Bucharest Conference on Geometry and Physics 2-6 September 2019, Bucharest, Romania

Nonassociative differential geometry and gravity

Marija Dimitrijević Ćirić
University of Belgrade, Faculty of Physics, Belgrade, Serbia
based on: Aschieri, Szabo arXiv: 1504.03915;
Aschieri, MDC, Szabo arXiv: 1710.11467.

Noncommutativity \& Nonassociativity

NC historically:

-Heisenberg, 1930: regularization of the divergent electron self-energy, coordinates are promoted to noncommuting operators

$$
\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \Theta^{\mu \nu} \Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2} \Theta^{\mu \nu}
$$

-First model of a NC space-time [Snyder '47].
More recently:
-mathematics: Gelfand-Naimark theorems (C^{*} algebra of functions vs. topological Hausdorff spaces),
-string theory (open string in a constant B-field),
-new effects in QFT (UV/IR mixing),
-quantum gravity (discretisation of space-time)

NA historically:

-Jordan quantum mechanics [Jordan '32]: hermitean observables do not close an algebra (standard composition, commutator). New composition, $A \circ B$ is hermitean, commutative but nonassociative:

$$
A \circ B=\frac{1}{2}\left((A+B)^{2}-A^{2}-B^{2}\right) .
$$

-Nambu mechanics: Nambu-Poisson bracket (Poisson bracket) $\{f, g, h\}$ and the fundamental identity (Jacobi identity) [Nambu'73]; quantization still an open problem.

$$
\begin{aligned}
& f\{g, h, k\}+\{f, h, k\} g=\{f g, h, k\} \\
& \left\{f, g,\left\{h_{1}, h_{2}, h_{3}\right\}\right\}+\cdots=0 .
\end{aligned}
$$

More recently:

-mathematics: L_{∞} algebras [Stasheff '94; Lada, Stasheff '93] -magnetic monopoles, NA quantum mechanics
-string field theory: symmetries of closed string field theory close a strong homotopy Lie-algebra, L_{∞} algebra [Zwiebach '15], NA geometry of D-branes in curved backgrounds (NA *-products), closed strings in locally non-geometric backgrounds (low energy limit is a NA gravity).

NC/NA geometry and gravity

Early Universe, singularities of $\mathrm{BHs} \Rightarrow \mathrm{QG} \Rightarrow$ Quantum space-time NC/NA space-time \Longrightarrow Gravity on NC/NA spaces.
General Relativity (GR) is based on the diffeomorphism symmetry. This concept (space-time symmetry) is difficult to generalize to NC/NA spaces. Different approaches:
NC spectral geometry [Chamseddine, Connes, Marcolli '07; Chamseddine,
Connes, Mukhanov '14].
Emergent gravity [Steinacker '10, '16].
Frame formalism, operator description [Burić, Madore '14; Fritz, Majid '16].
Twist approach [Wess et al. '05, '06; Ohl, Schenckel '09; Castellani, Aschieri '09; Aschieri, Schenkel '14; Blumenhagen, Fuchs '16; Aschieri, MDC, Szabo, '18].
NC gravity as a gauge theory of Lorentz/Poincaré group [Chamseddine '01,'04, Cardela, Zanon '03, Aschieri, Castellani '09,'12; Dobrski '16].

Overview

NA gravity
General

NA differntial geometry
R-flux induced cochain twist
NA tensor calculus
NA differential geometry
NA deformation of GR
Levi-Civita connection
NA vacuum Einstein equations
NA gravity in space-time
Discussion

NA gravity: General

NA gravity is based on:
-locally non-geometric constant R-flux. Cochain twist \mathcal{F} and associator Φ with

$$
\Phi(\mathcal{F} \otimes 1)(\Delta \otimes \mathrm{id}) \mathcal{F}=(1 \otimes \mathcal{F})(\mathrm{id} \otimes \Delta) \mathcal{F}
$$

-equivariance (covariance) under the twisted diffeomorphisms (quasi-Hopf algebra of twisted diffeomorphisms). -twisted differential geometry in phase space. In particular: connection, curvature, torsion. Projection of phase space (vacuum) Einstein equations to space-time. -more general, categorical approach in [Barnes, Schenckel, Szabo '14-'16].

Our goals:

-construct NA differential geometry of phase space.
-consistently construct NA deformation of GR in space-time: NA Einstein equations and action; investigate phenomenological consequences.
-understand symmetries of the obtained NA gravity.

