighborhood pM (im(σ)) ⊆ U ′ ⊆ h−1(V ′). Denote

l : V ′ ↪→ V, y : h−1(V ′) ↪→ U, t : U ′ ↪→ h−1(V ′). (3.55)

Note that there are isomorphisms

Ĥ k(V ′, B/Γ) ≃ Ωk−1
I (V ′;B)/Ωk−1

I,Γ (V ′;B) ≃ Ĝ k(V ′, B/Γ), (3.56)

and
Ĥ k(U ′, A/Λ) ≃ Ωk−1

I (U ′;A)/Ωk−1
I,Λ (U ′;B) ≃ Ĝ k(U ′, A/Λ). (3.57)

Moreover, the map i2 is a natural transformation in both diagrams–the one around Ĝ • and
the one around Ĥ •. By the definition of components of Φ, it is clear that it suffices to show
that f maps to the same class of invariant forms under the isomorphisms above. Equivalently,
that the following diagram is commutative:

Ĝ k(V ;B/Γ) Ĝ k(U ;A/Λ)

Ĝ k(V ′;B/Γ) Ĝ k(h−1(V ′);A/Λ)

Ĝ k(U ′;A/Λ)

Ĥ k(V ′;B/Γ) Ĥ k(U ′;A/Λ)

Ĝ •(h̄,φ,j̄)

l∗ y∗

≃

Ĝ •
(
h̄,φ,īdh−1(V ′)

)

t∗

≃

Ĥ •(h̄,φ,t̄)

(3.58)
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The top square commutes, as Ĝ • preserves compositions in
∫
Manop

∗
Zπ1-Modpair,ι

R,inj × Topop.
The bottom square commutes by naturality of i2 and because of the isomorphisms 3.56, 3.57.
Since f and σ were chosen arbitrarily and since, by construction,

Φ(V ;B/Γ)(f) = Φ(V ′;B/Γ)(l
∗f), (3.59)

and
Φ(U ;A/Λ)

(
Ĝ •(h̄, φ, j̄)(f)

)
= Φ(U ′;A/Λ)

(
t∗y∗Ĝ •(h̄, φ, j̄)(f)

)
, (3.60)

we conclude that 3.54 is commutative, so Φ is indeed a natural transformation. The next
point is to show that, with a slight abuse of notation,

Φ ◦ i1 = i1, Φ ◦ i2 = i2, δ1 ◦ Φ = δ1. (3.61)

Let µ ∈ Hk−1(U ;A/Λ) and pick σ ∈ Zk−1(p
−1(U)). Let U ′ be a (k−1)-good neighborhood of

p(im(σ)). Since Hk(U ′; Λ) = 0, by exactness of of the twisted Bockstein sequence, there exists
x ∈ Hk−1(U ;A) such that µ = α(x). By commutativity of the twisted character diagram for
Ĝ • we have i1(µ) = i1(α(x)) = i2(β(x)). Thus, by 3.41

Φ(U ;A/Λ)(i1(µ))(σ) = ι(θ ⊗R a)(σ), (3.62)

for any θ⊗R a ∈ [β(x)]. But, since β is defined using Theorem 2.3.1, and by the definition of
i1 from Proposition 3.0.4 we compute

ι(θ ⊗R a)(σ) = ℘∗ϕ(α(x))(σ) = i1(µ)(σ). (3.63)

Thus Φ ◦ i1 = i1. The identity Φ ◦ i2 = i2 follows straight from the definition in 3.41,
and δ1 ◦ Φ = δ1 follows directly from 3.48. Now, we are in position to show that Φ is an
isomorphism. Indeed, consider the following commutative diagram, the rows of which are
exact:

0 Hk−1(U ;A/Λ) Ĝ k(U ;A/Λ) Ωk
I,Λ(U ;A) 0

0 Hk−1(U ;A/Λ) Ĥ k(U ;A/Λ) Ωk
I,Λ(U ;A) 0.

≃

i1

Φ(U ;A/Λ)

δ1

≃

i1 δ1

(3.64)

The hypothesis follows from the Five Lemma. In order to prove that there exists Ψ ∈ Aut(H•
s )

satisfying δ2 ◦ Φ = Ψ ◦ δ2, we will start by showing that for any twisted character functor
Ĝ • the map δ2 is determined up to a natural automorphism by i1, i2 and δ1. Suppose there
exists δ′2 satisfying the same conditions as δ2. Namely,

(
Ĝ •, i1, i2, δ1, δ

′
2

)
is a twisted character

functor. Since both δ2 and δ′2 induce natural isomorphisms δ̂2 and δ̂′2 from Ĝ k
/
i2
(
Ωk−1
I /Ωk−1

I,per

)
onto Hk

s , we know that the map

δ̂′2 ◦ δ̂−1
2 : Hk

s → Hk
s (3.65)

is a natural automorphism. Moreover, one can see that δ̂′2 ◦ δ̂−1
2 ◦ δ2 = δ′2. Now, note

that δ2 ◦ Φ can be taken as δ′2, since, by previous arguments,
(
Ĝ •, i1, i2, δ1, δ2 ◦ Φ

)
forms a

twisted character functor. Thus, to satisfy the commutativity condition δ2 ◦ Φ = Ψ ◦ δ2,
the natural automorphism Ψ should be given as ̂(δ2 ◦ Φ) ◦ δ̂−1

