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Basics of the Lax integrabiliy

What is integrability in classical nonlinear ODE/PDEs or O∆E/P∆Es? Existence of a huge
quantity of internal symmetry which gives enough invariants to compute everything. Usually is
related to the hamiltonian structure, existence of invariants
However there are the following main approaches to integrability:

Lax integrability: the nonlinear equation itself is related to an isospectral deformation of a
linear operator. All the information of the invariants is included in the spectrum.

Bilinear (Hirota) integrability: related to the behaviour of localised solutions (solitons).
Qualitatively, one can think that counterbalance of dispersion and nonlinearity can support a
kind of stability. Existence of multi-soliton solution with arbitrary parameters guarantees the
integrability.

Singularity structure: Kowalwskaya had the first idea that a ”nice” dynamics imposes the
solutions of the equations to have singularities in the complex plane at most poles. This
requirements eventually became the famous Painleve property. Not very clear at the
continuous level. At the discrete level is more clear.

multi-hamiltonian structure: Existence of many simplectic operators with many hamiltonians
for the same equation is a strong indicator for integrability since these simplectic operators
can be used to generate the invariants recursively

We will discuss the extension of Lax integrability and singularity structure for a model consisting
of a nonlinearily coupled classical bosonic and fermionic fields on a 2D lattice.
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General formulation of zero curvature representation

Main idea is to write the nonlinear PDE as a compatibility of two linear operators containing the
dependent variable and some parameter.

Compatibility = key of Lax integrability

Consider two matrices U(x , t|λ),V (x , t|λ) containing the dependent variable:

∂xψ(x , t) = U(x , t|λ)ψ(x , t)

∂tψ(x , t) = V (x , t|λ)ψ(x , t)

From the compatibility ∂2
x,tψ(x , t) = ∂2

t,xψ(x , t) one gets:

∂t U − ∂x V + [U,V ] = 0

which is called zero-curvature representation having a differential geometric meaning for
“connection” coefficients U(x , t|λ),V (x , t|λ)
Example:

U(x , t|λ) =
i

2

(
ux −λ
−λ −ux

)
V (x , t|λ) =

i

2

(
0 e iu/λ

e−iu/λ 0

)
Compatibility gives the celebrated sine-Gordon equation

∂t U − ∂x V + [U,V ] ≡ ∂x∂t u(x , t) = sin u

A. S. Carstea (IFIN) Lattice super-KdV equation:integrability, reductions and singularities IMAR, Sept, 2019 4 / 28



Advantages:

computation of multisoliton solution and nonlinear dispersive-wave asymptotics using
Riemann-Hilbert approach or inverse scattering theory.

a particular version of the zero-curvature representation is the Lax version

∂xψ = U(x |λ)ψ =⇒ Lψ(x , t) = λψ(x , t)

it allows computation of invariants In = trace(Ln)

in the zero-curvature reprezentation finding the invariants is more complicatedand it is based
that zero-curvature gives a trivial parallel transport on a loop. It involves the monodromy
matrix

ψ(l , t) = τ(l , 0|λ)ψ(0, t)

and assuming periodic boundary condition on the interval x ∈ (0, l):

lim
λ→i∞

(
e iλl/2trτ(l , 0λ)

)
=
∑
n≥0

λ−nIn

where In are the conservation laws (Fadeev-Takhtajan 1985)

multihamiltonian structure another key of integrability using the recursion operator.

zero-curvature representation allows quantisation by means of the monodromy matrix and
R-matrix using the Yang-Baxter equation: it gives the eigenvalues for all In
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Zero-curvature representation in the discrete world:

The equations we are dealing with are the quad-graph lattice equations having the form:

Q(un,m, un+1,m, un,m+δ, un+1,m+δ|p1, p2) = 0

They are essentialy nonlinear (birational) recursion relations of defined on the corners of a square
and one vertex is given by the nonlinear equation containg the other three. Notation:

