Large *N* expansion of tensor models

ADRIAN TANASĂ

DFT, IFIN-HH

in collaboration with:

S. Dartois (Univ. Paris 13, Sorbonne Paris Cité, France)
 V. Rivasseau (Univ. Paris 11, Paris-Saclay, France)

arXiv:1301.1535[hep-th], Annales Henri Poincaré (in press)

Măgurele, 31 mai 2013

Introduction

- Matrix models and their large N exapnsion (dominant graphs)
- 3-dimensional tensor models; the colored and the multi-orientable QFT simplifications
- Classification of Feynman graphs
- Some combinatorial and topological tools
- Large N expansion dominant graphs
- Perspectives

イロト イヨト イヨト イヨト

Quantum theory of gravity - Graal of modern theoretical physics

several approaches:

- string theory
- loop quantum gravity
- matrix models 2-dimensional quantum gravity
- causal dynamical triangulations
- etc.

▲ □ → ▲ 三 → ▲ 三 →

Matrix models - 2-dimensional quantum gravity

Ph. Di Francesco et. al., Phys. Rept. (1995), hep-th/9306153 $\rm M$ – $\it N \times \it N$ matrix

the partition function:

$$Z = e^{F} = \int dM e^{-\frac{1}{2} \operatorname{Tr} M^{2} + \frac{\mathscr{E}}{\sqrt{N}} \operatorname{Tr} M^{3}}$$

diagrammatic expansion - Feynman ribbon graphs

generates random triangulations

discretized integral over geometries performed as sum over random triangulations

0-dimensional string theory (a pure theory of surfaces with no cuppling to matter on the string worldsheet)

(ロ) (同) (E) (E) (E)

Large N expansion of matrix models

the matrix amplitude can be combinatorially computed - in terms of number of vertices (*p*), edges and faces (*F*) of the graph change of variables: $M \rightarrow M\sqrt{N}$ (easy to count powers of *N*)

$$\mathcal{A} = \lambda^{V} \mathcal{N}^{-\frac{1}{2}V + F} = \lambda^{2p} \mathcal{N}^{2-2g}$$

(since $E = \frac{3}{2}V$) the partition function (and the free energy) supports a 1/Nexappsion:

$$Z = N^2 Z_0(g) + Z_1(g) + \ldots = \sum_g N^{2-2g} Z_g(g)$$

 Z_g gives the contribution from surfaces of genus glarge N limit, only planar surfaces survive - dominant graphs (triangulations of the sphere S^2)

V. A. Kazakov, Phys. Lett. B ('85), F. David, Nucl. Phys. B ('85), E. Brezin et al., Commun. Math. Phys. ('78)

natural generalization of matrix models

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

QFT-inspired simplication of tensor models - the colored tensor models

highly non-trivial combinatorics \rightarrow a QFT simplification of these models - colored tensor models

(R. Gurău, Commun. Math. Phys. (2011), arXiv:0907.2582)

a quadruplet of complex fields $\left(\phi^{0},\phi^{1},\phi^{2},\phi^{3}
ight)$;

$$S[\{\phi^{i}\}] = S_{f}[\{\phi^{i}\}] + S_{int}[\{\phi^{i}\}]$$

$$S_{f}[\{\phi^{i}\}] = \frac{1}{2} \sum_{p=0}^{3} \sum_{ijk} \overline{\phi_{ijk}^{p}} \phi_{ijk}^{p}$$

$$S_{int}[\{\phi^{i}\}] = \frac{\lambda}{4} \sum_{i,j,k,i',j',k'} \phi_{ijk}^{0} \phi_{i'j'k}^{1} \phi_{i'jk'}^{2} \phi_{k'j'i}^{3} + \text{ c. c.},$$
(1)

the indices $0, \ldots, 3$ - color indices. extra property: the faces of the Feynman graphs of this model have always exactly two (alternating) colors.

Various QFT developments for colored tensor models

large N expansion

R. Gurau, Annales Henri Poincare (2011), [arXiv:1011.2726 [gr-qc]]

large N expansion in any dimension R. Gurau and V. Rivasseau, Europhys. Lett. (2011), arXiv:1101.4182[gr-gc].