2 . Finally, we show that Φ is
the unique natural isomorphism Ĝ • ≃−→ Ĥ • satisfying 3.61, and therefore, rendering Ψ the
unique automorphism satisfying δ2 ◦ Φ = Ψ ◦ δ2. Suppose Φ′ is another such isomorphism.
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Then Φ′ ◦ Φ−1 : Ĥ • → Ĥ • is a natural automorphism holding fixed all the other terms
in the twisted character diagram but H•

s , on which it acts with a natural automorphism
Ψ′ ◦Ψ−1. Thus, for f ∈ Ĥ k−1(U ;A/Λ), a cycle σ ∈ Zk−1(p

−1(U)), and a (k − 1)-good open
neighborhood U ′ of p(im(σ)) with j : U ′ ↪→ U , we have θ ⊗R a ∈ Ωk−1

I (U ′;A) such that

(Φ′ ◦ Φ−1)(U ;A/Λ)(f)(σ) = (Φ′ ◦ Φ−1)(U ′;A/Λ)(j
∗f)(σ)

= (Φ′ ◦ Φ−1)(U ′;A/Λ)

(
i2([θ ⊗R a])

)
(σ)

= i2([θ ⊗R a])(σ) = j∗f(σ) = f(σ).

(3.66)

Thus, Φ = Φ′.

3.2. Cohomological Description

In [HS05] Hopkins and Singer provide a cohomological description of ordinary differential
characters. They show that differential characters correspond to cohomology classes of a
particular presheaf of cochain complexes. We aim to generalize their construction to twisted
differential characters.

Definition 3.2.1 ([HS05]). Let M be a manifold and let s ∈ N. The cochain complex
DC•

s(M) is defined by

DCn
s (M) = {(c, h, ω) : ω = 0 for n < s} ⊆ Cn(M,Z)× Cn−1(M,R)× Ωn(M), (3.67)

and
d(c, h, ω) = (δc, ω − c− δh,dω), (3.68)

where we identify ω with its real cochain given by integration. Clearly, DC•
s forms a presheaf

of complexes on Man.

Proposition 3.2.2. For each n ∈ N there is a natural isomorphism Hn(DC•
n) ≃ Ĥn( · ,R/Z).

Proof. Let M ∈ Man. We set

ψM : Hn(DC•
n(M)) ∋ [(c, h, ω)] 7→ h

∣∣
Zn−1(M)

mod Z ∈ Ĥn(M,R/Z). (3.69)

It is a linear map, so its well-definedness follows from

ψM (d(c, h, 0)) = ψM (δc,−c− δh, 0) = (−c− δh)
∣∣
Zn−1(M)

mod Z = 0, (3.70)

and

ψM ([(c, h, ω)])(∂b) = δh(b) mod Z = ω(b)− c(b) mod Z = ω(b) mod Z = ι(ω)(b). (3.71)

To construct the inverse, given f ∈ Ĥn(M,R/Z), we take T (f) ∈ Cn−1(M,R) as in 1.29. For
ω simply take ωf = δ1(f) (??). Just as it was shown in the proof of Proposition 1.0.7, the
cochain T (f) satisfies

δT (f) = ωf − c, (3.72)

where c ∈ Zn(M,Z) is a representative of δ2(f). Moreover, T (f) is determined up to

c′ + δd, c′ ∈ Cn−1(M,Z), d ∈ Cn−2(M,R). (3.73)
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This makes the class [(c, T (f), ωf )] uniquely determined. Indeed, let (c̃, T̃ (f), ωf ) be a different
choice. Then,

(c̃, T̃ (f), ωf )− (c, T (f), ωf ) =
(
δ(T (f)− T̃ (f)), T̃ (f)− T (f), 0

)
=

(
−δc′, c′ + δd, 0)

= d(−c′,−d, 0).
(3.74)

We should check that ψ−1
M ◦ψM = idHn(DC•

n(M)). But this follows from the fact that the class
[(c, h, ω)] is uniquely determined by f = h

∣∣
Zn−1(M)

mod Z. The equality ψM ◦ψ−1
M = idĤn(M)

follows directly from the construction of T (f). Naturality of ψ is straightforward.

It is clear what the generalization should be.

Definition 3.2.3. The twisted Hopkins-Singer complex of degree s ∈ N is the functor

DC•
s :

∫
Manop

∗

Zπ1-Modpair,ι
R,inj ×Topop → Ch+(Ab), (3.75)

defined by

DCn
s (U,A,Λ) := DCn

s

(
(M, q), A,Λ, U

)
={(c, h, ω ⊗R a) :ω ⊗R a = 0 for n < s}⊆Cn(U ; Λ)× Cn−1(U ;A)× Ωn

I (U ;A).
(3.76)

Clearly, DC•
s = (C•

s , C
•, τ⩾sΩ

•
I ), where C•

s is a functor whose cohomology is, by definition,
the functor H•

s (cf. 3.6), and τ⩾sΩ
•
I denotes the appropriate truncation. The morphism

component of DC•
s is therefore apparent. The differential of DC•

s is defined by

d(c, h, ω ⊗R a) =
(
δc, ω ⊗R a− c− δh,d(ω ⊗R a)

)
, (3.77)

where we identify ω⊗R a with the A-valued cochain given by integration. The fact that d is a
well-defined differential follows from the fact that C•

s , C
•, τ⩾sΩ

•
I are cochain complexes with

their respective differentials. The cohomology of DC•
s provides a functor∫

Manop
∗

Zπ1-Modpair,ι
R,inj ×Topop → AbZ :

(
(M, q), A,Λ, U

)
7→ H•(DC•

s(U,A,Λ)). (3.78)

Proposition 3.2.4. For each n ∈ N there is a natural isomorphism of functors:

Hn(DC•
n) ≃ Ĥ n. (3.79)