T1un,m = un+1,m ≡ ū, T2un,m = un,m+δ ≡ ũ

T−1un−1,m ≡ u, T1T2un+1,m+δ = ũ

Examples:

(H1 =discrete KdV equation)

(ū − ũ)(u − ˜̄u) = p1 − p2 ⇐⇒ ˜̄u = u −
p1 − p2

ū − ũ

(Hirota equation or discrete generalized mKdV/sine-Gordon equation)

u(p1ū − p2ũ)− ˜̄u(p2ū − p1ũ) = 0

p1, p2 are parameters related to the axis n,m (discretization steps). They are fixed.
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Integrability

We are interested in the integrability of such nonlinear lattice equations

Formulation of zero-curvature representation

ψ(n + 1,m) = U(n,m|λ)ψ(n,m)

ψ(n,m + δ) = V (n,m|λ)ψ(n,m)

General compatibility of these discrete equations:

¯̃ψ = ˜̄ψ ⇐⇒ ŨV − V U = 0

Example

U(n,m|λ) =

(
−ū 1

−λ− uū + p1 u

)
V (n,m|λ) =

(
−ũ 1

−λ− uũ + p2 u

)
Compatibility gives the H1 (discrete KdV equation)

ŨV − V U = 0 =⇒ ˜̄u = u −
p1 − p2

ū − ũ

Adler, Bobenko and Suris found a crucial property that gives the possibility of classifying
integrable quad-graph equations together with their zero-curvature reprezentation
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Discrete zero-curvature reprezentation vs continous one

allows construction of multisoliton solution using inverse scattering of discrete operatos -
much harder procedure. Only H1 in fact has been worked out

computing invariants only recently the method was given (D. J. Zhang, 2006)

hamiltonian formalism unclear; multi-hamiltonian structure as well

Lie point symmetries only recently

quantisation; although it goes on the same procedure as in the continous case it is much
harder because of the unclear hamiltonian formalism. Only Schwartzian-H1 equation has
been done. In the case of differential-discrete setting (continuos time, discrete space)
everything works simple and even better than continuos because there are no ultraviolet
divergences.
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Consistency around cube

The idea is to extend the quad-graph equation in a 3D space on any square face of a cube - it
corresponds to a hierarchy of commuting flows

So one adjoint a third direction un,m → un,m,k and construct a cube in (n,m, k). We are using
the same equation in all the planes and consider 3 parameters q, p, r . So in the case of H1
equation we have:

(u − ˆ̃u)(ũ − û) + q − p = 0

(ū − ¯̃̂u)(¯̃u − ¯̂u) + q − p = 0

(u − ˆ̄u)(ū − û) + q − r = 0

(ũ − ˜̄̂u)(˜̄u − ˜̂u) + q − r = 0

(u − ¯̃u)(ũ − ū) + r − p = 0

(ũ − ˆ̃̄u)(ˆ̃u − ˆ̄u) + r − p = 0

Integrability = all red u’s must be equal. And indeed they are equal to

¯̃̂u = ˜̄̂u = ˆ̃̄u =
ũû(p − q) + ūû(q − r) + ũū(r − p)

ũ(r − q) + û(p − r) + ū(q − p)

Moreover the red u’s are not depending on u but only on shifted u’s = tetrahedron property

Why integrability is related to this cubic consistency? Because immediately gives
zero-curvature representation and Backlund transformations
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Effective construction of Lax pairs: the main idea is taking the third direction to be the spectral
parameter

Write again the equations on the faces of the cube:

(u − ˆ̃u)(ũ − û) + q − p = 0

(u − ˆ̄u)(ū − û) + q − r = 0

(u − ¯̃u)(ũ − ū) + r − p = 0

Lets call ū = W and r = λ spectral parameter. We get:

W̃ =
uW + (λ− p − uũ)

W − ũ
Ŵ =

uW + (λ− p − uû)

W − ŵ

Now crucial substitution W = F/G and define de column vector ψ = (F ,G)T . Identifying
numetrators and denominators we get immediately the zero curvature representation