NA differntial geometry: Review of twist deformation

Symmetry algebra g and the universal covering algebra $U g$. A well defined way of deforming symmetries: the twist formalism.
Twist \mathcal{F} (introduced by Drinfel'd in 1983-1985) is:
-an invertible element of $U g \otimes U g$
-fulfills the 2-cocycle condition (ensures the associativity of the *-product).

$$
\begin{equation*}
\mathcal{F} \otimes 1(\Delta \otimes \mathrm{id}) \mathcal{F}=1 \otimes \mathcal{F}(\mathrm{id} \otimes \Delta) \mathcal{F} \tag{2.1}
\end{equation*}
$$

-additionaly: $\mathcal{F}=1 \otimes 1+\mathcal{O}(h) ; h$-deformation parameter.

NA differntial geometry: R-flux induced cochain twist
Phase space $\mathcal{M}: x^{A}=\left(x^{\mu}, \tilde{x}_{\mu}=p_{\mu}\right), \partial_{A}=\left(\partial_{\mu}, \tilde{\partial}^{\mu}=\frac{\partial}{\partial p_{\mu}}\right)$.
$2 d$ dimensional, $A=1, \ldots 2 d$.
The twist \mathcal{F} :

$$
\begin{equation*}
\mathcal{F}=\exp \left(-\frac{i \hbar}{2}\left(\partial_{\mu} \otimes \tilde{\partial}^{\mu}-\tilde{\partial}^{\mu} \otimes \partial_{\mu}\right)-\frac{i \kappa}{2} R^{\mu \nu \rho}\left(p_{\nu} \partial_{\rho} \otimes \partial_{\mu}-\partial_{\mu} \otimes p_{\nu} \partial_{\rho}\right)\right), \tag{2.2}
\end{equation*}
$$

with $R^{\mu \nu \rho}$ totally antisymmetric and constant, $\kappa:=\frac{\ell_{s}^{3}}{6 \hbar}$.
Does not fulfill the 2-cocycle condition

$$
\begin{equation*}
\Phi(\mathcal{F} \otimes 1)(\Delta \otimes \mathrm{id}) \mathcal{F}=(1 \otimes \mathcal{F})(\mathrm{id} \otimes \Delta) \mathcal{F} \tag{2.3}
\end{equation*}
$$

The associator Φ :

$$
\begin{equation*}
\Phi=\exp \left(\hbar \kappa R^{\mu \nu \rho} \partial_{\mu} \otimes \partial_{\nu} \otimes \partial_{\rho}\right)=: \phi_{1} \otimes \phi_{2} \otimes \phi_{3}=1 \otimes 1 \otimes 1+O(\hbar \kappa) . \tag{2.4}
\end{equation*}
$$

Notation: $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha}, \mathcal{F}^{-1}=\overline{\mathrm{f}}^{\alpha} \otimes \overline{\mathrm{f}}_{\alpha}, \Phi^{-1}=: \bar{\phi}_{1} \otimes \bar{\phi}_{2} \otimes \bar{\phi}_{3}$,
Braiding: $\mathcal{R}=\mathcal{F}^{-2}=: \mathrm{R}^{\alpha} \otimes \mathrm{R}_{\alpha}, \mathcal{R}^{-1}=\mathcal{F}^{2}=: \overline{\mathrm{R}}^{\alpha} \otimes \overline{\mathrm{R}}_{\alpha}$.

Hopf aglebra of diffeomorphisms $U \operatorname{Vec}(\mathcal{M})$:

$$
\begin{aligned}
& {[u, v]=\left(u^{B} \partial_{B} v^{A}-v^{B} \partial_{B} u^{A}\right) \partial_{A}} \\
& \Delta(u)=1 \otimes u+u \otimes 1 \\
& \epsilon(u)=0, S(u)=-u
\end{aligned}
$$

Quasi-Hopf algebra of infinitesimal diffeomorphisms $U \operatorname{Vec}^{\mathcal{F}}(\mathcal{M})$:
-algebra structure does not change
-coproduct is deformed: $\Delta^{\mathcal{F}} \xi=\mathcal{F} \Delta \mathcal{F}^{-1}$
-counit and antipod do not change: $\epsilon^{\mathcal{F}}=\epsilon, S^{\mathcal{F}}=S$.
On basis vectors:

$$
\begin{aligned}
& \Delta_{\mathcal{F}}\left(\partial_{\mu}\right)=1 \otimes \partial_{\mu}+\partial_{\mu} \otimes 1 \\
& \Delta_{\mathcal{F}}\left(\tilde{\partial}^{\mu}\right)=1 \otimes \tilde{\partial}^{\mu}+\tilde{\partial}^{\mu} \otimes 1+\mathrm{i} \kappa R^{\mu \nu \rho} \partial_{\nu} \otimes \partial_{\rho}
\end{aligned}
$$