Proof. In analogy to the ordinary case, we set (using a shorthand notation)

ψ(U,A,Λ) : [(c, h, ω ⊗R a)] 7→ h
∣∣
Zn−1(p−1(U))

mod Λ. (3.80)

We check

ψ(U,A,Λ)(d(c, h, ω⊗Ra)) = ψ(U,A,Λ)(δc,−c−δh, 0) = (−c−δh)
∣∣
Zn−1(p−1(U))

mod Λ = 0, (3.81)

and

ψ(U,A,Λ)([(c, h, ω ⊗R a)])(∂b) = δh(b) mod Λ = (ω ⊗R a)(b)− c(b) mod Λ

= ι(ω ⊗R a)(b).
(3.82)

35



For the inverse, let f ∈ Ĥ n(U ;A/Λ). We construct T (f) ∈ Cn−1(U ;A) as in 3.23. For ω⊗Ra
we simply take ωf ⊗R a = δ1(f). By the proof of Proposition 3.0.4, the cochain T (f) satisfies

δT (f) = ω ⊗R a− c, (3.83)

where c ∈ Zn(U ; Λ) is a representative of δ2(f). Moreover, T (f) is determined up to

c′ + δd, c′ ∈ Cn−1(U ; Λ), d ∈ Cn−2(U ;A). (3.84)

Consequently, the class [(c, T (f), δ1(f))] is uniquely determined. Indeed, let
(
c̃, T̃ (f), ωf⊗Ra

)
.

Then,

(c̃, T̃ (f), ωf ⊗R a)− (c, T (f), ωf ⊗R a) =
(
δ(T (f)− T̃ (f)), T̃ (f)− T (f), 0

)
=

(
−δc′, c′ + δd, 0) = d(−c′,−d, 0).

(3.85)

The fact that the above constructions are mutually inverse follows from the uniqueness of the
class [(c, T (f), ωf ⊗R a)] for a given T (f). The naturality of ψ is straightforward.

3.3. Twisted Differential Characters of Degree-2 as Stacks

In [LM07] E. Lerman and A. Malkin proved that ordinary differential characters of degree 2
form a stack. To be more precise, they showed that the cocycle category ([HS05]) associated
to the presheaf DC•

2 forms a stack over the category Man. This should not be surprising, as
the cocycle category for this presheaf is equivalent to the category of U(1)-principal bundles
with unitary connections. In this thesis, we give a constructive proof of effective descent of
degree-2 twisted differential characters. We do not find it necessary to introduce the full
language of stacks. Thanks to Proposition 3.2.4, we can make a shortcut, representing the
descent data in a double complex on a Čech nerve of a cover of M . We believe that the result
should hold for an arbitrary degree n ∈ N. The proof is likely to be analogous, although more
technically involved. The author will attempt to find the proof in his subsequent works.

For an open cover O =
⊔

i∈I Oi of a connected based manifold M we construct the Čech
nerve ([GM02, Ch. I]), which is a simplicial manifold O• : ∆ → Man whose object component
is

On = O ×M O ×M . . .×M O︸ ︷︷ ︸
n+1

, (3.86)

and the morphism component is fixed by the choice of face and degeneracy maps. The face
maps are the canonical projections

d
(n)
i : On → On−1 : (x0, x1, . . . , xn) 7→ (x0, . . . , xi−1, xi+1, . . . , xn) 0 ⩽ i ⩽ n. (3.87)

The degeneracy maps are

s
(n)
i : On → On+1 : (x0, x1, . . . , xn) 7→ (x0, . . . , xi, xi, . . . , xn) 0 ⩽ i ⩽ n. (3.88)

Note that there are diffeomorphisms

On ≃
⊔

ī∈In+1

Oi0i1...in ī = (i0, . . . , in), (3.89)

where Oi0i1...in := Oi1 ∩Oi2 ∩ . . .∩Oin . Denote by j the covering map O →M , which restricts
to inclusions ji on Oi. Fixing an object(

(M, q), A,Λ
)
∈
∫
Manop

∗

Zπ1-Modpair,ι
R,inj (3.90)
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and using the Čech nerve we construct the double complex:

...
...

...

D̃C0
2(O2, A,Λ) D̃C1

2(O2, A,Λ) D̃C2
2(O2, A,Λ) . . .

D̃C0
2(O1, A,Λ) D̃C1

2(O1, A,Λ) D̃C2
2(O1, A,Λ) . . .

D̃C0
2(O0, A,Λ) D̃C1

2(O0, A,Λ) D̃C2
2(O0, A,Λ) . . .

DC0
2(M,A,Λ) DC1

2(M,A,Λ) DC2
2(M,A,Λ) . . .

0 0 0

d d

δ1

−d

δ1

−d

δ1

δ0

d

δ0

d

δ0

j∗

−d

j∗

−d

j∗

(3.91)

where

D̃Ck
2(On, A,Λ) :=

∏
ī∈In+1

DCk
2(Oi0i1...in , A,Λ), (3.92)

and the map j∗ is defined as

j∗ :=
(
DC•

2(īdM , idA, j̄i)
)
i∈I : DC•

2(M,A,Λ) → D̃C•
2(O0, A,Λ). (3.93)

In order to define δk, note that via the diffeomorphisms 3.89 one can express the face maps
of O• as

d
(n)
l =

⊔
ī∈In+1

d
(n)

l,̄i
:
⊔

ī∈In+1

Oi0i1...in →
⊔
ī∈In

Oi0i1...in−1 , (3.94)

where

d
(n)

l,̄i
: Oī ↪→

⊔
ī∈In

Oi0i1...in−1 . (3.95)

