The Eilenberg-Steenrod axioms. Basic theory of topological spaces, homeomorphisms and homotopy equivalence

V. Slupic, P. Tudorache, D. Asan, C. Ionescu,

Trans-Carpathian Student Circle Seminar May 4, 2024

nar

・ 同 ト ・ ヨ ト ・ ヨ ト

2 Continuous Maps

Homeomorphisms

4 Homotopy between Continuous Maps

≣ 2/18

996

・ロト ・回ト ・ヨト ・ヨト

A **topology** on a set X is a collection τ of subsets of X having the following properties:

- \emptyset and X are in τ .
- ${\it @}$ The union of the elements of any subcollection of τ is in τ
- $\textbf{0} \ \ \text{The intersection of the elements of any finite subcollection of } \tau \ \text{is in } \tau.$
- (X, τ) is called a **topological space**.

Definition

A topological space is called **connected** if it cannot be written as a disjoint union of two nonempty open subsets.

Jac.

・ 同 ト ・ ヨ ト ・ ヨ ト

Figure 1: Topologies on the set $X = \{a, b, c\}$

≣ 4/18

<ロト < 回 > < 三 > < 三 >

5900

Figure 2: Sets of subsets of X which are not topologies

Example

 \mathbb{N} , $\tau = {\mathbb{N}, \emptyset, U | U \text{ finite subset of } \mathbb{N}}$; τ is not a topology on \mathbb{N}

$$\{2\} \cup \{3\} ... \cup \{n\} \cup ... = \{2, 3, ..., n, ...\} \notin \tau$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Let X and Y be two topological spaces. $f : X \to Y$ is said to be a **continuous mapping** if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X.

Proposition

Let X, Y and Z be topological spaces. If $f:X\to Y$ and $g:Y\to Z$ are continuous mappings, then the composite mapping

$$g \circ f : X \to Z$$

is continuous.

Jac.

Theorem

Let X, Y be two topological spaces and $f:X \rightarrow Y.$ Then the following are equivalent:

- I f is continuous
- **2** for any subset A of X, $f(\overline{A}) \subset \overline{f(A)}$
- for any set $B \subset Y$ closed, $f^{-1}(B)$ is closed in X
- for any $x \in X$ and any neighborhood V of f(x), there exists a neighborhood U of x such that $f(U) \subset V$.

Theorem

(The pasting lemma.) Let $X = A \cup B$, where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous maps. If f(x) = g(x) for every $x \in A \cap B$, then f and g combine to give a continuous map $h : X \to Y$, defined by setting

$$h(x) = \begin{cases} f(x), & \text{if } x \in A \\ g(x), & \text{if } x \in B. \end{cases}$$

・ロッ ・回ッ ・ヨッ ・ ヨッ

A path in a topological space X from x_0 to x_1 is a continuous map $f : [0,1] \subset \mathbb{R} \to X$ such that $f(0) = x_0$ and $f(1) = x_1$. We call these two points x_0 and x_1 the initial and final point, respectively.

Definition

A topological space X is said to be **path-connected** if for any pair of distinct points $a, b \in X$, there exists a path $f : [0,1] \to X$ such that f(0) = a and f(1) = b.

Proposition

Every path-connected topological space is connected.

・ 同 ト ・ ヨ ト ・ ヨ ト

Two topological spaces X and Y are **homeomorphic** if a mapping between them $f: X \to Y$ and its inverse $f^{-1}: Y \to X$ exist, and they are continuous. In this case f is called a **homeomorphism**.

Figure 3: Example of homeomorphic spaces

SQA

(4回) (4回) (4回)

Let X and Y be topological spaces and $f, g : X \to Y$ continuous maps. A homotopy from f to g is a continuous map

$$H: X \times [0,1] \rightarrow Y, \ (x,t) \mapsto H(x,t) = H_t(x)$$

such that f(x) = H(x,0) and g(x) = H(x,1) for $x \in X$, i.e. $f = H_0$ and $g = H_1$.

Remark

The homotopy relation \simeq is an equivalence relation on the set of continuous maps $X \to Y$. The equivalence class of f under the homotopy relation is denoted by [f] and is called the **homotopy class** of f. We denote by [X, Y] the set of homotopy classes [f] of maps $f : X \to Y$.

10/18

Jac.

イロト 不同 トイヨト イヨト 二日

Proposition

If $f, g : X \to Y$, $h : X' \to X$, $k : Y \to Y'$ are continuous maps, then $f \simeq g \Rightarrow f \circ h \simeq g \circ h$ and $k \circ f \simeq k \circ g$.