R. Gurău, Annales Henri Poincaré (2012) [arXiv:1102.5759 [gr-qc]].

• \longrightarrow continuum phase transition and computation of critical exponents

V. Bonzom et. al., Nucl. Phys. B (2011) arXiv:1105.3122[hep-th]

renormalizable tensor models

J. Ben Geloun and V. Rivasseau, Commun. Math. Phys. (in press), arXiv:1111.4997 [hep-th].

S. Carrozza et. al. arXiv:1207.6734 [hep-th].

D. O. Samary and F. Vignes-Tourneret, arXiv:1211.2618 [hep-th].

J. Ben Geloun and D. O. Samary, arXiv:1201.0176 [hep-th].

J. B. Geloun and E. R. Livine, arXiv:1207.0416 [hep-th].

Noether currents

J. Ben Gelon, J. Math. Phys. (2012), [arXiv:1107.3122 [hep-th]]

• etc.

・ロン ・回 と ・ ヨ と ・ ヨ と

A (Moyal) QFT-inspired simplication of tensor models

highly non-trivial combinatorics \rightarrow a QFT simplification of these models - multi-orientable models A. Tanasă, J. Phys. A (2012)

proposal made within the Group Field Theory framework

edge going from a + to a - corner

The action: the propagator and the vertex

$$S[\phi] = S_0[\phi] + S_{int}[\phi],$$
(2)
$$S_0[\phi] = \frac{1}{2} \sum_{i,j,k} \hat{\phi}_{kji} \phi_{ijk}, \quad S_{int}[\phi] = \frac{\lambda}{4} \sum_{i,j,k,i',j',k'} \phi_{kji} \hat{\phi}_{ij'k'} \phi_{k'ji'} \hat{\phi}_{i'j'k}.$$

・ロン ・回 と ・ ヨン ・ ヨン

臣

no twists on the propagators \rightarrow one-to-one correspondence between multi-orientable tensor Feynman graphs and graphs

A *four-edge colorable* is a graph for which the edge chromatic number is equal to four.

The set of Feynman graphs generated by the colored action (1) is a strict subset of the set of Feynman graphs generated by the m.o. action (2).

A bipartite graph is four-edge colorable.

◆□ > ◆□ > ◆臣 > ◆臣 > 「臣 」の < @

A tadface is a face "going" several times through the same edge.

The condition of multi-orientability discards tadfaces (Theorem 3.1 of A. Tanasă, J. Phys. **A** (2012), arXiv:1109.0694).

example of a graph with a tadface which is edge-colorable

the planar double tadpole as an example of a m.o. graph which is not colorable. On the right, an example of a m.o. graph which is 4-edge colorable but does not occur in colorable tensor models.

A⊒ ▶ ∢ ∃

A 4-edge colorable m.o. graph which is not bipartite

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

A graph without tadfaces which is not m.o. Edges of the box are identified so that the graph is drawn on the torus

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

In the colored case the 1/N expansion relies on the notion of **jacket ribbon subgraphs**, which are associated to the cycle of colors up to orientation.

Generalization of the notion of jackets for m.o. graphs

three pairs of opposite corner strands

A **jacket of an m.o. graph** is the graph made by excluding one type of strands throughout the graph. The *outer* jacket \bar{c} is made of all outer strands, or equivalently excludes the inner strands; jacket \bar{a} excludes all strands of type *a* and jacket \bar{b} excludes all strands of type *b*.

Example of jacket subgraphs

A m.o. graph with its three jackets \bar{a} , \bar{b} , \bar{c}

< 3 > <

Is such a jacket subgraph a ribbon subgraph?

(ロ) (部) (E) (E) =

Is such a jacket subgraph a ribbon subgraph?

Any jacket of a m.o. graph is a ribbon graph (with uniform degree 4 at each vertex).

untwisting vertex procedure:

may introduce twists on the edges

this does not hold for any, non-m. o., tensor graph

Example: Deleting a pair of opposite corner strands in this tadpole (which has tadfaces), does not lead to a 2-stranded graph.

Euler characteristic & degree of tensor graphs

ribbon graphs can represent orientable or non-orientable surfaces. Euler charcacteristic formula:

$$\chi(\mathcal{J}) = \mathbf{v} - \mathbf{e} + \mathbf{f} = 2 - \mathbf{k},$$

k is the non-orientable genus,v is the number of vertices,e the number of edges andf the number of faces.

