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Introduction

Quantum theory of gravity - Graal of modern theoretical physics

several approaches:

string theory

loop quantum gravity

matrix models - 2−dimensional quantum gravity

causal dynamical triangulations

etc.
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Matrix models - 2−dimensional quantum gravity

Ph. Di Francesco et. al., Phys. Rept. (1995), hep-th/9306153

M - N × N matrix

the partition function:

Z = eF =

∫
dMe

− 1
2
TrM2+ g√

N
TrM3

.

diagrammatic expansion - Feynman ribbon graphs

generates random triangulations

discretized integral over geometries performed as sum over random
triangulations

0−dimensional string theory (a pure theory of surfaces with no
cuppling to matter on the string worldsheet)
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Large N expansion of matrix models

the matrix amplitude can be combinatorially computed - in terms
of number of vertices (p), edges and faces (F ) of the graph
change of variables: M → M

√
N (easy to count powers of N)

A = λVN−
1
2

V +F = λ2pN2−2g

(since E = 3
2V )

the partition function (and the free energy) supports a 1/N
exapnsion:

Z = N2Z0(g) + Z1(g) + . . . =
∑

g

N2−2gZg (g)

Zg gives the contribution from surfaces of genus g

large N limit, only planar surfaces survive - dominant graphs
(triangulations of the sphere S2)
V. A. Kazakov, Phys. Lett. B (’85), F. David, Nucl. Phys. B (’85), E. Brezin et al., Commun. Math. Phys. (’78)
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Tensor models

natural generalization of matrix models
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QFT-inspired simplication of tensor models - the colored
tensor models

highly non-trivial combinatorics
→ a QFT simplification of these models - colored tensor models
(R. Gurău, Commun. Math. Phys. (2011), arXiv:0907.2582)

a quadruplet of complex fields
(
φ0, φ1, φ2, φ3

)
;

S [{φi}] = Sf [{φi}] + Sint [{φi}]

Sf [{φi}] =
1

2

3∑
p=0

∑
ijk

φp
ijkφ

p
ijk (1)

Sint [{φi}] =
λ

4

∑
i ,j ,k,i ′,j ′,k ′

φ0
ijkφ

1
i ′j ′kφ

2
i ′jk ′φ3

k ′j ′i + c. c.,

the indices 0, . . . , 3 - color indices.
extra property: the faces of the Feynman graphs of this model
have always exactly two (alternating) colors.
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Various QFT develpoments for colored tensor models

large N expansion
R. Gurau, Annales Henri Poincare (2011), [arXiv:1011.2726 [gr-qc]]

large N expansion in any dimension
R. Gurau and V. Rivasseau, Europhys. Lett. (2011), arXiv:1101.4182[gr-qc],

R. Gurău, Annales Henri Poincaré (2012) [arXiv:1102.5759 [gr-qc]].

−→ continuum phase transition and computation of critical
exponents
V. Bonzom et. al., Nucl. Phys. B (2011) arXiv:1105.3122[hep-th]

renormalizable tensor models
J. Ben Geloun and V. Rivasseau, Commun. Math. Phys. (in press), arXiv:1111.4997 [hep-th].
S. Carrozza et. al. arXiv:1207.6734 [hep-th].
D. O. Samary and F. Vignes-Tourneret, arXiv:1211.2618 [hep-th].
J. Ben Geloun and D. O. Samary, arXiv:1201.0176 [hep-th].

J. B. Geloun and E. R. Livine, arXiv:1207.0416 [hep-th].

Noether currents
J. Ben Gelon, J. Math. Phys. (2012), [arXiv:1107.3122 [hep-th]]

etc.
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A (Moyal) QFT-inspired simplication of tensor models

highly non-trivial combinatorics
→ a QFT simplification of these models - multi-orientable models
A. Tanasă, J. Phys. A (2012)

proposal made within the Group Field Theory framework

edge going from a + to a − corner

ADRIAN TANASĂ Large N expansion of tensor models



The action: the propagator and the vertex

S [φ] = S0[φ] + Sint [φ], (2)

S0[φ] =
1

2

∑
i ,j ,k

φ̂kjiφijk , Sint [φ] =
λ

4

∑
i ,j ,k,i ′,j ′,k ′

φkji φ̂ij ′k ′φk ′ji ′ φ̂i ′j ′k .
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Multi-orientable tensor Feynman graphs

no twists on the propagators → one-to-one correspondence
between multi-orientable tensor Feynman graphs and graphs

A four-edge colorable is a graph for which the edge chromatic
number is equal to four.