NA differential geometry: NA tensor calculus

Guiding principle: Differential geometry on \mathcal{M} is covatiant under $U \operatorname{Vec}(\mathcal{M})$.
NA differential geometry on \mathcal{M} should be covariant under $U \operatorname{Vec}^{\mathcal{F}}(\mathcal{M})$.
In pactice: $U \operatorname{Vec}(\mathcal{M})$-module algebra \mathcal{A} (functions, forms, tensors) and $a, b \in \mathcal{A}, u \in \operatorname{Vec}(\mathcal{M})$

$$
u(a b)=u(a) b+a u(b), \quad \text { Lie derivative, coproduct. }
$$

The twist: $\mathbf{U V e c}(\mathcal{M}) \rightarrow U \operatorname{Vec}^{\mathcal{F}}(\mathcal{M})$ and $\mathcal{A} \rightarrow \mathcal{A}_{\star}$ with

$$
a b \rightarrow a \star b=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

Then \mathcal{A}_{\star} is a $U V{ }^{\mathcal{F}}(\mathcal{M})$-module algebra:

$$
\xi(a \star b)=\xi_{(1)}(a) \star \xi_{(2)}(b)
$$

for $\xi \in U \operatorname{Vec}^{\mathcal{F}}(\mathcal{M})$ and using the twisted coproduct
$\Delta^{\mathcal{F}} \xi=\xi_{(1)} \otimes \xi_{(2)}$.

Commutativity: $a \star b=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)=\overline{\mathrm{R}}^{\alpha}(b) \star \overline{\mathrm{R}}_{\alpha}(a)=:{ }^{\alpha} b \star_{\alpha} a$ Associativity: $(a \star b) \star c={ }^{\phi_{1}} a \star\left({ }^{\phi_{2}} b \star{ }^{\phi_{3}} c\right)$.

Functions: $C^{\infty}(\mathcal{M}) \rightarrow C^{\infty}(\mathcal{M}){ }_{\star}$

$$
\begin{aligned}
f \star g & =\overline{\mathrm{f}}^{\alpha}(f) \cdot \overline{\mathrm{f}}_{\alpha}(g) \\
& =f \cdot g+\frac{\mathrm{i} \hbar}{2}\left(\partial_{\mu} f \cdot \tilde{\partial}^{\mu} g-\tilde{\partial}^{\mu} f \cdot \partial_{\mu} g\right)+\mathrm{i} \kappa R^{\mu \nu \rho} p_{\nu} \partial_{\rho} f \cdot \partial_{\mu} g+\cdots, \\
{\left[x^{\mu \star}, x^{\nu}\right] } & =2 \mathrm{i} \kappa R^{\mu \nu \rho} p_{\rho},\left[x^{\mu \star}, p_{\nu}\right]=\mathrm{i} \hbar \delta^{\mu}{ }_{\nu},\left[p_{\mu} \stackrel{\star}{,} p_{\nu}\right]=0,
\end{aligned}
$$

$$
\left[x^{\mu} \stackrel{\star}{,} x^{\nu} \stackrel{\star}{,} x^{\rho}\right]=\ell_{s}^{3} R^{\mu \nu \rho} .
$$

NA tensor calculus

Forms: $\Omega^{\sharp}(\mathcal{M}) \rightarrow \Omega^{\sharp}(\mathcal{M})_{\star}$

$$
\begin{align*}
& \omega \wedge \star \eta=\overline{\mathrm{f}}^{\alpha}(\omega) \wedge \overline{\mathrm{f}}_{\alpha}(\eta) \tag{2.6}\\
& f \star \mathrm{~d} x^{A}=\mathrm{d} x^{C} \star\left(\delta^{A}{ }_{c} f-\mathrm{i} \kappa \mathscr{R}^{A B}{ }_{C} \partial_{B} f\right)
\end{align*}
$$

with non-vanishing components $\mathscr{R}^{x^{\mu}}, x^{\nu} \tilde{x}_{\rho}=R^{\mu \nu \rho}$. Basis 1-forms