Using these inclusions, we define

δk :=
k+1∑
l=0

(−1)l
∏

ī∈In+2

DC•
2

(
īdM , idA, d̄

(k+1)

l,̄i

)
. (3.96)

We call δk the (k-th) Dupont operator. The horizontal differentials of 3.91 are (besides the
first row) the respective products of differentials of DC•

2. Note that j∗ and all δk are chain
maps for cochain complexes DC and their products. As a general fact ([GM02, Ch. I]), all the
columns of 3.91 are exact. For any representative (c, h, ω⊗Ra) of a class in H2(DC•

2(M,A,Λ)),
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the chain map j∗ induces a cocycle in the total complex of the truncation

0 0 0

D̃C0
2(O2, A,Λ) D̃C1

2(O2, A,Λ) D̃C2
2(O2, A,Λ) . . .

D̃C0
2(O1, A,Λ) D̃C1

2(O1, A,Λ) D̃C2
2(O1, A,Λ) . . .

D̃C0
2(O0, A,Λ) D̃C1

2(O0, A,Λ) D̃C2
2(O0, A,Λ) . . .

0

d

0

d

0

δ1

−d

δ1

−d

δ1

δ0

d

δ0

d

δ0

(3.97)

Simply take j∗(c, h, ω⊗Ra) ∈ D̃C2
2(O0, A,Λ), and (0, 0, 0) in D̃C1

2(O1, A,Λ) and D̃C0
1(O2, A,Λ).

This defines a map

ϖ : H2(DC•
2(M,A,Λ)) → H2

tot

(
D̃C•

2(O•, A,Λ)T
)
, (3.98)

where D̃C•
2(O•, A,Λ)T is the truncated double complex 3.97.

Theorem 3.3.1. For every(
(M, q), A,Λ

)
∈
∫
Manop

∗

Zπ1-Modpair,ι
R,inj (3.99)

and every open cover O of M , the map ϖ : H2(DC•
2(M,A,Λ)) → H2

tot

(
D̃C•

2(O•, A,Λ)T
)

is
an isomorphism.

Proof. Let
(cijk, 0, 0) 0

(cij , hij , 0) 0

(ci, hi, ωi ⊗R a) 0

(3.100)

be a general cocycle in the total complex of D̃C•
2(O•, A,Λ)T. We interpret xi0,...,in , x ∈ {c, h, ω}

as elements of a product 3.92. We can give the inverse to ϖ as a map from the class of 3.100
to a homomorphism

f ∈ HomZπ1(M)(Z1(M̃), A/Λ), f ◦ ∂ = ι(ωf ⊗R a). (3.101)

We will rely on the Subdivision Theorem [Hat02, Proposition 2.21.], and write every 1-cycle z
on M̃ as a sum zp−1O+∂b, where zp−1O is a cycle subordinate to p−1O. This means that each
simplex of zp−1O is supported in p−1(Oi) for some i ∈ I. We will denote by Cp−1O

• (M̃) the
group of p−1O-subordinate chains on M̃ , and by Zp−1O

• (M̃)–the group of p−1O-subordinate
cycles on M̃ . We can define f by introducing f ′ ∈ HomZπ1(M)

(
Zp−1O
1 (M̃), A/Λ

)
, and setting

f(z) = f ′
(
zp−1O

)
+ ι(ωf ⊗R a)(b). (3.102)
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As long as
f ′ ◦ ∂ = ι(ωf ⊗R a)

∣∣
∂−1Zp−1O

1 (M̃)
, (3.103)

the expression 3.102 does not depend on the choice of a decomposition of z. Indeed, let
z = z′p−1O + ∂b′ be another decomposition. We have

zp−1O − z′p−1O = ∂(b′ − b). (3.104)

Since both sides are subordinate to p−1O, we can use Lemma 3.3.2 (see below) to find
bp−1O ∈ Cp−1O

2 (M̃) satisfying ∂bp−1O = ∂(b′ − b), and get zp−1O − z′p−1O = ∂bp−1O, and
thus ∃d ∈ Z2(M̃) : b′ − b− bp−1O = d. Applying 3.102 yields

f ′(zp−1O) + ι(ωf ⊗R a)(b) = f ′(z′p−1O + ∂bp−1O) + ι(ωf ⊗R a)(b)

= f ′(z′p−1O) + ι(ωf ⊗R a)(bp−1O + b) = f ′(z′p−1O) + ι(ωf ⊗R a)(b
′ − d)

= f ′(z′p−1O) + ι(ωf ⊗R a)(b
′).

(3.105)

We read off the equations affirming cocyclicity of 3.100:

(δci, ωi ⊗R a− ci − δhi, d(ωi ⊗R a)) = 0, (3.106)

(cj − ci − δcij , hj − hi + cij + δhij , ωj ⊗R a− ωi ⊗R a) = 0, (3.107)

(cjk − cik + cij + δcijk, hjk − hik + hij − cijk, 0) = 0. (3.108)

It follows that local forms ωi ⊗R a agree on double intersections. Since, by Lemma 2.2.2, Ω•
I

forms a sheaf, this is enough to define ωf ⊗R a as the unique gluing of ωi ⊗R a. In order to
construct f ′, let zp−1O ∈ ZO

1 (M̃) decompose into individual simplices as

zp−1O =

mz∑
j=1

zj im(zj) ⊆ p−1(Oij ). (3.109)

This comes with a choice of a function

{1, . . . ,mz} ∋ j 7→ ij ∈ I. (3.110)