The set of Feynman graphs generated by the colored action (1) is
a strict subset of the set of Feynman graphs generated by the m.o.
action (2).
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A bipartite graph is four-edge colorable.
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Example of graphs

A tadface is a face “going” several times through the same edge.

The condition of multi-orientability discards tadfaces (Theorem 3.1
of A. Tanasă, J. Phys. A (2012), arXiv:1109.0694).

example of a graph with a tadface which is edge-colorable
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the planar double tadpole as an example of a m.o. graph which is
not colorable. On the right, an example of a m.o. graph which is
4-edge colorable but does not occur in colorable tensor models.

Figure 4: Ex-
ample of a multi-
orientable graph
which is not col-
orable.
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Figure 5: The “twisted sunshine” is
an example of a m.o. graph which is
4-edge colorable but does not occur
in the colored models.

Figure 6: A 4-edge colorable m.o. graph which is not bipartite.

indexed by an integer called the degree which is the sum of the genera of all jackets.
In particular in dimension 3 colored tensor graphs have three jackets which define three
di↵erent Hegaard splitting of the dual of the underlying (pseudo)manifold [17].

In the multi-orientable case we want to implement a similar 1/N expansion, hence
we need to generalize the notion of jackets. We remark that six strands meet at any vertex
v. In the most general case there is no way to split them into three pairs av, bv, cv in a
coherent way throughout the graph, namely in a way such that any face is made out only
of strands of the same type, a, b or c (see Fig. 7 for an example of a stranded graph where
such a splitting is impossible).

In the m.o. case, such a coherent splitting is possible. Indeed at each vertex the
inner pair of strands (those acting on the E2 space) is unique and well-defined. Let us
say that this pair has type c. This pair is coherent, that is throughout the graph any
face containing an inner strand is made of inner strands only. But we can also split at
each vertex the four outer strands, or “corner strands”, into two coherent pairs, of opposite
strands. Consider indeed a vertex and turn clockwise around it starting at the inner strand
of a �̂ field, as shown on Fig.8. Call the first and third corner strands we meet type a,

indexed by such ribbon graphs.

7
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A 4-edge colorable m.o. graph which is not bipartite
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A graph without tadfaces which is not m.o. Edges of the box are
identified so that the graph is drawn on the torus
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Topological tools - jacket ribbon subgraphs

In the colored case the 1/N expansion relies on the notion of
jacket ribbon subgraphs, which are associated to the cycle of
colors up to orientation.
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Generalization of the notion of jackets for m.o. graphs

three pairs of opposite corner strands

A jacket of an m.o. graph is the graph made by excluding one
type of strands throughout the graph. The outer jacket c̄ is made
of all outer strands, or equivalently excludes the inner strands;
jacket ā excludes all strands of type a and jacket b̄ excludes all
strands of type b.
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Example of jacket subgraphs

A m.o. graph with its three jackets ā, b̄, c̄
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Is such a jacket subgraph a ribbon subgraph?

Any jacket of a m.o. graph is a ribbon graph (with uniform degree
4 at each vertex).

untwisting vertex procedure:

may introduce twists on the edges
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Is such a jacket subgraph a ribbon subgraph?

Any jacket of a m.o. graph is a ribbon graph (with uniform degree
4 at each vertex).

untwisting vertex procedure:

may introduce twists on the edges
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this does not hold for any, non-m. o., tensor graph

Example: Deleting a pair of opposite corner strands in this tadpole
(which has tadfaces), does not lead to a 2-stranded graph.
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Euler characteristic & degree of tensor graphs

ribbon graphs can represent orientable or non-orientable surfaces.

Euler charcacteristic formula:

χ(J ) = v − e + f = 2− k ,

k is the non-orientable genus,
v is the number of vertices,
e the number of edges and
f the number of faces.

If the surface is orientable, k is even and equal to twice the
orientable genus g

Given a multi-orientable graph G, its degree $(G) is defined by

$(G) =
∑
J

kJ
2
,

the sum over J running over the three jackets of G.
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Large N expansion of the m.o. tensor model

Feynman amplitude calculation - each tensor graph face
contributes with a factor N, N being the size of the tensor

=⇒ one needs to count the number of faces of the tensor graph

this can be acheived using the graph’s jackets (ribbon subgraphs)

The Feynman amplitude of a general m.o. tensor graph G writes:

A(G) = λvGN3−$(G).