$$
\begin{aligned}
& \left(\mathrm{d} x^{A} \wedge_{\star} \mathrm{d} x^{B}\right) \wedge_{\star} \mathrm{d} x^{C}={ }^{\phi_{1}}\left(\mathrm{~d} x^{A}\right) \wedge_{\star}\left({ }^{\phi_{2}}\left(\mathrm{~d} x^{B}\right) \wedge_{\star}{ }^{\phi_{3}}\left(\mathrm{~d} x^{C}\right)\right) \\
& =\mathrm{d} x^{A} \wedge_{\star}\left(\mathrm{d} x^{B} \wedge_{\star} \mathrm{d} x^{C}\right)=\mathrm{d} x^{A} \wedge \mathrm{~d} x^{B} \wedge \mathrm{~d} x^{C}
\end{aligned}
$$

Exterior derivative d: $\mathrm{d}^{2}=0$ and the undeformed Leibniz rule

$$
\begin{equation*}
\mathrm{d}\left(\omega \wedge_{\star} \eta\right)=\mathrm{d} \omega \wedge_{\star} \eta+(-1)^{|\omega|} \omega \wedge_{\star} \mathrm{d} \eta \tag{2.7}
\end{equation*}
$$

Duality, *-pairing:

$$
\begin{equation*}
\langle\omega, u\rangle_{\star}=\left\langle\overline{\mathrm{f}}^{\alpha}(\omega), \overline{\mathrm{f}}_{\alpha}(u)\right\rangle . \tag{2.8}
\end{equation*}
$$

NA tensor calculus: Lie derivative

*-Lie drivative:

$$
\begin{align*}
& \mathcal{L}_{u}^{\star}(T)=\mathcal{L}_{\overline{\mathrm{f}} \alpha}(u)\left(\overline{\mathrm{f}}_{\alpha}(T)\right), \tag{2.9}\\
& {\left[\mathcal{L}_{u}^{\star}, \mathcal{L}_{v}^{\star}\right]_{\bullet}=\left[\overline{\mathrm{f}}^{\alpha} \mathcal{L}_{u}^{\star}, \overline{\mathrm{f}}{ }_{\alpha} \mathcal{L}_{v}^{\star}\right]=\mathcal{L}_{[u, v]_{\star}}^{\star},} \\
& {\left[u,[v, z]_{\star}\right]_{\star}=\left[\left[^{\bar{\phi}_{1}} u, \bar{\phi}_{2} v\right]_{\star}, \bar{\phi}_{3} z\right]_{\star}+\left[{ }^{\alpha}\left(\bar{\phi}_{1} \bar{\varphi}_{1} v\right),\left[{ }_{\alpha}\left(\bar{\phi}_{2} \bar{\varphi}_{2} u\right), \bar{\phi}_{3} \bar{\varphi}_{3} z\right]_{\star}\right]_{\star},} \\
& \mathcal{L}_{u}^{\star}\left(\omega \wedge_{\star} \eta\right)=\mathcal{L}_{\bar{\phi}_{1} u}^{\star}\left(\bar{\phi}_{2} \omega\right) \wedge_{\star} \bar{\phi}_{3} \eta+{ }^{\alpha}\left({ }^{\bar{\phi}_{1} \bar{\varphi}_{1}} \omega\right) \wedge_{\star} \mathcal{L}_{\alpha\left(\bar{\phi}_{2} \bar{\varphi}_{2} u\right)}^{\star}\left(\bar{\phi}_{3} \bar{\varphi}_{3} \eta\right),
\end{align*}
$$

with $[u, v]_{\star}=\left[\overline{\mathrm{f}}^{\alpha}(u), \overline{\mathrm{f}}_{\alpha}(v)\right]$. Relation of \mathcal{L}_{u}^{\star} with diffeomorphism symmetry in space-time needs to be understood.
*-Lie derivative generates "twisted, braided" diffeomorphism symmetry. This symmetry has the L_{∞} structure. Work in progress with G. Giotopoulos, V. Radovanović and R. Szabo.