We will have to prove that f ′(zp−1O) does not depend on this choice. Let d0,d1 denote the
face maps defining the boundary ∂:

∂zj = d0zj − d1zj . (3.111)

Because zp−1O is a cycle, for any zj there exists a zj′ such that

d0zj = d1zj′ . (3.112)

This also involves a choice j 7→ j′, which—as we will show—will not change f ′(zp−1O). We
set

f ′(zp−1O) =

mz∑
j=1

hij (zj) + hij′ ij (d0zj) mod Λ. (3.113)
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Note that it is well defined, since im(d0zj) ⊆ p−1(Oij′ ij ). Moreover, 3.113 is linear in the
cocycle 3.100. Therefore, in order to prove that f ′ only depends on the class in cohomology,
it is enough to show that 3.113 vanishes on any coboundary

(djk − dik + dij , 0, 0)

(dij , 0, 0) (aj − ai − δdij , bj − bi + dij , 0)

(ai, bi, 0) (δai,−ai − δbi, 0).

(3.114)

The expression for f ′ becomes

f ′(zp−1O) =

mz∑
j=1

−aij (zj)− δbij (zj) + bij (d0zj)− bij′ (d0zj) + dij′ ij (d0zj) mod Λ

=

mz∑
j=1

−bij (d0zj) + bij (d1zj) + bij (d0zj)− bij′ (d0zj) mod Λ

=

mz∑
j=1

bij (d1zj)− bij′ (d1zj′) mod Λ = 0,

(3.115)

where we use the fact that ai and dij take values in Λ, and the fact that zp−1O is a cycle (a
sum over j′ is just a shifted sum over j). Now, let us consider a different choice function

{1, . . . ,mz} ∋ j 7→ i′j ∈ I. (3.116)

Using 3.107 and 3.108 we compute

mz∑
j=1

hij (zj)− hi′j (zj) + hij′ ij (d0zj)− hi′
j′ i

′
j
(d0zj) mod Λ

=

mz∑
j=1

δhiji′j (zj) + ciji′j (zj) + hij′ ij (d0zj)− hi′
j′ i

′
j
(d0zj) mod Λ

mz∑
j=1

hiji′j (d0zj)− hiji′j (d1zj) + hij′ ij (d0zj)− hi′
j′ i

′
j
(d0zj) mod Λ

=

mz∑
j=1

hiji′j (d0zj)− hij′ i′j′
(d0zj) + hij′ ij (d0zj)− hi′

j′ i
′
j
(d0zj) mod Λ

=

mz∑
j=1

(
hiji′j − hi′

j′ i
′
j

)
(d0zj) +

(
hij′ ij − hij′ i′j′

)
(d0zj) mod Λ

=

mz∑
j=1

(
hiji′j′

− ciji′j′ i
′
j

)
(d0zj) +

(
hi′

j′ ij
− cij′ i′j′ ij

)
(d0zj) mod Λ

=

mz∑
j=1

(
hiji′j′

+ hi′
j′ ij

)
(d0zj) mod Λ =

mz∑
j=1

(
ciji′j′ ij

+ cijiji′j′
)
(d0zj) mod Λ = 0.

(3.117)

That 3.113 is invariant under the change of assignment j 7→ j′ to j 7→ j′′ follows by replacing
j 7→ ij so that i′j′′ = ij′ , the invariance under which we just showed. Now, to see that f ′
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satisfies 3.103, suppose zp−1O = ∂(bp−1O) for a subordinate 2-chain bp−1O. Note that

∂(bp−1O) = ∂

mb∑
j=1

bj =

mb∑
j=1

∂bj , (3.118)

so one can decompose ∂(bp−1O) into simplices as follows:

∂(bp−1O) =

mb∑
l=1

d0bl − d1bl + d2bl =

m∂b∑
j=1

zj . (3.119)

Importantly, as im(∂bj) ⊆ p−1(Oij ) and it is a boundary, we can choose ij′ = ij in the latter
decomposition of 3.119. By the linearity of hi and hij one can write

f ′(∂(bp−1O)) =

mb∑
j=1

hij (∂bj) + hijij (d0∂bj) mod Λ

=

mb∑
j=1

δhij (bj) + cijijij (d0∂bj) mod Λ =

mb∑
j=1

(
ωij ⊗R a− cij

)
(bj) mod Λ

= ι(ωf ⊗R a)(bp−1O),

(3.120)

where we use ciii = hii − hii + hii = hii. This completes the proof of the well-definedness of
3.102. It remains to show that the assignment of f is an isomorphism. First, let
fM ∈ Ĥ 2(M ;A/Λ) be a character represented by a cocycle (c, h, ω⊗R a) ∈ DC2

2(M,A,Λ). In
particular, fM = h

∣∣
Z1(M̃)

mod Λ. On the other hand, the character assigned to ϖ(fM ) can
be written as

f(zp−1O + ∂b) =

mz∑
j=1

hij (zj) mod Λ + ι(ω ⊗R a)(b)

=

mz∑
j=1

h
∣∣
p−1(Oij

)
(zj) mod Λ + ι(ω ⊗R a)(b)

=

mz∑
j=1

h(zj) mod Λ + ι(ω ⊗R a)(b)

= fM (zp−1O + ∂b).