If the surface is orientable, k is even and equal to twice the orientable genus \boldsymbol{g}

Given a multi-orientable graph $\mathcal G,$ its degree $\varpi(\mathcal G)$ is defined by

$$\varpi(\mathcal{G}) = \sum_{\mathcal{J}} \frac{k_{\mathcal{J}}}{2},$$

Large N expansion of the m.o. tensor model

Feynman amplitude calculation - each tensor graph face contributes with a factor N, N being the size of the tensor \implies one needs to count the number of faces of the tensor graph this can be acheived using the graph's jackets (ribbon subgraphs) The Feynman amplitude of a general m.o. tensor graph G writes:

$$A(\mathcal{G}) = \lambda^{\nu_{\mathcal{G}}} N^{3-\varpi(\mathcal{G})}.$$

The free energy writes as a formal series in 1/N:

$$egin{aligned} &F(\lambda, \mathsf{N}) = \sum_{arpi \in \mathbb{N}/2} C^{[arpi]}(\lambda) \mathsf{N}^{3-arpi}, \ &C^{[arpi]}(\lambda) = \sum_{\mathcal{G}, arpi(\mathcal{G}) = arpi} rac{1}{s(\mathcal{G})} \lambda^{\mathsf{v}_{\mathcal{G}}}. \end{aligned}$$

ヨッ イヨッ イヨッ

dominant graphs:

 $\varpi = 0.$

ADRIAN TANASĂ Large N expansion of tensor models

An example of a dominant tensor graph

- outer jacket is orientable (always the case for the outer jacket), and it has genus $g_1 = 0$.
- the two remaining jackets also have vanishing genus $g_2 = g_3 = 0$ (can be directly computed using Euler's characteristic formula)
- \implies vanishing degree (arpi = 0) \Leftrightarrow dominant graph

Two examples of non-dominant tensor graphs

double tadpole: $\varpi = 0 + \frac{1}{2} + 0 = \frac{1}{2}.$

"twisted sunshine" (bipartite 4-edge colorable graph): Its outer jacket is orientable (always the case for the outer jacket), and it has genus $g_1 = 1$. The two remaining jackets are isomorphic and have non-orientable genus $k_2 = k_3 = 1$. $\implies \varpi = 2$.

Non-bipartite m.o. graphs have at least one non-orientable jacket and are thus non-dominant of degree

$$\varpi \geq \frac{1}{2}.$$

・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

The only bipartite (and hence edge-colorable) m.o. tensor graphs of vanishing degree ($\varpi = 0$) are the graphs obtained from insertions of the "melon" graph.

series-parallel graphs

伺 ト イヨト イヨト

Main result:

The m.o. model admits a 1/N expansion whose dominant graphs are the "melonic" ones.

These graphs correspond to a particular class of triangulations of the sphre \mathcal{S}^3 .

(本間) (本語) (本語) (語)

Perspectives

• combinatorial Hopf algebras for renormalizable tensor models the Ben Geloun-Rivasseau model *Commun. Math. Phys.* (in press),

arXiv:1111.4997 [hep-th]

(work in progress with M. Raasakka)

- sub-dominant tensor graphs
- generalization of the matrix integral techniques to tensor integral techniques *hyper-map counting*
- Schaeffer bijection G. Schaeffer, *Electronic J. Comb.* (1997) 3D geodesic length?
- study the Noether currents of m.o. tensor models (generalization of J. Ben Geloun, *J. Math. Phys.* (2012), arXiv:1107.3122 [hep-th]).
- enlarge the m.o. framework studied in this paper to include still larger classes of tensor graphs and check whether they admit a 1/N expansion.

Vă mulțumesc pentru atenție!

ADRIAN TANASĂ Large N expansion of tensor models

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

"The amount of theoretical work one has to cover before being able to solve problems of real practical value is rather large, but this circumstance is [...] likely to become more pronounced in the theoretical physics of the future." P.A.M. Dirac, "The principles of Quantum Mechanics", 1930

・ 同 ト ・ ヨ ト ・ ヨ ト …