NA differential geometry: connection, torsion, curvature *-connection:

$$
\begin{align*}
\nabla^{\star}: \mathrm{Vec}_{\star} & \longrightarrow \mathrm{Vec}_{\star} \otimes_{\star} \Omega_{\star}^{1} \\
u & \longmapsto \nabla^{\star} u \tag{2.10}\\
\nabla^{\star}(u \star f) & =\left(\bar{\phi}_{1} \nabla^{\star}\left({ }^{\bar{\phi}_{2}} u\right)\right) \star \bar{\phi}_{3} f+u \otimes_{\star} \mathrm{d} f \tag{2.11}
\end{align*}
$$

the right Leibniz rule, for $u \in \mathrm{Vec}_{\star}$ and $f \in A_{\star}$. In particular:

$$
\begin{align*}
& \nabla^{\star} \partial_{A}=: \partial_{B} \otimes_{\star} \Gamma_{A}^{B}=: \partial_{B} \otimes_{\star}\left(\Gamma_{A C}^{B} \star \mathrm{~d} x^{C}\right) \tag{2.12}\\
& \mathrm{d} \nabla^{\star}\left(\partial_{A} \otimes_{\star} \omega^{A}\right)=\partial_{A} \otimes_{\star}\left(\mathrm{d} \omega^{A}+\Gamma_{B}^{A} \wedge_{\star} \omega^{B}\right)
\end{align*}
$$

for $\omega^{A} \in \Omega_{\star}^{\sharp}$.
Torsion:

$$
\begin{aligned}
& \mathrm{T}^{\star}:=\mathrm{d} \nabla^{\star}\left(\partial_{A} \otimes_{\star} \mathrm{d} x^{A}\right): \mathrm{Vec}_{\star} \otimes_{\star} \mathrm{Vec}_{\star} \rightarrow \mathrm{Vec}_{\star}, \\
& \mathrm{T}^{\star}\left(\partial_{A}, \partial_{B}\right)=\partial_{C} \star\left(\Gamma_{A B}^{C}-\Gamma_{B A}^{C}\right)=: \partial C^{\star} \star \mathrm{T}^{C} \\
& A B .
\end{aligned}
$$

Torsion-free condition: $\Gamma_{A B}^{C}=\Gamma_{B A}^{C}$.
Curvature:

$$
\begin{aligned}
& \mathrm{R}^{\star}:=\mathrm{d}_{\nabla^{\star}} \bullet \mathrm{d}_{\nabla^{\star}}: \mathrm{Vec}_{\star} \longrightarrow \mathrm{Vec}_{\star} \otimes_{\star} \Omega_{\star}^{2}, \\
& \mathrm{R}^{\star}\left(\partial_{A}\right)=\partial_{C} \otimes_{\star}\left(\mathrm{d} \Gamma_{A}^{C}+\Gamma_{B}^{C} \wedge_{\star} \Gamma_{A}^{B}\right)=\partial_{C} \otimes_{\star} \mathrm{R}_{A}^{C},
\end{aligned}
$$

Ricci tensor:

$$
\begin{align*}
& \operatorname{Ric}^{\star}(u, v):=-\left\langle\mathrm{R}^{\star}\left(u, v, \partial_{A}\right), \mathrm{d} x^{A}\right\rangle_{\star} \tag{2.13}\\
& \operatorname{Ric}^{\star}=\operatorname{Ric}_{A D} \star\left(\mathrm{~d} x^{D} \otimes_{\star} \mathrm{d} x^{A}\right) .
\end{align*}
$$

Commponents from $\operatorname{Ric}_{B C}:=\operatorname{Ric}^{\star}\left(\partial_{B}, \partial_{C}\right)$

$$
\begin{align*}
& \operatorname{Ric}_{B C}=\partial_{A} \Gamma_{B C}^{A}-\partial_{C} \Gamma_{B A}^{A}+\Gamma_{B^{\prime} A}^{A} \star \Gamma_{B C}^{B^{\prime}}-\Gamma_{B^{\prime} C}^{A} \star \Gamma_{B A}^{B^{\prime}} \\
& +\mathrm{i} \kappa \Gamma_{B^{\prime} E}^{A} \star\left(\mathscr{R}^{E G}{ }_{A}\left(\partial_{G} \Gamma_{B C}^{B^{\prime}}\right)-\mathscr{R}^{E G}{ }_{C}\left(\partial_{G} \Gamma_{B A}^{B^{\prime}}\right)\right) \tag{2.14}\\
& +\mathrm{i} \kappa \mathscr{R}^{E G}{ }_{A} \partial_{G} \partial_{C} \Gamma_{B E}^{A}-\mathrm{i} \kappa \mathscr{R}^{E G}{ }_{A} \partial_{G}\left(\Gamma_{B^{\prime} E}^{A} \star \Gamma_{B C}^{B^{\prime}}-\Gamma_{B^{\prime} C}^{A} \star \Gamma_{B E}^{B^{\prime}}\right) \\
& +\kappa^{2} \mathscr{R}^{A F}{ }_{D}\left(\mathscr{R}^{E G}{ }_{A} \partial_{F}\left(\Gamma_{B^{\prime} E}^{D} \star \partial_{G} \Gamma_{B C}^{B^{\prime}}\right)-\mathscr{R}^{E G}{ }_{C} \partial_{F}\left(\Gamma_{B^{\prime} E}^{D} \star \partial_{G} \Gamma_{B A}^{B^{\prime}}\right)\right) .
\end{align*}
$$