(3.121)

It follows that our map H2
tot

(
D̃C•

2(O•, A,Λ)T
)
→ H2(DC•

2(M,A,Λ)) is surjective. It is now
enough to show injectivity. Suppose that for a cocycle 3.100 the corresponding character f is
zero. That is, in particular

f ′(zp−1O) =

mz∑
j=1

hij (zj) + hij′ ij (d0zj) mod Λ = 0 (3.122)

for each zp−1O ∈ Zp−1O
1 (M̃). Note that for z = zp−1O, we may take b = 0. By considering a

cycle supported in p−1(Oi), picking ij′ = ij , and using the fact that hii ∈ C0(Oii; Λ) we find
that hi(zp−1(Oi)) for any such zp−1(Oi). Therefore, by the Universal Coefficient Theorem, and
by the injectivity of A as a Zπ1(M)-module, there exist bi ∈ C1(Oi;A) and c′i ∈ C1(Oi; Λ)
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such that hi = −δbi + c′i. The expression for f ′ becomes

f ′(zp−1O) =

mz∑
j=1

bij (d1zj)− bij (d0zj) + hij′ ij (d0zj) mod Λ

=

mz∑
j=1

bij′ (d1zj′)− bij (d0zj) + hij′ ij (d0zj) mod Λ

=

mz∑
j=1

bij′ (d0zj)− bij (d0zj) + hij′ ij (d0zj) mod Λ

=

mz∑
j=1

(
−(δ0b)ij′ ij + hij′ ij

)
(d0zj) mod Λ.

(3.123)

Since zj are arbitrary, it follows that hij = (δ0b)ij + dij for dij ∈ C0(Oij ; Λ). Moreover, by
the cocyclicity of (ci, hi, ωi ⊗R a), we obtain

d(ci,−δbi + c′i, ωi ⊗R a) = (δci, ωi − ci − δc′i, d(ωi ⊗R a)) = 0, (3.124)

so, by the injectivity of ι, we infer ωi = 0. Combining all the above, we find that ci = −δc′i,
and then (ci,−δbi + c′i, ωi ⊗R a) = d(−c′i, bi, 0), so the cocycle 3.100 is a coboundary 3.114.
Hence, the proof is complete.

Lemma 3.3.2. Let M be a manifold and let b ∈ Ck(M) be such that ∂b ∈ CO
k−1(M). Then,

there exists b′ ∈ CO
k (M) satisfying ∂b′ = ∂b.

Proof. We write down the homotopy

ρ ◦ ι− idCO
•
= ∂ ◦ h+ h ◦ ∂. (3.125)

Now, define b′ := ρ(b)− h(∂b). This lies in CO
k (M), since ∂b ∈ CO

k−1(M). We compute

∂b′ = ∂ρ(b)− ∂(h(∂b)) = ρ(∂b)−
(
(ρ ◦ ι− idCO

•
)(∂b)− h(∂(∂b))

)
= ρ(∂b)− ρ(ι(∂b)) + ∂b = ρ(∂b)− ρ(∂b) + ∂b = ∂b,

(3.126)

where we used the fact that ρ is a chain map, and that ι(∂b) = ∂b.
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Chapter 4

Examples and applications to weakly
abelian gauge theory

4.1. Topologically trivial coefficient systems

The simplest situation in our theory arises when the coefficient system is topologically trivial
in the sense that it corresponds to a trivial representation ρ = idAutR(A) of π1(M) in an
R-vector space A. We indicate this using an underline under the coefficient system symbol.
In this case, the Zπ1(M)-module structure of A coincides with the Z-module structure of the
underlying abelian group of A, which is divisible and hence injective. A Zπ1(M)-submodule
Λ is an arbitrary subgroup of the underlying additive abelian group of A. A ι-subgroup Λ is
then such a subgroup of A that

Ω•(M,A) := Ω•(M)⊗R A ∋ ω ⊗R a
ι7−→
(
c 7→

∫
c

ω ⊗R a mod Λ
)
∈ C•(M,A/Λ) (4.1)

is an injection. Moreover, we define

Ωk
Λ(M,A) :=

{
ω ∈ Ωk(M,A) : d(ω ⊗R a) = 0 ∧ ∀c ∈ Zk(M) :

∫
c

ω ⊗R a ∈ Λ
}
. (4.2)

Note that for any ι-subgroup Λ of A we can define a simple extension of ordinary differential
characters. Namely,

Ĥk(M,A/Λ):=
{
f ∈ HomZ

(
Zk−1(M), A/Λ

)∣∣∃ωf⊗Ra ∈ Ωk
Λ(M,A) :f◦∂ = ι(ωf⊗Ra)

}
. (4.3)

Proposition 4.1.1. For a topologically trivial local system as above, we have

Ĥ k(U ;A/Λ) ≃ Ĥk(U,A/Λ). (4.4)

Proof. Following the arguments from Remark 2.0.2, for any open U ⊆M , we have

Ωk
I (p

−1(U);A) ≃ Ωk(U)⊗R A = Ωk(U,A) (4.5)

and
Ωk
I,Λ(p

−1(U);A) ≃ Ωk
Λ(U,A). (4.6)

Using the isomorphism

HomZπ1(M)

(
Zk−1(p

−1(U)), A/Λ
)
≃ HomZ

(
Zk−1(U), A/Λ

)
(4.7)

completes the proof.
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4.2. Application to weakly abelian gauge theories

4.2.1. Weakly abelian Lie groups

Definition 4.2.1. A (generally disconnected) Lie group G is called weakly abelian if its Lie
algebra g is abelian, i.e. if the Lie bracket of g is identically zero.