Definition

Two paths f and f' mapping I into X are said to be **path homotopic** if they have the same initial and final points, and if there exists a continuous map $F : I \times I \to X$ such that

$$F(s,0) = f(s)$$
 and $F(s,1) = f'(s)$

 $F(0,t) = x_0$ and $F(1,t) = x_1$

for any $s, t \in I$. We call F a **path homotopy** between f and f'. If f is path homotopic to f', we write $f \simeq_p f'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Homotopy between Continuous Maps

Example

≣ 12/18 990

<ロト < 回 > < 三 > < 三 >

Homotopy between Continuous Maps

Definition

If f is a path in X from x_0 to x_1 , and if g is a path in X from x_1 to x_2 , we define the **product** f * g of f and g to be the path h given by

$$h(s) = \begin{cases} f(2s) \text{ for } s \in [0, \frac{1}{2}] \\ g(2s-1) \text{ for } s \in [\frac{1}{2}, 1] \end{cases}$$

Remark

The product operation on paths induces a well-defined operation on path-homotopy classes, defined by

$$[f] * [g] = [f * g].$$

This is associative and has the properties:

(Right and left identities) Given $x \in X$, let e_x denote the constant path $e_x : I \to X$ carrying all of I to x. If f is a path in X from x_0 to x_1 , then

$$[f] * [e_{x_1}] = [f]$$
 and $[e_{x_0}] * [f] = [f]$.

(Inverse) Given the path f in X from x_0 to x_1 , let \overline{f} be the path defined by $\overline{f}(s) = f(1-s)$. Then $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [f] = [e_{x_1}]$.

nar

イロト イヨト イヨト

Let X be a topological space and x_0 a point in X. A path in X that begins and ends at x_0 is called a **loop** based at x_0 . The set of path homotopy classes of loops based at x_0 , with the operation *, is called the **fundamental group** (or first homotopy group) of X relative to the **base point** x_0 . It is denoted by $\pi_1(X, x_0)$.

Definition

Let α be a path in X from x_0 to x_1 . We define a map

$$\hat{lpha}:\pi_1(X,x_0) o\pi_1(X,x_1)$$
 by

$$\hat{\alpha}([f]) = [\bar{\alpha}] * [f] * [\alpha].$$

Remark

We have

$$\bar{\alpha} * (f * \alpha) = \begin{cases} \bar{\alpha}(2s) \text{ for } s \in [0, \frac{1}{2}] \\ f(4s - 2) \text{ for } s \in [\frac{1}{2}, \frac{3}{4}] \\ \alpha(4s - 3) \text{ for } s \in [\frac{3}{4}, 1] \end{cases}$$

nar

イロト イヨト イヨト

Remark

Since α is a path from x_0 to x_1 and $\bar{\alpha}$ is a path from x_1 to x_0 we obtain that $\bar{\alpha} * (f * \alpha)$ is a loop based at x_1 . This means that $\hat{\alpha}$ maps $\pi_1(X, x_0)$ into $\pi_1(X, x_1)$.

Theorem

The map $\hat{\alpha}$ is a group isomorphism.

Corollary

If X is path-connected and x_0 and x_1 are two points of X, then $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$.

(4 同) (4 回) (4 回)

nar

A space X is said to be **simply connected** if it is a path-connected space and if $\pi_1(X, x_0)$ is the trivial (one element) group for some $x_0 \in X$, and hence for every $x \in X$.

Lemma

In a simply connected space X, any two paths having the same initial and final points are path homotopic.

- 2 1 4 2 1 2 1

nar

Remark

If $h: X \to Y$ is a continuous map that carries $x_0 \in X$ to $y_0 \in Y$, we write

$$h:(X,x_0)\rightarrow (Y,y_0).$$

If f is a loop in X based at x_0 , then $h \circ f : [0,1] \to Y$ is a loop in Y based at y_0 . The correspondence $f \to h \circ f$ gives rise to a map carrying $\pi_1(X, x_0)$ into $\pi_1(Y, y_0)$.

Definition

Let $h: (X, x_0) \to (Y, y_0)$ be a continuous map. The **homomorphism induced by** h, relative to the base point x_0 is the map $(h_{x_0})_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ defined by $(h_{x_0})_*([f]) = [h \circ f]$. We also denote $(h_{x_0})_*$ by h_* when no confusion may arise.

Sac

・ ロ ト ス 四 ト ス ヨ ト ス ヨ ト

Theorem

If $h: (X, x_0) \to (Y, y_0)$ and $k: (Y, y_0) \to (Z, z_0)$ are continuous, then $(k \circ h)_* = k_* \circ h_*$. If $i: (X, x_0) \to (X, x_0)$ is the identity map, then i_* is the identity homomorphism.

Corollary

If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism of X with Y, then h_* is an isomorphism of $\pi_1(X, x_0)$ with $\pi_1(Y, y_0)$.

・ 「 ト ・ ヨ ト ・ ヨ ト

Sac