Scalar curvature cannot be defined along these lines: cannot be seen as a map and inverse metric tensor needed. Not straightforward:

$$
G^{M N} \star G_{N P}=\delta_{M}^{P}, \text { but }\left(G^{M N} \star G_{N P}\right) \star f \neq G^{M N} \star\left(G_{N P} \star f\right)
$$

NA deformation of GR: NA Levi-Civita connection

GR connection $\Gamma_{\mu \nu}^{\mathrm{LC} \rho}$ is a Levi-Civita connection: torssion-free and metric compatible $\nabla_{\alpha} g_{\mu \nu}=0$.
Generalization: $\mathrm{g}^{\star} \in \Omega_{\star}^{1} \otimes_{\star} \Omega_{\star}^{1}$ and ${ }^{\star} \nabla \mathrm{g}^{\star}=0$.
Connection coefficients, expanded up to first order in $\hbar \kappa$:

$$
\begin{align*}
\Gamma_{A D}^{S(0,0)} & =\Gamma_{A D}^{\mathrm{LCS}}=\frac{1}{2} \mathrm{~g}^{S Q}\left(\partial_{D} \mathrm{~g}_{A Q}+\partial_{A} \mathrm{~g}_{D Q}-\partial_{Q} \mathrm{~g}_{A D}\right), \tag{3.15}\\
\Gamma_{A D}^{S(0,1)} & =-\frac{\mathrm{i} \hbar}{2} \mathrm{~g}^{S P}\left(\left(\partial_{\mu} \mathrm{g}_{P Q}\right) \tilde{\partial}^{\mu} \Gamma_{A D}^{\mathrm{LC} Q}-\left(\tilde{\partial}^{\mu} \mathrm{g}_{P Q}\right) \partial_{\mu} \Gamma_{A D}^{\mathrm{LC} Q}\right), \\
\Gamma_{A D}^{S(1,0)} & =\mathrm{i} \kappa R^{\alpha \beta \gamma}\left(\tilde{\mathrm{g}}_{\gamma}^{S} \mathrm{~g}_{\beta N}\left(\partial_{\alpha} \Gamma_{A D}^{\mathrm{LCN}}\right)-\mathrm{g}^{S M} p_{\beta}\left(\partial_{\gamma} \mathrm{g}_{M N}\right) \partial_{\alpha} \Gamma_{A D}^{\mathrm{LC} N}\right), \\
\Gamma_{A D}^{S(1,1)} & =\frac{\hbar \kappa}{2} R^{\alpha \beta \gamma}\left[\text { long expression }+\left(\partial_{\alpha} \mathrm{g}^{S Q}\right)\left(\partial_{\beta} \mathrm{g}_{Q P}\right) \partial_{\gamma} \Gamma_{A D}^{\mathrm{LC} P}\right] .
\end{align*}
$$

Comments:
$-\Gamma_{A D}^{S(0,1)}$ and $\Gamma_{A D}^{S(1,0)}$ imaginary, $\Gamma_{A D}^{S(1,1)}$ real.
-for $g_{M N}$ that does not depend on the momenta p_{μ}, only the last term in $\Gamma_{A D}^{S(1,1)}$ remains.
$-\tilde{\mathrm{g}}^{S}{ }_{\gamma}=\mathrm{g}^{S M} \delta_{M, \tilde{\mathrm{x}}_{\gamma}}$.

NA deformation of GR: NA vacuum Einstein equation

We can write vacuum Einstein equations in phase space as:

$$
\begin{equation*}
\operatorname{Ric}_{B C}=0 \tag{3.16}
\end{equation*}
$$

Our strategy: expand Ricci tensor (2.13) in term of (3.15), i. e. the metric tensor $g_{M N}$. This gives Einstein equations in phase space. How do we obtain the induced equations in space-time?