Let G be a weakly abelian Lie group. Then it is easy to see that the connected com-
ponent1 A := G0 of the identity is an abelian Lie group which coincides with the image of
the exponential map expG : g → G. The Baker-Campbell-Hausdorff formula implies that the
latter is a group epimorphism from the underlying abelian group of the vector space g to A.
We will use additive notation for A and multiplicative notation for G. By a standard classifi-
cation theorem for connected abelian Lie groups, A is a direct product of a torus group with
a translation group. It is a torus group if and only if A is compact. Let Γ := G/A ≃ π0(G)
be the group of connected components of G. We have an exact sequence of Lie groups:

1 → A
i→ G

q→ Γ → 1 , (4.8)

where i and q respectively are the inclusion and projection and Γ is endowed with the discrete
topology and zero-dimensional manifold structure. The conjugation action of G preserves A
and hence induces a morphism of groups AdAG : G→ Aut(A) (called the restricted conjugation
action), where Aut(A) is the group of Lie automorphisms of A. This factors through q to the
so-called characteristic morphism ρ : Γ → Aut(A) of G:

AdAG = ρ ◦ q . (4.9)

This makes A into an abelian smooth module over Γ, which we denote by Aρ and call the
characteristic module of G. The extension 4.8 is central if and only if the characteristic module
is trivial. Since A is abelian, its group of inner automorphisms is trivial. This implies that
equivalent Lie group extensions of Γ by A have the same characteristic morphism ρ (see Sec.
18 in [HN12]).

Since A is abelian, the adjoint representation of adG : G → AutR(g) factors through q to
the reduced adjoint representation ρ̄ : Γ → AutR(g):

adG = ρ̄ ◦ q . (4.10)

Note that ρ̄ determines ρ via the exponential map. The exponential lattice of G is the abelian
group:

Λ := ker(expG) ⊆ g . (4.11)

This is a (generally non-full) lattice in g which is stabilized by the adjoint and reduced adjoint
representations. Since expG : g → A is the universal covering of A, and by g/Λ ≃ A, we find
that Λ (as an additive group) is naturally isomorphic to the abelian group
π1(G) := π1(A, 1G). The restriction ad0 : G → AutZ(Λ) of the adjoint representation adG
is called the restricted conjugation action of G while the restriction ρ̄0 : Γ → AutZ(Λ) of the
reduced adjoint representation ρ̄ is called the coefficient morphism of G. We have:

ad0 = ρ̄0 ◦ q . (4.12)

1The R-vector space denoted by A in previous sections corresponds to the vector space denoted by g in
the present section, while the abelian group A of the present section corresponds to the quotient A/Λ in the
notation of previous sections.
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The coefficient morphism makes Λ into a discrete Γ-module which we denote by Λρ0 and call
the coefficient module of G. It is easy to see that we have:

A ≃ (Λ⊗Z R)/Λ× (RdimA−rkΛ,+) . (4.13)

The translation group on the right is trivial if and only if Λ is a full lattice in g (which happens
if and only if A is compact). In this case, A is a torus group and we say that that the weakly
abelian Lie group G is full.

4.2.2. Weakly abelian principal bundles

By definition, a weakly abelian classical gauge theory defined on a manifold M is a classical
gauge theory defined on M and whose structure group is weakly abelian. Such a theory
describes principal connections on a weakly abelian principal bundle P defined over M , i.e.
a principal bundle over M whose structure group G is weakly abelian. Notice that such
principal bundles have disconnected structure group unless π0(G) = Γ is the trivial group.

Let G be a weakly abelian Lie group characterized by an extension sequence 4.8 and P be
a principal G-bundle defined over a connected manifold M . We define the discrete remnant
of P to be the principal Γ-bundle:

Γ(P ) := P ×q Γ (4.14)

associated to P through the group epimorphism q : G → Γ. The discrete remnant map is
the surjective based morphism of principal bundles ΦP : P → Γ(P ) above the morphism of
groups q : G → Γ which sends a point p ∈ P to the equivalence class [p, 1Γ] ∈ Γ(P ), thus
giving a reduction of the structure group (in the general sense of that term) of Γ(P ) from Γ
to G. Notice that Γ(P ) identifies with the principal Γ-bundle P/A whose fiber at m ∈ M is
the right Γ-space Pm/A of A-orbits of the right G-space Pm.

Since Γ(P ) is a bundle with discrete fiber, it carries a natural flat Ehresmann connec-
tion. Accordingly, the following bundles associated to Γ(P ) carry natural flat Ehresmann
connections:

1. The adjoint bundle of P , which we denote by:

g(P ) := P ×adG g = Γ(P )×ρ̄ g . (4.15)

2. The Dirac system:
Λ(P ) := P ×Ad0 Λ = Γ(P )×ρ̄0 Λ (4.16)

3. The bundle of connected abelian Lie groups:

A(P ) := P ×AdAG
A = Γ(P )×ρ A . (4.17)

The flat connections induced from Γ(P ) are compatible with the fiber structures of the bundles
g(P ), Λ(P ) and A(P ). Thus, the induced connection on g(P ) is a flat linear connection, the
parallel transport of the flat connection of Λ(P ) proceeds through morphisms of abelian groups
between the fibers (which makes Λ(P ) into a local system of discrete abelian groups) and the
parallel transport of the flat connection of A(P ) proceeds through morphisms of Lie groups
(which makes A(P ) into a flat bundle of abelian Lie groups). Note that Λ(P ) is a discrete flat
fiber sub-bundle of the vector bundle g(P ), i.e. a fiber sub-bundle which is preserved by the
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parallel transport of the linear flat connection of g(P ). The exponential short exact sequence
of abelian groups:

0 → Λ → g
expG→ A→ 0 (4.18)

induces a short exact sequence of bundles of abelian Lie groups:

0 → Λ(P ) → g(P )
expG→ A(P ) → 0 . (4.19)