The free energy writes as a formal series in 1/N:

F (λ,N) =
∑

$∈N/2

C [$](λ)N3−$,

C [$](λ) =
∑

G,$(G)=$

1

s(G)
λvG .
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Dominant graphs

dominant graphs:

$ = 0.
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An example of a dominant tensor graph

outer jacket is orientable (always the case for the outer
jacket), and it has genus g1 = 0.

the two remaining jackets also have vanishing genus
g2 = g3 = 0 (can be directly computed using Euler’s
characteristic formula)

=⇒ vanishing degree ($ = 0) ⇔ dominant graph
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Two examples of non-dominant tensor graphs

Figure 4: Ex-
ample of a multi-
orientable graph
which is not col-
orable.
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Figure 5: The “twisted sunshine” is
an example of a m.o. graph which is
4-edge colorable but does not occur
in the colored models.

Figure 6: A 4-edge colorable m.o. graph which is not bipartite.

indexed by an integer called the degree which is the sum of the genera of all jackets.
In particular in dimension 3 colored tensor graphs have three jackets which define three
di↵erent Hegaard splitting of the dual of the underlying (pseudo)manifold [17].

In the multi-orientable case we want to implement a similar 1/N expansion, hence
we need to generalize the notion of jackets. We remark that six strands meet at any vertex
v. In the most general case there is no way to split them into three pairs av, bv, cv in a
coherent way throughout the graph, namely in a way such that any face is made out only
of strands of the same type, a, b or c (see Fig. 7 for an example of a stranded graph where
such a splitting is impossible).

In the m.o. case, such a coherent splitting is possible. Indeed at each vertex the
inner pair of strands (those acting on the E2 space) is unique and well-defined. Let us
say that this pair has type c. This pair is coherent, that is throughout the graph any
face containing an inner strand is made of inner strands only. But we can also split at
each vertex the four outer strands, or “corner strands”, into two coherent pairs, of opposite
strands. Consider indeed a vertex and turn clockwise around it starting at the inner strand
of a �̂ field, as shown on Fig.8. Call the first and third corner strands we meet type a,

indexed by such ribbon graphs.
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double tadpole:
$ = 0 + 1

2 + 0 = 1
2 .

“twisted sunshine” (bipartite 4−edge colorable graph):
Its outer jacket is orientable (always the case for the outer jacket),
and it has genus g1 = 1.
The two remaining jackets are isomorphic and have non-orientable
genus k2 = k3 = 1.
=⇒ $ = 2.
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General identification of dominant graphs

Non-bipartite m.o. graphs have at least one non-orientable jacket
and are thus non-dominant of degree

$ ≥ 1

2
.
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The only bipartite (and hence edge-colorable) m.o. tensor graphs
of vanishing degree ($ = 0) are the graphs obtained from
insertions of the “melon” graph.

series-parallel graphs
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Main result:

The m.o. model admits a 1/N expansion whose dominant graphs
are the “melonic” ones.

These graphs correspond to a particular class of triangulations of
the sphre S3.
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Perspectives

combinatorial Hopf algebras for renormalizable tensor models
the Ben Geloun-Rivasseau model Commun. Math. Phys. (in press),

arXiv:1111.4997 [hep-th]

(work in progress with M. Raasakka)

sub-dominant tensor graphs

generalization of the matrix integral techniques to tensor
integral techniques - hyper-map counting

Schaeffer bijection G. Schaeffer, Electronic J. Comb. (1997)

3D geodesic length?

study the Noether currents of m.o. tensor models
(generalization of J. Ben Geloun, J. Math. Phys. (2012),
arXiv:1107.3122 [hep-th]).

enlarge the m.o. framework studied in this paper to include
still larger classes of tensor graphs and check whether they
admit a 1/N expansion.
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Vă mulţumesc pentru atenţie!
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“The amount of theoretical work one has to cover before being
able to solve
problems of real practical value is rather large, but this
circumstance is [...] likely to become more pronounced in the
theoretical physics of the future.”
P.A.M. Dirac, “The principles of Quantum Mechanics”, 1930
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