Cosmological Two-field α -attractor Models

(Hidden Symmetries and Exact Solutions)

Lilia Anguelova INRNE, Bulgarian Academy of Sciences

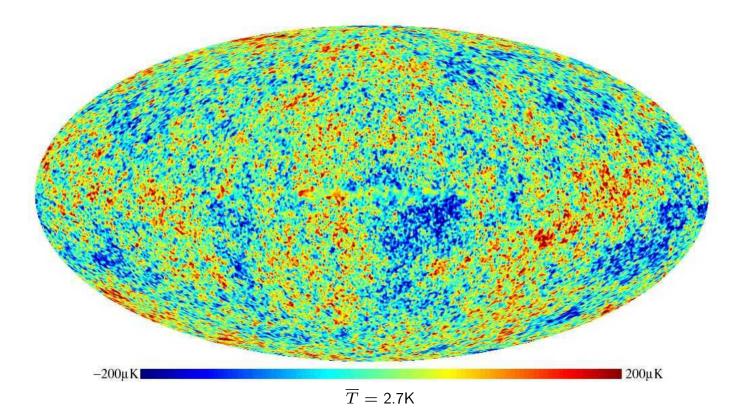
arXiv:1809.10563 [hep-th]; arXiv:1905.01611 [hep-th] (with E.M. Babalic and C.I. Lazaroiu)

Motivation

Cosmic Microwave Background (CMB) radiation:

WMAP (2003-2012) and Planck (2013) satellites:

Detailed map of CMB temperature fluctuations on the sky



According to CMB data:

Temperature fluctuations $\frac{\delta T(\theta,\varphi)}{\overline{T}}$, (θ,φ) coord. on S^2 , measured with great precision:

• On large scales:

Universe is homogeneous and isotropic

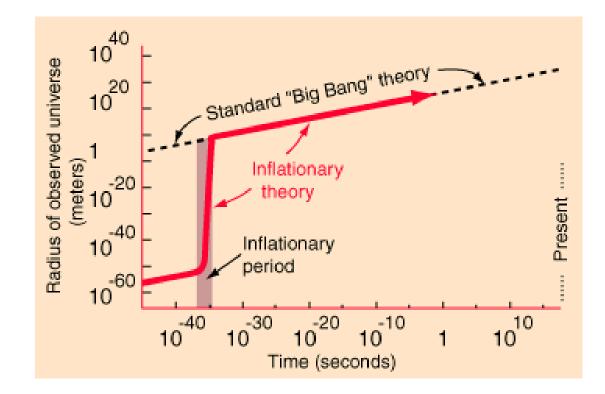
• In Early Universe:

Small perturbations that seed structure formation [(Clusters of) Galaxies]

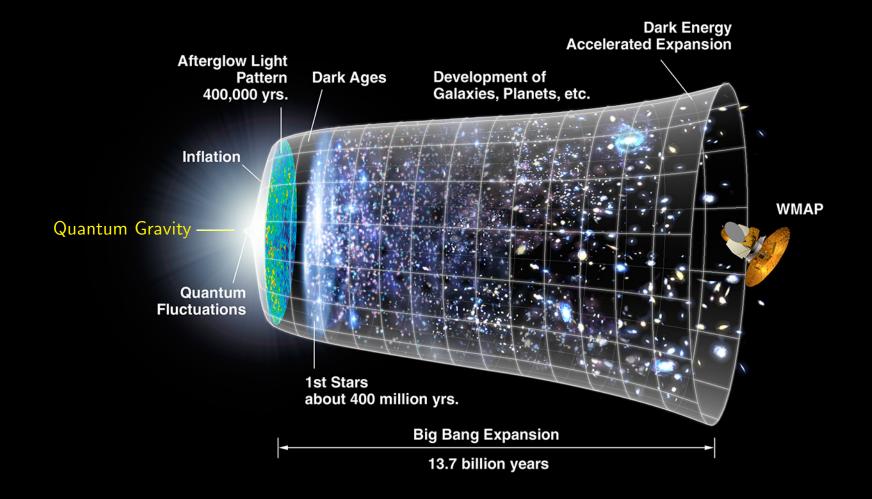
Cosmological Inflation:

Period of very fast expansion of space in the Early Universe (faster than speed of light)

 \Rightarrow homogeneity and isotropy observed today



Inflation: Traces of Quantum Gravity?