ψ̃ = Uψ ⇐⇒
(

F̃

G̃

)
= γ

(
u λ− p − uũ
1 −ũ

)(
F
G

)

ψ̂ = Vψ ⇐⇒
(

F̂

Ĝ

)
= γ′

(
u λ− p − uû
1 −û

)(
F
G

)
Compatibility condition gives:

γ̂γ′det(Û)det(V ) = γ̃′γdet(Ṽ )det(U)

But det(U) = p − λ det(V ) = q − λ so we can take γ = γ′ = 1
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Adding fermions

The basic idea is to consider coupled partial difference (lattice) equations containing two
dependent variables (fields) u(n,m) ≡ un,m and ψ(n,m) ≡ ψn,m such that
u : Z2 → Λ0, ψ : Z2 → Λ1 where Λ0 and Λ1 are the even (bosonic) and odd (fermionic) sectors of
an infinite dimensional Grassmann algebra Λ = Λ0 ⊕ Λ1; it is a graduate modulo 2 algebra i.e.
Λ0Λ0 ⊂ Λ0,Λ1Λ1 ⊂ Λ0,Λ0Λ1 ⊂ Λ1. Also when ψn,m = 0 then we recover the usual lattice (in our
case H1) equation in the variable un,m.
Let us consider the following coupled system:

ψn+1,m+1 − ψn,m =
2(p1 + p2)(ψn+1,m − ψn,m+1)

2(p2 − p1) + un+1,m − un,m+1
(1)

un+1,m+1 − un,m =
2(p1 + p2)(un+1,m − un,m+1)

2(p2 − p1) + un+1,m − un,m+1

−
(p1 + p2)(4(p2 − p1) + un+1,m − un,m+1)

(2(p2 − p1) + un+1,m − un,m+1)2
(ψn+1,m − ψn,m+1)(ψn,m+1 − ψn,m), (2)

The above system was obtained by Xue, Levi and Liu in 2013 (JPA, 2013) and is the first
integrable discretization of the supersymmetric integrable KdV equation. In the continuum limit

x → ε(n + 2m), t → mε3/3, un,m = εu(x , t), ψn,m = ε1/2ξ(x , t)

it goes in the order ε4 to the “susy” KdV (Manin, 1985) written in the superspace formalism

N = 1super − KdV :

{
un,m, ψn,m → Φ(x , t, θ) = ξ(x , t) + θu(x , t),D = ∂θ + θ∂x ,

Φt + Φxxx + 3(ΦDΦ)x = 0
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Remarks

When the fermions go to zero (ψn,m = 0) we obtain the following lattice equation

un+1,m+1 − un,m =
2(p1 + p2)(un+1,m − un,m+1)

2(p2 − p1) + un+1,m − un,m+1

which is equivalent with the H1 equation via the transformation

un,m → un,m + a(p1, p2)n + b(p1, p2)m

un,m and ψn,m are functions with values in the commuting (bosonic) and anti-commuting
(fermionic) sector of an infinite dimensional Grassmann algebra, i.e. un,mun′,m′ = un′,m′un,m,
ψn,mψn′,m′ = −ψn′,m′ψn,m, un,mψn,m = ψn,mun,m; also p1, p2 are parameters of the lattice
which for simplicity we consider to be ordinary complex numbers (not even grassmann).

QUESTIONS

Is there any super-zero curvature representation for these type of equations?

Is there any kind of consistency around the cube?

How is the multisoliton solution?

