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Motivation

Cosmic Microwave Background (CMB) radiation:

WMAP (2003-2012) and Planck (2013) satellites:

Detailed map of CMB temperature fluctuations on the sky

T = 2.7K



According to CMB data:

Temperature fluctuations
δT (θ, ϕ)

T
, (θ, ϕ) coord. on S2 ,

measured with great precision:

• On large scales:

Universe is homogeneous and isotropic

• In Early Universe:

Small perturbations that seed structure formation

[ (Clusters of) Galaxies ]



Cosmological Inflation:

Period of very fast expansion of space in the Early Universe

(faster than speed of light)

⇒ homogeneity and isotropy observed today

10/28/2014 inflation.gif (351×233)
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Quantum Gravity

Inflation: Traces of Quantum Gravity ?

(Shortly after) Big Bang: Origin of all structure we see today!



Cosmological Inflation:

Standard description:

– expansion driven by the potential energy of a single

scalar field ϕ called inflaton

– weakly coupled Lagrangian for the inflaton within

QFT framework:

S =

∫
d4x

√
−det g

[
R

2
− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
– slow roll approximation:

εv
def.
= 1

2

[
V ′(ϕ)
V (ϕ)

]2
<< 1 , ηv

def.
= V ′′(ϕ)

V (ϕ) << 1



BUT: Many reasons to consider non-standard models

• Embedding in a fundamental theory:

– In string compactifications 4d scalars arise in pairs

(chiral superfields)

– Compatibility with quantum gravity

(‘swampland’ conjectures, in particular, constraints on V (ϕ);

very restrictive for a single scalar)

• Richer phenomenology:

– Decoupling the generation of curvature perturbations

(curvaton) from the inflaton

– Non-Gaussianity of primordial fluctuations



Two-field α-attractor Models

Action:

S =

∫
d4x

√
− det g

[
R

2
− 1

2
Gij(ϕ) gµν ∂µϕ

i ∂νϕ
j − V (ϕ)

]
,

gµν(x) - spacetime metric ,

Ansatz: ds2g = −dt2 + a(t)2d~x2 , ϕi = ϕi(t) ,

- Hubble parameter ,H(t) ≡ ȧ(t)

a(t)

Gij(ϕ) - target space metric: i, j = 1, 2

Gaussian curvature of Gij - constant and negative



Two-field α-attractors:

Kallosh, Linde et al. ( arXiv:1311.0472 [hep-th], arXiv:1405.3646 [hep-th],

arXiv:1503.06785 [hep-th], arXiv:1504.05557 [hep-th] )

Two-dim. manifold M with metric ds2G = Gijdϕ
idϕj and

Gaussian curvature KG = const < 0 : hyperbolic surface

→ simplest example: Poincaré disk

Initial studies: radial trajectories on the Poincaré disk

Generalization to any hyperbolic surface:

Lazaroiu and Shahbazi ( arXiv:1702.06484 [hep-th] )



Two-field α-attractors:

Note:

In single-field models potential V (ϕ) plays key role:

Always: field redefinition → canonical kinetic term

(Gij∂ϕ
i∂ϕj → δij∂ϕ̂

i∂ϕ̂j ⇒ Can transfer complexity to the potential)

In multi-field models:

Cannot redefine away the curvature of Gij !

⇒ kinetic term becomes important

In particular: Can have genuine two (or multi-) field

trajectories, {ϕi(t)}, even when ∂ϕiV = 0 !



Action:

Substituting ansatz ds2 = −dt2 + a(t)2d~x2 , ϕi = ϕi(t) :

L = −3aȧ2 + a3
[

1

2
Gijϕ̇

iϕ̇j − V (ϕ)

]
→ classical mechanical action for {a, ϕi} ds.o.f.

Euler-L. eqs of L ≡ original EoMs, when imposing constraint:

EL ≡ ȧ
∂L

∂ȧ
+ ϕ̇i

∂L

∂ϕ̇i
− L = 0

Note: EL = const on solutions of EL eqs., so Hamiltonian

constraint → relation between integration constants



Noether Symmetry

Will impose condition that L has Noether symmetry

Motivation:

• can restrict:

– form of potential V (expected)

– value of Gaussian curvature KG (unexpected!)