- start from objects in space-time $M g=g_{\mu \nu} \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}$ and lift them to phase space \mathcal{M} foliated with leaves of constant momenta, each leave is diffeomorphic to M.

$$
\begin{array}{cc}
C^{\infty}(\mathcal{M}) \xrightarrow{Q} & \widehat{C^{\infty}(\mathcal{M})} \\
\pi^{*} \mid & \left.\right|_{s_{\bar{P}}^{*}=\sigma^{*}} \\
C^{\infty}(M) & \\
Q_{\bar{P}} & \\
C^{\infty}(M)
\end{array}
$$

Metric tensor: $g=g_{\mu \nu} \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu} \rightarrow \hat{\mathrm{g}}_{M N} \mathrm{~d} x^{M} \otimes \mathrm{~d} x^{N}$ with

$$
\left(\hat{\mathrm{g}}_{M N}(x)\right)=\left(\begin{array}{cc}
\mathrm{g}_{\mu \nu}(x) & 0 \tag{3.17}\\
0 & \mathrm{~h}^{\mu \nu}(x)
\end{array}\right) .
$$

Note the additional nondegenerate bilinear $\mathrm{h}(x)^{\mu \nu} \mathrm{d} \tilde{x}_{\mu} \otimes \mathrm{d} \tilde{x}_{\nu}$; natural choice $\mathrm{h}(x)^{\mu \nu}=\eta^{\mu \nu}$.

- Do all calculations in phase space, using the twisted differential geometry. In particular, calculate $\mathrm{Ric}_{B C}$ in terms of $g_{A B},(2.13),(3.15)$.
- Finally, project the result to space-time using the zero section $x \mapsto \sigma(x)=(x, 0)$.

Functions, forms: pullback to the zero momentum leaf:
Vector fields: $v^{\mu}(x, p) \partial_{\mu}+\tilde{v}_{\mu}(x, p) \tilde{\partial}^{\mu} \mapsto v^{\mu}(x, 0) \partial_{\mu}$.
Ricci tensor: Ric $\rightarrow \operatorname{Ric}^{\star \circ}=\operatorname{Ric}_{\mu \nu}^{0} \mathrm{~d} x^{\mu} \otimes \mathrm{d} x^{\nu}$, $\operatorname{Ric}_{\mu \nu}^{\circ}(x)=\sigma^{*}\left(\operatorname{Ric}_{\mu \nu}\right)(x, p)=\operatorname{Ric}_{\mu \nu}(x, 0)$.

NA deformation of GR: NA gravity in space-time
The lifted metric $\hat{\mathrm{g}}_{M N} \mathrm{~d} x^{M} \otimes \mathrm{~d} x^{N}=\mathrm{g}_{M N} \star\left(\mathrm{~d} x^{M} \otimes_{\star} \mathrm{d} x^{N}\right)$,

$$
\mathrm{g}_{M N}(x)=\left(\begin{array}{cc}
\mathrm{g}_{\mu \nu}(x) & \frac{\mathrm{i} \kappa}{2} R^{\sigma \nu \alpha} \partial_{\sigma} \mathrm{g}_{\mu \alpha} \tag{3.18}\\
\frac{\mathrm{i} \kappa}{2} R^{\sigma \mu \alpha} \partial_{\sigma} \mathrm{g}_{\alpha \nu} & \eta^{\mu \nu}(x)
\end{array}\right)
$$

Ricci tensor in space-time, (expanded up to first order in $\hbar \kappa$):