How arethe invariants and singularities?
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Multi-soliton solution

Multisoliton solution is constructed using Hirota bilinear formalism adapted to the grassmann
algebra and the main idea is to start from the Hirota form of the H1-type equation and add
fermions; then impose the existence of at least 3-soliton solution =⇒ INTEGRABILITY.

bilinear H1 (un,m = gn,m/fn,m with this sublstitution the H1-type equation is split into the
system for g and f )

g̃f − g f̃ = h(g̃ f − f̃ g)

(g̃ f − f̃ g) = (f̃ f − ff̃ )

add fermions (and after that we impose ψn,m = γn,m/fn,m) and we add some anticommuting
terms (expressed by functions γ(n,m) ∈ Λ1) keeping the Hirota-gauge invariance
(conservation of number of “tildes” and “bars”),

γ̃f − γ f̃ = (˜̄γf − γ˜̄f )

g̃f − g f̃ − h(g̃ f − f̃ g)−m1γγ̃ + hm2γ̃γ = 0

h(g̃ f − f̃ g)− h(f̃ f − ff̃ ) + m3γγ̃ + hm4γ̃γ = 0

where mi , i = 1, ..., 4 are arbitrary constants.

impose the existence of 3-soliton solution
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Take the case m1 = m2,m3 = m2 + m4,m4 = 1,m2 = −1.

ψ̃ − ψ = h
ψ̃ − ψ

1− ũ − u

ũ − u = h
ũ − u

1− ũ − u
+ h

2− ũ + u

(1− ũ + u)2
(ψ̃ − ψ)(ψ − ψ)

The N-super-soliton solution (ASC, JPA 2015):

γ =
∑
µi

 N∑
i=1

µiζi

∏
m 6=i

αim

 exp

 N∑
i=1

µiηi +
∑
i<j

µiµj

ln aij + βijζiζj

∏
k 6=i,j

αikαjk


g =

∑
µi

(
N∑

i=1

biµi

)
exp

 N∑
i=1

µiηi +
∑
i<j

µiµj

ln aij + βijζiζj

∏
k 6=i,j

αikαjk


f =

∑
µi

exp

 N∑
i=1

µiηi +
∑
i<j

µiµj

ln aij + 2βijζiζj

∏
k 6=i,j

αikαjk


where

aij =

(
eki − ekj

eki +kj − 1

)2

, αij =

(
eki +kj − 1

eki − ekj

)
, βij =

αij

bi + bj

ηi = ki n + ωi ht, bi = (1 + h)(eki − 1)/(eki + 1), ehωi = (h − ek1 )/ek1 (hek1 − 1)
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Zero-curvature representation

The associated spectral problems:

Φn,m+1 =Bn,mΦn,m, Φn+1,m = An,mΦn,m, (3)

where

An,m =


p1 1 −η 0
λ2 p1 −2p1η + ηg −η
0 η p1 − g 1
λ2η 2p1η − ηg λ2 − 2p1g + g2 p1 − g

 .

Bn,m =


p2 1 −σ 0
λ2 p2 −2p2σ + σf −σ
0 σ p2 − f 1
λ2σ 2p2σ − σf λ2 − 2p2f + f 2 p2 − f


with

η = (ψn+1,m−ψn,m)/2, g = (un+1,m−un,m)/2, σ = (ψn,m+1−ψn,m)/2, f = (un,m+1−un,m)/2

and λ is the spectral parameter which is a commuting invertible number (grassmann commuting
number with nonzero body)
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Remarks

the nonlinear super-H1 system is a pair of quad-graph equations. Indeed in the corners of the

square we have (u, ψ), (ū, ψ̄), (ũ, ψ̃), (˜̄u, ˜̄ψ)

if we impose the third direction one can prove that the system is consistent around the cube

the matrices associated with the zero-curvature representation are grassmann even matrices
the computation of them through the third direction imposes the constants of super-Lax
matrices. Taking the berezinians (super-determinants) the conditions become extremely
complicated. Computation of Lax super-matrices is for the moment an open problem.

there is another completely integrable lattice version of super-H1 equation (ASC, JPA 2015)

ψ̃ − ψ = h
ψ̃ − ψ

1− ũ − u

ũ − u = h
ũ − u

1− ũ − u
+ h

(1− ũ + u)ψ(ψ̃ − ψ) + ψ̃ψ

(1− ũ + u)2

but we don not know the Lax pair. The multi-soliton solution has a more complicated
interaction
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Reductions, invarinants and singularities