(hence: may help for embedding in fundamental theory)

• can facilitate finding exact solutions of EoMs

(as opposed to numerical ones)

• conserved quantity may play important role



Noether symmetry:

Recall: L = −3aȧ2 + a3
[
1
2Gijϕ̇

iϕ̇j − V (ϕ)
]

Denote qI ≡ {a, ϕi} - generalized coordinates on M̃

Consider transformation qI → QI(q) :

– generated by: X = Xa(a, ϕ)∂a +Xi(a, ϕ)∂ϕi

– induces transf. on tangent bundle TM̃, generated by :

(with coord. {qI, q̇I})

X̂ = X + Ẋa(a, ϕ, ȧ, ϕ̇)∂ȧ + Ẋi(a, ϕ, ȧ, ϕ̇)∂ϕ̇i

Symmetry condition: LX̂(L) = 0



Noether symmetry: ( arXiv:1905.01611 [hep-th] )

LX̂(L) = 0 ⇒ coupled system of equations:

Xa + 2a∂aX
a = 0

−6∂iX
a + a2Gij∂aX

j = 0

3GijX
a + a (∇iXj +∇jXi) = 0

3V Xa + aXi∂iV = 0 ,

∇i - covariant derivative on M (with coord. {ϕi})

Look for functions Xa(a, ϕ), Xi(a, ϕ) satisfying this system

identically

(I.e., look for global symmetries, independent of t !)



Noether symmetry: ( arXiv:1905.01611 [hep-th] )

Have shown: The solutions of LX̂(L) = 0 have the form:

Xa =
Λ(ϕ)√
a

, Xi = Y i(ϕ)− 4

a3/2
Gij∂jΛ ,

where Λ and Y i satisfy:

• ∇iYj +∇jYi = 0 , Y i∂iV = 0

→ Y i - Killing vector on M, preserving V (ϕ)

• ∇i∇jΛ =
3

8
GijΛ , Gij∂iV ∂jΛ =

3

4
V Λ

→ Λ - Hessian symmetry (hidden symmetry)



Hidden symmetry:

Convenient to rescale Ĝ
def.
= 3

8G

Then the Λ-conditions become:

∇dΛ = ĜΛ ,

〈dV,dΛ〉Ĝ = 2V Λ

Note: These eqs. are invariant under the natural action of the

isometry group of M, i.e. under

(Λ, V )→ (Λ ◦ ψ−1, V ◦ ψ−1) , ∀ψ ∈ Iso(M, Ĝ)

→ Very useful for finding general solutions!



Hidden symmetry:

Remark on scalar potential:

Consider γ(s) - gradient flow curve of Λ with gradient

flow parameter s:

dγ(s)

ds
= −(gradĜΛ)(γ(s))

Then equation 〈dV,dΛ〉Ĝ = 2V Λ implies:

V (γ(s)) = V (γ(s0)) exp

(
−2

∫ s

s0

Λ(γ(s′)) ds′
)

→ Can find V in full generality, once we know Λ



Rotationally-invariant 2-field models

Consider rot.-invariant metric Gij onM with i, j = 1, 2:

ds2G = dr2 + f(r)dθ2 , {ϕi} = {r, θ}

Then the hidden symmetry conditions become:

• Hessian equation ∇i∇jΛ = 3
8GijΛ:

∂2rΛ =
3

8
Λ , ∂r∂θΛ−

f ′

2f
∂θΛ = 0

∂2θΛ +
f ′

2
∂rΛ =

3

8
fΛ

• Λ-V equation: ∂rV ∂rΛ +
1

f
∂θV ∂θΛ =

3

4
V Λ



Rotationally-invariant Gij: (recall: i, j = 1, 2)

Showed that Hessian equation implies:

KG = −3

8

→ Λ-symmetry requires hyperbolic M!

(KG - Gaussian curvature of M)

Rotationally-invariant hyperbolic surfaces:

(z ∈ C , ρ
def.
= |z| , θ

def.
= arg(z))

- Poincaré disk D
( ρ < 1 , ds2D = 4

(1−ρ2)2 (dρ
2 + ρ2dθ2) , KD = −1)

- hyperbolic punctured disk D∗

( 0 < ρ < 1 , ds2D∗ =
1

(ρ log ρ)2
(dρ2 + ρ2dθ2) , KD∗ = −1)

- hyperbolic annuli A(
1
R < ρ < R , ds2A =

(
π

2 logR

)2 (
dρ2+ρ2dθ2

)
[
ρ cos

(
π log ρ
2 logR

)]2 , KA = −1

)



Poincaré disk case:

Metric Gij: ds2G =
4

β2(1− ρ2)2
(
dρ2 + ρ2dθ2

)
, ρ < 1

r =
2

β
arctanh(ρ) ∈ (0,∞) → ds2G = dr2 + f(r)dθ2

Showed that general solution for Λ is:

Λ = B0 cosh(βr) + (B1 cos θ +B2 sin θ) sinh(βr) ,

where β ≡
√

3
8 and B0,1,2 = const

Finding V complicated! To simplify Λ-V equation, note:

Can write Λ = BµΞµ , (µ = 0, 1, 2)

where (Ξ0)2 − (Ξ1)2 − (Ξ2)2 = 1 and Ξ0 > 0



Poincaré disk case:

Ξµ - Weierstrass coordinates for the Poincaré disk D

Weierstrass map: Ξ : D→ S+ ,

where S+ - future sheet of the unit hyperboloid in 3d

Minkowski space R1,2

Can identify orientation-preserving isometries of D with

proper and orthochronous Lorentz transf. in 3d

→ Solve Λ-V equation in 3 simple canonical cases

(Bµ: timelike, spacelike, lightlike)

⇒ Find general solution for V (in each case) by Lorentz transf.



Orientation-preserving isometries of D:

Isoo(D) - orientation preserving isometries of D

SOo(1, 2) - connected component of Lorentz group in 3d

Can identify the two groups by using PSU(1, 1):

1) Consider morphism of groups:

ψ : SU(1, 1)→ Diff(D) ,

where ψU(z) =
ηz + σ

σ̄z + η̄
, z ∈ D , ψU

def.
= ψ(U)

and η, σ ∈ C , U(η, σ)
def.
=

[
η σ

σ̄ η̄

]
∈ SU(1, 1)

→ ψ(PSU(1, 1)) = Isoo(D)

(PSU(1, 1)
def.
= SU(1, 1)/{−I2, I2} : for effective action )



Orientation-preserving isometries of D:

2) Identify Lie algebra su(1, 1) with 3d Minkowski space R1,2:

Z = Z(X)
def.
=

[
X0 X1 + iX2

X1 − iX2 X0

]
,

X
def.
= (X0, X1, X2) ∈ R3 , Z = i√

8
AJ , A ∈ su(1, 1) , J =

[
1 0
0 −1

]
AND

adjoint representation Ad : SU(1, 1)→ AutR(su(1, 1))

(→ Ad(U)(Z) = UZU† , ∀U ∈ SU(1, 1) )

with SOo(1, 2) Lorentz transformations

( su(1, 1) Killing form → pairing (X,Y ) = X0Y 0−X1Y 1−X2Y 2 )



Poincaré disk case:

Exact solutions in a special case:

(arising from separation-of-variables Ansatz)

V = V0 cosh2(βr) cothm(βr) (C1 cos θ − C2 sin θ)
−m ,

where m,V0, C1, C2 = const

To solve EL equations, transform to generalized coord.,

adapted to the symmetry: (a, r, θ)→ (u, v, w) , ∂L
∂w = 0

[ see arXiv:1809.10563 [hep-th] for the explicit expressions for:

a = a(u, v, w) , r = r(u, v, w) , θ = θ(u, v, w) ]

→ easily solve EL eq. for cyclic variable : w = w(t)



Poincaré disk case:

Exact solutions:

• m = 0:

u(t) = Cu1 sinh(κ t) + Cu2 cosh(κ t) , κ = 1
2

√
3V0

v(t) = Cv1 t+ Cv2

• m = −2:

u(t) = Cu1 t+ Cu2

v(t) = Cv1 sin(ωt) + Cv2 cos(ωt) , ω = 1
2

√
3V0(C2

1 + C2
2)

• m = −1:

v = [Cv1 cosh(κ̂t) + Cv2 sinh(κ̂t)] cos(κ̂t)

+ [Cv3 cosh(κ̂t) +Cv4 sinh(κ̂t)] sin(κ̂t) , u = const× v̈



Note:

For m = 0: V is θ-independent, but still there are genuine

2-field trajectories (ρ(t), θ(t)) !

Illustration: (all constants fixed, except one)

Cu1 - varies Cu2 - varies



Summary

Found so far:

• Most general hidden symmetries of cosmological two-field

α-attractor models with rot.-invariant scalar manifold metric

[ In particular: Gaussian curvature - fixed ! ]

• Form of scalar potential compatible with hidden symmetry

• Exact solutions in special case [ separation-of-variables Ansatz ]

Open issues:

• Exact solutions in general case ?...

• Embedding in string theory (points of enhanced symmetry) ?...

• Perturbations, cosmological observables ?...



Thank you!