4.2.3. Twisted differential characters associated with weakly abelian prin-
cipal bundles

Denote by D the flat linear connection of g(P ) and let dD : Ω•(M, g(P )) → Ω•+1(M, g(P ))
be the de Rham differential twisted by D [KN63, II. 5.]. Then d2D = 0 and the the fact
that sheaves of smooth local sections of vector bundles are acyclic implies that the de Rham
cohomology of g(P ) twisted by D coincides with the sheaf cohomology of the sheaf S(P ) of
flat local sections of g(P ):

H•
dD

(M, g(P )) = H•(M,S(P )). (4.20)

It is natural to consider the differential cohomology Ĥ •(M ; g(P )/Λ(P )) with local coeffi-
cients given by g(P ) and integrality conditions imposed along the Dirac system
Λ(P ) ⊆ g(P ). This provides natural secondary characteristic classes for g(P )-valued differen-
tial forms. A twisted differential character f ∈ Ĥ k(M ; g(P )/Λ(P )) associates an element of
g/Λ to any (k − 1)-cycle ck−1 ∈ Zk−1(M̃) in such a way that, for any k-chain ck ∈ Ck(M̃),
we have f(∂ck) = ι(ωf ) for some dD-closed form ωf ∈ Ω2

dD−cl(M, g(P )) which satisfies the
Dirac integrality condition with respect to the Dirac system Λ(P ). The latter states that
ωf has Λ-valued periods when the notion of period is considered in the sense explained in
Chapter 2. The translation from the language of flat bundles on M to Zπ1(M)-modules is
straightforward upon trivializing the pullbacks p∗g(P ) and p∗Λ(P ) over the contractible M̃ .
From this perspective, the parallel transport amounts to the action of Zπ1(M) on fibers.

4.2.4. The Dirac quantization condition for weakly abelian gauge theories

An obvious application to weakly abelian gauge theory is provided by degree-1 twisted differ-
ential characters of this type. The adjoint curvature of a principal connection A ∈ Conn(P )
is an g(P )-valued 2-form FA ∈ Ω2(M, g(P )). This form is dD-closed by the Bianchi identity
and hence we have:

FA ∈ Ω2
dD−cl(M, g(P )) . (4.21)

The Wilson loop of a principal connection A ∈ Conn(P ) along a 1-cycle c1 ∈ Z1(P ) defines
an element fA(c1) of A = exp(g) ≃ g/Λ. By the nonabelian Stokes theorem [KMR99], this
satisfies

fA(∂c2) =

∫
c2

FA (4.22)

for all c2 ∈ C2(M), when the integral in the right hand side is interpreted appropriately. It
follows that the Wilson loop of A is a twisted differential character if and only if the curvature
2-form FA is integral with respect to the Dirac system Λ(P ), i.e. if and only if A satisfies the
Dirac quantization condition relative to the Dirac system Λ(P ). In this case, A a semiclassical
(rather than merely classical) principal connection. This implies the following:
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Proposition 4.2.2. The elements of Ĥ 2(M ; g(P )/Λ(P )) correspond to the Wilson loops of
semiclassical principal connections defined on P , i.e. those principal connections which obey
the Dirac quantization condition relative to the Dirac system Λ(P ).

The study of principal bundles with weakly abelian structure group of associated gauge
theories is of interest for self-dual formulations of theories containing various extended versions
of electromagnetism, such as N = 1 supergravity in four dimensions (see [LS22]). In that case,
the group extension 4.8 is split 2 and one has

A = U(1)2n and Γ = Spt(2n,Z) (4.23)

for some natural number n ∈ Z>0, where the modular exponent t = (t1, . . . , tn) ∈ Zn
>0 is a

sequence of positive integers which satisfy the division conditions:

t1|t2| . . . |tn, (4.24)

and
Spt(2n,Z) = {σ ∈ Sp(2n,R)|σ(Λt) = Λt} (4.25)

is the modified Siegel modular group in dimension 2n. Here Λt is the integral symplectic
lattice spanned inside R2n by the vectors e1, . . . , en, t1en+1, . . . , tne2n, where e1, . . . e2n is the
canonical basis of R2n. In this case, we have g = R2n and Λ = Λt ≃Z Z2n. We refer the reader
to [LS21] for a brief explanation of the physics origin and meaning of this choice. Much more
detail can be found in [LS18].

The Dirac quantization condition for the situation relevant to N = 1 supergravity was
studied in detail in [LS22]. The results above give an interpretation of those results through
the degree two twisted differential cohomology of the pair (g(P ),Λ(P )).

4.3. On computations of twisted differential cohomology when
Λ is an arithmetic group

The computation of twisted differential cohomology can be highly nontrivial when the corre-
sponding Zπ1(M)-R-bimodule has a complicated structure. For example, in weakly abelian
gauge theories relevant to N=1 supergravity, the representation of π1(M) in the underlying
vector space factors through a representation 3 of the discrete group Γ, which in such theories
is the arithmetic group Spt(2n,Z). This relates the problem of computing the relevant twisted
differential cohomology groups to the study of linear representations of the modified Siegel
modular groups Spt(2n,Z). This relates the twisted differential cohomology relevant for such
theories to the theory of Siegel modular forms. As explained for example in [LS18], modi-
fied Siegel modular groups arise naturally in the theory of non-principally polarized abelian
varieties and their representations play a crucial role in the theory of Siegel modular varieties.

2The precise semidirect product structure of the split extension 4.8 for this case is given in loc. cit.
3This can be described explicitly using the universal model provided by the classifying space of G or via

universal Chern-Weyl theory.
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