Consider the so called (p, q) reduction or “travelling wave reduction” i.e. the system becomes a
coupled system of nonlinear ordinary discrete equations with bosonic and fermionic fields So we
take for simplicity (p, q) = (−1, 2), namely ν = 2m − n. So in this case
un+1,m → uν−1, un+1,m+1 → uν+1, etc. Our system will turn into:

ψν+1 − ψν =
2(p1 + p2)(ψν−1 − ψν+2)

2(p2 − p1) + uν−1 − uν+2
(4)

uν+1 − uν =
2(p1 + p2)(uν−1 − uν+2)

2(p2 − p1) + uν−1 − uν+2

−
(p1 + p2)(4(p2 − p1) + uν−1 − uν+2)

(2(p2 − p1) + uν−1 − uν+2)2
(ψν−1 − ψν+2)(ψν+2 − ψν) (5)

This system is of order six. We can reduce the order by “integrating” once each equation in the
system. Defining xν = uν+1 − uν and ζν = ψν+1 − ψν , we obtain the 4D system:

ζν =
2(p1 + p2)(−ζν−1 − ζν − ζν+1)

2(p2 − p1)− xν−1 − xν − xν+1
(6)

xν =
2(p1 + p2)(−xν−1 − xν − xν+1)

2(p2 − p1)− xν−1 − xν − xν+1

+ (p1 + p2)(ζν−1 + ζν + ζν+1)(ζν+1 + ζν)
4(p2 − p1)− xν−1 − xν − xν+1

(2(p2 − p1)− xν−1 − xν − xν+1)2
, (7)

where xν is a bosonic variable and ζν is a fermionic one.
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Using the formula
√

a + bζ1ζ2 =
√

a(1 + 1
2
ζ1ζ2b) and solving for (x̄ + x + x) we find two solutions

but the first one turns out to give a linear trivial system. However we can further simplify it;
multiplying ζν to the first equation from the left, we obtain ζνζν+1 + ζνζν−1 = 0, and hence

ζνζν+1 = ζν−1ζν . (8)

Also, using

ζν−1(ζν + ζν+1) =(ζν−1 + ζν + ζν+1)(ζν + ζν+1)

=

(
xν−1 + xν + xν+1

2(p1 + p2)
−

p2 − p1

p2 + p1

)
ζνζν+1

and replacing xν−1 + xν + xν+1 becomes

xν−1 + xν + xν+1 =
2xν(p1 − p2)

2(p2 + p1)− xν
+ (p1 − p2)

4p1 + 4p2 − xν

(2p1 + 2p2 − xν)2
ζνζν+1. (9)

The equation implies γν = ζνζν+1 to be a constant of motion(γν+1 = γν , ∀ν), which is the first
conservation law and we call it γ Hence, our system can be reduced to a single second order
mapping depending on γ:

xν−1 + xν + xν+1 =
2xν(p1 − p2)

2(p2 + p1)− xν
+ (p1 − p2)

4p1 + 4p2 − xν

(2p1 + 2p2 − xν)2
γ (10)

Rescaling we find the simpler form (h is an ordinary complex number):

xν+1 + xν + xν−1 =
hxν

1− xν
+

2− xν

(1− xν)2
γ (11)
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Grassmann algebra with two generators

We assume that the Grassmann algebra is generated by two generators {ξ1, ξ2}. In this base,

xν = x
(0)
ν + x

(3)
ν ξ1ξ2 (with ordinary complex functions x

(i)
ν ’s) and, for simplicity, we consider

γ = ξ1ξ2, h an ordinary complex parameter. Then we have

(x
(0)
ν+1 + x

(0)
ν + x

(0)
ν−1) + (x

(3)
ν+1 + x

(3)
ν + x

(3)
ν−1)γ =

hx
(0)
ν

1− x
(0)
ν

+
2− x

(0)
ν + hx

(3)
ν

(1− x
(0)
ν )2

γ.