(Shortly after) Big Bang: Origin of all structure we see today!

NASA/WMAP Science Team

Cosmological Inflation:

Standard description:

- expansion driven by the potential energy of a single scalar field φ called inflaton
- weakly coupled Lagrangian for the inflaton within QFT framework:

$$S = \int d^4x \sqrt{-\det g} \left[\frac{R}{2} - \frac{1}{2} g^{\mu\nu} \partial_\mu \varphi \, \partial_\nu \varphi - V(\varphi) \right]$$

- slow roll approximation:

$$\epsilon_{\rm v} \stackrel{\text{def.}}{=} \frac{1}{2} \left[\frac{V'(\varphi)}{V(\varphi)} \right]^2 \ll 1 \quad \text{,} \quad \eta_{\rm v} \stackrel{\text{def.}}{=} \frac{V''(\varphi)}{V(\varphi)} \ll 1$$

BUT: Many reasons to consider non-standard models

- Embedding in a fundamental theory:
 - In string compactifications 4d scalars arise in pairs (chiral superfields)

- Compatibility with quantum gravity ('swampland' conjectures, in particular, constraints on $V(\varphi)$; very restrictive for a single scalar)

- Richer phenomenology:
 - Decoupling the generation of curvature perturbations (curvaton) from the inflaton
 - Non-Gaussianity of primordial fluctuations

Two-field α **-attractor** Models

Action:

$$S = \int d^4x \sqrt{-\det g} \left[\frac{R}{2} - \frac{1}{2} G_{ij}(\varphi) g^{\mu\nu} \partial_\mu \varphi^i \partial_\nu \varphi^j - V(\varphi) \right] \,,$$

 $g_{\mu
u}(x)$ - spacetime metric ,

Ansatz:
$$ds_g^2 = -dt^2 + a(t)^2 dec{x}^2$$
 , $arphi^i = arphi^i(t)$,

$$H(t)\equiv {\dot a(t)\over a(t)}$$
 – Hubble parameter ,

 $G_{ij}(\varphi)$ - target space metric: i, j = 1, 2Gaussian curvature of G_{ij} - constant and negative Two-field α -attractors:

Kallosh, Linde et al. (arXiv:1311.0472 [hep-th], arXiv:1405.3646 [hep-th], arXiv:1503.06785 [hep-th], arXiv:1504.05557 [hep-th])

Two-dim. manifold \mathcal{M} with metric $ds_G^2 = G_{ij}d\varphi^i d\varphi^j$ and Gaussian curvature $K_G = const < 0$: hyperbolic surface

 \rightarrow simplest example: Poincaré disk

Initial studies: radial trajectories on the Poincaré disk

Generalization to any hyperbolic surface:

Lazaroiu and Shahbazi (arXiv:1702.06484 [hep-th])

Two-field α -attractors:

Note:

In single-field models potential $V(\varphi)$ plays key role: Always: field redefinition \rightarrow canonical kinetic term $(G_{ij}\partial\varphi^i\partial\varphi^j \rightarrow \delta_{ij}\partial\hat{\varphi}^i\partial\hat{\varphi}^j \Rightarrow$ Can transfer complexity to the potential)

In multi-field models:

Cannot redefine away the curvature of G_{ij} !

 \Rightarrow kinetic term becomes important

In particular: Can have genuine two (or multi-) field trajectories, $\{\varphi^i(t)\}$, even when $\partial_{\varphi^i}V = 0$!

Action:

Substituting ansatz $\ ds^2 = -dt^2 + a(t)^2 d\vec{x}^2$, $\varphi^i = \varphi^i(t)$:

$$L = -3a\dot{a}^2 + a^3 \left[\frac{1}{2}G_{ij}\dot{\varphi}^i\dot{\varphi}^j - V(\varphi)\right]$$

 \rightarrow classical mechanical action for $\{a, \varphi^i\}$ ds.o.f.