$$
\begin{gather*}
\operatorname{Ric}_{\mu \nu}^{\circ}=\operatorname{Ric}_{\mu \nu}^{\mathrm{LC}}+\frac{\ell_{s}^{3}}{12} R^{\alpha \beta \gamma}\left(\partial_{\rho}\left(\partial_{\alpha} \mathrm{g}^{\rho \sigma}\left(\partial_{\beta} \mathrm{g}_{\sigma \tau}\right) \partial_{\gamma} \Gamma_{\mu \nu}^{\mathrm{LC} \tau}\right)\right. \\
\quad-\partial_{\nu}\left(\partial_{\alpha} \mathrm{g}^{\rho \sigma}\left(\partial_{\beta} \mathrm{g}_{\sigma \tau}\right) \partial_{\gamma} \Gamma_{\mu \rho}^{\mathrm{LC} \tau}\right) \\
+\partial_{\gamma} \mathrm{g}_{\tau \omega}\left(\partial_{\alpha}\left(\mathrm{g}^{\sigma \tau} \Gamma_{\sigma \nu}^{\mathrm{LC} \rho}\right) \partial_{\beta} \Gamma_{\mu \rho}^{\mathrm{LC} \omega}-\partial_{\alpha}\left(\mathrm{g}^{\sigma \tau} \Gamma_{\sigma \rho}^{\mathrm{LC} \rho}\right) \partial_{\beta} \Gamma_{\mu \nu}^{\mathrm{LC} \omega}\right. \\
+\left(\Gamma_{\mu \rho}^{\mathrm{LC} \sigma} \partial_{\alpha} \mathrm{g}^{\rho \tau}-\partial_{\alpha} \Gamma_{\mu \rho}^{\mathrm{LC} \sigma} \mathrm{~g}^{\rho \tau}\right) \partial_{\beta} \Gamma_{\sigma \nu}^{\mathrm{LC} \omega} \\
\left.\left.-\left(\Gamma_{\mu \nu}^{\mathrm{LC} \sigma} \partial_{\alpha} \mathrm{g}^{\rho \tau}-\partial_{\alpha} \Gamma_{\mu \nu}^{\mathrm{LC} \sigma} \mathrm{~g}^{\rho \tau}\right) \partial_{\beta} \Gamma_{\sigma \rho}^{\mathrm{LC} \omega}\right)\right) . \tag{3.19}
\end{gather*}
$$

Vacuum Einstein equations in space-time:

$$
\begin{equation*}
\operatorname{Ric}_{\mu \nu}^{\circ}=0 \tag{3.20}
\end{equation*}
$$

NA deformation of GR: Comments

- R-flux (via NA differential geometry) generates non-trivial dynamical consequences on spacetime, they are independent of \hbar and real-valued.
- Why zero momentum leaf? Pulling back to a leaf of constant momentum $p=p^{\circ}$ (generally) gives a non-vanishing imaginary contribution $\left.\operatorname{Ric}_{\mu \nu}^{(1,0)}\right|_{p=p^{\circ}}$ to the spacetime Ricci tensor. Also, n-triproducts calculated on the zero momentum leaf [Aschieri, Szabo '15] coincide with those proposed in [Munich group '11].
- Why $\mathrm{h}(x)^{\mu \nu}=\eta^{\mu \nu}$? The simplest choice, can be extended. In relation with Born geometry [Freidel et al. '14]: in our model nonassociativity does not generates curved momentum space. Investigate $\mathrm{h}(x)^{\mu \nu} \neq \eta^{\mu \nu}$...

Discussion

Our goals:

- Phenomenological consequences (R-flux induced corrections to GR solutions): to be investigates.
- Construction of scalar curvature, matter fields, full Einstein equations: to be investigated.
- Twisted diffeomorphism symmetry: to be understood better, L_{∞} structure?
- NA gravity as a gauge theory of Lorentz symmetry, NA Einstein-Cartan gravity: better understanding of NA gauge symmetry is needed, L_{∞} structure?

Introduce:

$$
\begin{equation*}
F_{Q}=\exp \left(-\frac{\mathrm{i} \kappa}{2} Q_{\rho}^{\mu \nu}\left(w^{\rho} \partial_{\mu} \otimes \partial_{\nu}-\partial_{\nu} \otimes w^{\rho} \partial_{\mu}\right)\right) \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{F}=\exp \left(-\frac{\mathrm{i} \hbar}{2}\left(\hat{\partial}^{\mu} \otimes \tilde{\hat{\partial}}_{\mu}-\tilde{\hat{\partial}}_{\mu} \otimes \hat{\partial}^{\mu}\right)\right) \tag{4.22}
\end{equation*}
$$

with w^{μ} closed string winding coordinates, regard it as momenta \hat{p}^{μ} conjugate to coordinates \hat{x}_{μ} T-dual to the spacetime variables x^{μ}. Then the twist element in the full phase space $\mathcal{M} \times \hat{\mathcal{M}}$ of double field theory in the R-flux frame is:

$$
\begin{equation*}
\hat{\mathcal{F}}=\mathcal{F} F_{Q} \hat{F} \tag{4.23}
\end{equation*}
$$

$O(2 d, 2 d)$-invariant twist; can be rotated to any other T-duality frame by using an $O(2 d, 2 d)$ transformation on $\mathcal{M} \times \hat{\mathcal{M}}$. A nonassociative theory which is manifestly invariant under $O(2 d, 2 d)$ rotations.