Setting as x0 = x
(0)
ν−1, x1 = x

(3)
ν−1, x2 = x

(0)
ν , x3 = x

(3)
ν and x̄0 = x

(0)
ν , x̄1 = x

(3)
ν , x̄2 = x

(0)
ν+1,

x̄3 = x
(3)
ν+1, this equation becomes a four dimensional system as

x0 = x2

x1 = x3

x2 = −x2 − x0 +
hx2

1− x2

x3 = −x1 − x3 +
2− x2 + hx3

(1− x2)2

Let us consider system on the projective space P2 × P2. In the following, we aim to obtain a
four-dimensional rational variety by blowing-up procedure such that the birational map is lifted to
a algebraically stable map on the variety. A birational mapping ϕ from an N-dimensional rational
variety X to itself is said to be algebraically stable if (ϕ∗)n(D) = (ϕn)∗(D) holds for any divisor
class D on X and an arbitrary positive integer n. Moreover, let I (ϕ) denote the indeterminacy set
of ϕ. It is known that the mapping ϕ is algebraically stable if and only if there does not exist a
positive integer k and a divisor D on X such that ϕ(D \ I (ϕ)) ⊂ I (ϕk ), i.e. the image of the
generic part of a divisor by ϕn is included in the indeterminate set.
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Thye mapping can be solved by means of 17 blow-ups given by the following expressions

C1 :(x0, x1, z2, z3) = (1,P, 0, 0)

← (s1, t1, u1, v1) := (x0 − 1, x1, z2(x0 − 1)−1, z3(x0 − 1)−1),

C2 :(s1, t1, u1, v1) = (0,P,Q, 0)

← (s2, t2, u2, v2) := (s1, t1, u1, v1s−1
1 ),

C3 :(s2, t2, u2, v2) = (0,P,−h(1 + hP)−1,Q)

← (s3, t3, u3, v3) := (s2, t2, (u2 + h(1 + ht2)−1)s−1
2 , v2),

C4 :(s3, t3, u3, v3) = (0,P,Q, (1 + hP)−1)

← (s4, t4, u4, v4) := (s3, t3, u3, (v3 − (1 + ht3)−1)s−1
3 ),

C5 :(s4, t4, u4, v4) = (0,P,Q, (1 + hP)−2)

← (s5, t5, u5, v5) := (s4, t4, u4, (v4 − (1 + ht4)−2)s−1
4 ),

where only one of the coordinate systems is written for each blowup.
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C6 :(z0, z1, x2, x3) = (0, 0, 1,P)

← (s6, t6, u6, v6) := (x2 − 1, x3, z0(x2 − 1)−1, z1(x2 − 1)−1),

C7 :(s6, t6, u6, v6) = (0,P,Q, 0)

← (s7, t7, u7, v7) := (s6, t6, u6, v6s−1
6 ),

C8 :(s7, t7, u7, v7) = (0,P,−h(1 + hP)−1,Q)

← (s8, t8, u8, v8) := (s7, t7, (u7 + h(1 + ht7)−1)s−1
7 , v7),

C9 :(s8, t8, u8, v8) = (0,P,Q, (1 + hP)−1)

← (s9, t9, u9, v9) := (s8, t8, u8, (v8 − (1 + ht8)−1)s−1
8 ),

C10 :(s9, t9, u9, v9) = (0,P,Q, (1 + hP)−2)

← (s10, t10, u10, v10) := (s9, t9, u9, (v9 − (1 + ht9)−2)s−1
9 ).