Euler-L. eqs of $L \equiv$ original EoMs, when imposing constraint:

$$E_L \equiv \dot{a} \frac{\partial L}{\partial \dot{a}} + \dot{\varphi}^i \frac{\partial L}{\partial \dot{\varphi}^i} - L = 0$$

Note: $E_L = const$ on solutions of EL eqs., so Hamiltonian constraint \rightarrow relation between integration constants

Noether Symmetry

Will impose condition that L has Noether symmetry

Motivation:

- can restrict:
 - form of potential V (expected)
 - value of Gaussian curvature K_G (unexpected!)

(hence: may help for embedding in fundamental theory)

- can facilitate finding exact solutions of EoMs (as opposed to numerical ones)
- conserved quantity may play important role

Noether symmetry:

Recall:
$$L = -3a\dot{a}^2 + a^3 \left[\frac{1}{2}G_{ij}\dot{\varphi}^i\dot{\varphi}^j - V(\varphi)\right]$$

Denote $q^I \equiv \{a, \varphi^i\}$ - generalized coordinates on $\widetilde{\mathcal{M}}$

Consider transformation $q^I \rightarrow Q^I(q)$:

– generated by:
$$X = X^a(a, \varphi)\partial_a + X^i(a, \varphi)\partial_{\varphi^i}$$

- induces transf. on tangent bundle $T\widetilde{\mathcal{M}}$, generated by : (with coord. $\{q^I, \dot{q}^I\}$)

$$\hat{X} = X + \dot{X}^a(a,\varphi,\dot{a},\dot{\varphi})\partial_{\dot{a}} + \dot{X}^i(a,\varphi,\dot{a},\dot{\varphi})\partial_{\dot{\varphi}^i}$$

Symmetry condition: $\mathcal{L}_{\hat{X}}(L) = 0$

Noether symmetry:

(arXiv:1905.01611 [hep-th])

 $\mathcal{L}_{\hat{X}}(L) = 0 \implies \text{coupled system of equations:}$

$$X^{a} + 2a\partial_{a}X^{a} = 0$$

$$-6\partial_{i}X^{a} + a^{2}G_{ij}\partial_{a}X^{j} = 0$$

$$3G_{ij}X^{a} + a\left(\nabla_{i}X_{j} + \nabla_{j}X_{i}\right) = 0$$

$$3VX^{a} + aX^{i}\partial_{i}V = 0$$

 $abla_i$ - covariant derivative on \mathcal{M} (with coord. $\{\varphi^i\}$)

Look for functions $X^a(a, \varphi)$, $X^i(a, \varphi)$ satisfying this system identically

(I.e., look for global symmetries, independent of t !)

Noether symmetry:

(arXiv:1905.01611 [hep-th])

Have shown: The solutions of $\mathcal{L}_{\hat{X}}(L) = 0$ have the form:

$$X^a = \frac{\Lambda(\varphi)}{\sqrt{a}}$$
, $X^i = Y^i(\varphi) - \frac{4}{a^{3/2}}G^{ij}\partial_j\Lambda$,

where Λ and Y^i satisfy:

•
$$\nabla_i Y_j + \nabla_j Y_i = 0$$
 , $Y^i \partial_i V = 0$

 $\to Y^i$ - Killing vector on \mathcal{M} , preserving $V(\varphi)$

•
$$\nabla_i \nabla_j \Lambda = \frac{3}{8} G_{ij} \Lambda$$
 , $G^{ij} \partial_i V \partial_j \Lambda = \frac{3}{4} V \Lambda$

 $\rightarrow \Lambda$ - Hessian symmetry (hidden symmetry)

Hidden symmetry:

Convenient to rescale $\hat{G} \stackrel{\text{def.}}{=} \frac{3}{8}G$

Then the Λ -conditions become:

$$abla \mathrm{d}\Lambda = \hat{G}\Lambda \ ,$$

 $\langle \mathrm{d}V, \mathrm{d}\Lambda
angle_{\hat{G}} = 2 \, V\Lambda$

Note: These eqs. are invariant under the natural action of the isometry group of \mathcal{M} , i.e. under

$$(\Lambda, V) \to (\Lambda \circ \psi^{-1}, V \circ \psi^{-1}) \quad , \ \forall \psi \in \operatorname{Iso}(\mathcal{M}, \hat{G})$$

 \rightarrow Very useful for finding general solutions!