C11 :(z0, z1, z2, z3) = (0, 0, 0, 0)

← (s11, t11, u11, v11) := (z0, z1z−1
0 , z2z−1

0 , z3z−1
0 ),

C12 :(s11, t11, u11, v11) = (P, 0, 1, 0)

← (s12, t12, u12, v12) := (s11, t11, (u11 − 1)t−1
11 , v11t−1

11 ),

C13 :(s12, t12, u12, v12) = (P, 0,Q,−1)

← (s13, t13, u13, v13) := (s12, t12, u12, (v12 + 1)t−1
12 ),
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C14 :(s13, t13, u13, v13) = (0, 0, 1 + h, 0)

← (s14, t14, u14, v14) := (s13t−1
13 , t13, (u13 − 1− h)t−1

13 , v13t−1
13 ),

C15 :(s14, t14, u14, v14) = (P, 0,−2Q − Ph−1,Q)

← (s15, t15, u15, v15) := (s14, t14, v14, (u14 + 2v14 + s14h−1)t−1
14 ),

C16 :(s15, t15, u15, v15) = (P, 0,−Ph−1,Q)

← (s16, t16, u16, v16) := (s15, t15, (u15 + s15h−1)t−1
15 , v15),

C17 :(s16, t16, u16, v16) = (P, 0,Q, 2−1Q + (1 + h)h−1P)

← (s17, t17, u17, v17) := (s16, t16, u16, (v16 − 2−1u16 − (1 + h)h−1s16)t−1
16 ).
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Let us denote the total transform (with respect to blowups) of the divisors (hyper-surfaces)
c0x0 + c1x1 + a = 0 and c2x2 + c3x3 + b by Ha and Hb respectively, where (c0 : c1 : a) and
(c2 : c3 : b) are constant P2 vectors. We also denote the total transform of the i-th exceptional
divisor by Ei . Let us write their classes modulo linear equivalence as Ha, Hb and Ei . Then, the
Picard group of this variety X becomes a Z-module:

Pic(X ) = ZHa ⊕ ZHb ⊕
16⊕

i=1

ZEi .

The pull-back ϕ∗ of our equaton is a linear action on the Picard group given by

Ha → Hb,

Hb → Ha + 3Hb − 2E1 − 3E11 − E6,7,9,10,12,13,14,

E1 → Hb − E1,10,11, E2 → Hb − E1,9,11, E3 → Hb − E1,7,9,11 + E8,

E4 → Hb − E1,7,11, E5 → Hb − E1,6,11,

E6 → E14, E7 → E14, E8 → E15, E9 → E16, E10 → E17,

E11 → E1,11 − E14, E12 → Hb − E1,11,13, E13 → Hb − E1,11,12,

E14 → E2, E15 → E3, E16 → E4, E17 → E5,

where Ei1,...,ik denotes Ei1 + · · ·+ Eik .
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The set of irreducible hyper-surfaces whose class is

2Ha + 2Hb − 2E1 − 2E6 − 4E11 − E2,4,7,9,12,13,14,16

are C0 + C1I1 = 0, where (C0 : C1) ∈ P1 and C1 6= 0.
The set of irreducible hyper-surfaces whose class is

2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17

are C0 + C1I1 + C2I2 = 0, where (C0 : C1 : C2) ∈ P2 and C2 6= 0. from where we get the invariants

I1 =− hx2
0 − hx0x2 + h2x0x2 + hx2

0 x2 − hx2
2 + hx0x2

2 (12)

I2 =2hx0 + x2
0 − 2hx0x1 + 2hx2 + x0x2 − hx1x2 + h2x1x2 + 2hx0x1x2

+ x2
2 + hx1x2

2 − hx0x3 + h2x0x3 + hx2
0 x3 − 2hx2x3 + 2hx0x2x3 (13)
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One can obtian the two invariants also from the so called “staircase method” of Papageorgiou,
Nijhoff, Capel (1992) applied to super-zero-curvature representation In the (p, q) traveling-wave
reduction we consider that our dependent variables will depend only on one variable ν = pm + qn,
and accordingly, our system will turn into a system of nonlinear ordinary discrete super-equations.
The method relies on the fact that (p, q) traveling reduction perform a periodic problem on the
staircase in the (n,m) lattice (the lattice system being quadrilateral and the initial conditions
defined on a stair). In this periodic problem, one of the Lax operators is transformed into a
monodromy matrix (Lν) and the other one (Mν) will be related to evolution on ν. These new
Lax even super-matrices are given by the following relations:

Lν =

p−1∏′

j=0

Bn+q,m+j

q−1∏′

i=0

An+i,m (14)

Mν =

c−1∏′

j=0

Bn+c,m+j

d−1∏′

i=0

An+i,m (15)

where
∏′

follows the order of the stair (in our subsequent case the order will be just reversible

order) and (c, d) are related to the shift ν → ν + 1 in the way (n,m)→ (n + c,m + d). However
in our applications we will consider the simplest case c = d = 1.
Now the compatibility condition

An,m+1Bn,m − Bn+1,mAn,m = 0, Lν+1Mν −MνLν = 0

which is indeed the compatibility of discrete Lax representation

Lνφν = λφν φν+1 = Mνφν
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In our case applying Nijhoff theorem we get the following Lax representation for our equation:

Lν = Bν−2Aν−1Aν , Mν = Bν−1Aν

where Aν and Bν are depending on the combination ν = 2m − n through

Aν =


p1 1 −α1 0
λ2 p1 −β1 −α1

0 α1 a1 1
λ2α1 β1 b1 a1

 , Bν =


p2 1 −α2 0
λ2 p2 −β2 −α2

0 α2 a2 1
λ2α2 β2 b2 a2

 .

with

α1 =
ζν−1

2

β1 =p1ζν−1 +
1

4
xν−1ζν−1

a1 =p1 +
xν−1

2

b1 =λ2 − p1(xν + xν+1) +
1

4
(xν + xν+1)2

and

α2 =
1

2
(ζν + ζν+1)

β2 =
1

2
p2(ζν + ζν+1)−

1

4
(xν + xν+1)(ζν + ζν+1)

a2 =p2 −
1

2
(xν + xν+1)

b2 =λ2 − p2(xν + xν+1) +
1

4
(xν + xν+1)2.
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The compatibility condition of the Lax supermatrices Lν and Mν is
Lν+1Mν = MνLν ⇔ Lν+1 = MνLνM−1

ν . So applying the supertrace we have:

strLν+1 = str(MνLνM−1
ν )

. From the property of supertraces we have str(MνLνM−1
ν ) = str(LνM−1

ν Mν) = strLν . So the
supertrace of Lν is invariant at the evolution ν → ν + 1. Expanding str(Lν) in powers of the
spectral parameter the corresponding coefficients will be the conservation laws. After long, but
straightforward computations we obtain the second conservation law:

I =
1

8
(2p1(x2

ν + x2
ν−1) + (xν + xν−1)(−xνxν−1 + 2p2(xν + xν−1)))

+ γ(p1(p1 + 2p2)−
1

16
((4p1 − 4p2 + xν)(xν + xν−1) + x2

ν−1)), (16)

Further, by the following rescalings,

xν → 2xν(p1 + p2), γ → 4γ
(p1 + p2)2

(p1 − p2)
, p2 → p1

(1− h)

(1 + h)

the invariant is simplified

I (x , y) =h(x2(y − 1)− y2 + xy(y + h − 1)) + γ(x2 + xy + y2 + 2h(x + y)) (17)

where xν ≡ x , xν−1 ≡ y are grassmann commuting function, and h is an ordinary complex
number. One can see that the this invariant is expressed by an elliptic super-curve with
coefficients in the commuting sector of the grassmann algebra.
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One can see immediately that for a Grassmann algebra with two generators ξ1 and ξ2 the above
invariant is written as:

I = I1 + ξ1ξ2I2

where
I1 = −hx2

0 − hx0x2 + h2x0x2 + hx2
0 x2 − hx2

2 + hx0x2
2

I2 = 2hx0 + x2
0 − 2hx0x1 + 2hx2 + x0x2 − hx1x2 + h2x1x2 + 2hx0x1x2+

+x2
2 + hx1x2

2 − hx0x3 + h2x0x3 + hx2
0 x3 − 2hx2x3 + 2hx0x2x3

so we recover the particular case studied by means of algebraic geometric methods.
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