Hidden symmetry:

Remark on scalar potential:

Consider $\gamma(s)$ - gradient flow curve of Λ with gradient flow parameter s:

$$\frac{\mathrm{d}\gamma(s)}{\mathrm{d}s} = -(\mathrm{grad}_{\hat{G}}\Lambda)(\gamma(s))$$

Then equation $\langle \mathrm{d}V,\mathrm{d}\Lambda\rangle_{\hat{G}} = 2\,V\Lambda$ implies:

$$V(\gamma(s)) = V(\gamma(s_0)) \exp\left(-2\int_{s_0}^s \Lambda(\gamma(s')) \,\mathrm{d}s'\right)$$

 \rightarrow Can find V in full generality, once we know Λ

Rotationally-invariant 2-field models

Consider rot.-invariant metric G_{ij} on \mathcal{M} with i, j = 1, 2:

$$ds_G^2 = dr^2 + f(r)d\theta^2 \quad , \quad \{\varphi^i\} = \{r,\theta\}$$

Then the hidden symmetry conditions become:

• Hessian equation $\nabla_i \nabla_j \Lambda = \frac{3}{8} G_{ij} \Lambda$:

$$\partial_r^2 \Lambda = \frac{3}{8} \Lambda \quad , \quad \partial_r \partial_\theta \Lambda - \frac{f'}{2f} \partial_\theta \Lambda = 0$$
$$\partial_\theta^2 \Lambda + \frac{f'}{2} \partial_r \Lambda = \frac{3}{8} f \Lambda$$

• Λ -V equation: $\partial_r V \partial_r \Lambda + \frac{1}{f} \partial_\theta V \partial_\theta \Lambda = \frac{3}{4} V \Lambda$

Rotationally-invariant G_{ij} : (recall: i, j = 1, 2)

Showed that Hessian equation implies:

 $K_G = -\frac{3}{8}$ (*K_G* - Gaussian curvature of *M*)

 $\rightarrow \Lambda$ -symmetry requires hyperbolic $\mathcal{M}!$

Rotationally-invariant hyperbolic surfaces:

$$\left(z\in\mathbb{C}$$
 , $ho\stackrel{ ext{def.}}{=}|z|$, $heta\stackrel{ ext{def.}}{=}rg(z)
ight)$

- Poincaré disk $\mathbb D$

$$\left(\
ho < 1 \ \ , \ \ ds_{\mathbb D}^2 = rac{4}{(1-
ho^2)^2} \left(d
ho^2 +
ho^2 d heta^2
ight)$$
 , $K_{\mathbb D} = -1
ight)$

- hyperbolic punctured disk \mathbb{D}^\ast

$$\left(\ 0 <
ho < 1 \ , \ ds_{\mathbb{D}^*}^2 = rac{1}{(
ho \log
ho)^2} \left(d
ho^2 +
ho^2 d heta^2
ight)$$
 , $K_{\mathbb{D}^*} = -1
ight)$

- hyperbolic annuli A

$$\left(\frac{1}{R} < \rho < R \quad , \quad ds_{\mathbb{A}}^2 = \left(\frac{\pi}{2\log R}\right)^2 \frac{\left(d\rho^2 + \rho^2 d\theta^2\right)}{\left[\rho \cos\left(\frac{\pi \log \rho}{2\log R}\right)\right]^2} \quad , \quad K_{\mathbb{A}} = -1\right)$$

Poincaré disk case:

$$\begin{array}{ll} \text{Metric } G_{ij} \colon \ ds_G^2 = \frac{4}{\beta^2 (1-\rho^2)^2} \left(d\rho^2 + \rho^2 d\theta^2 \right) &, \ \rho < 1 \\ \\ r = \frac{2}{\beta} \operatorname{arctanh}(\rho) \ \in \ (0,\infty) & \rightarrow \quad ds_G^2 = dr^2 + f(r) d\theta^2 \end{array}$$

Showed that general solution for Λ is:

$$\Lambda = B_0 \cosh(\beta r) + (B_1 \cos \theta + B_2 \sin \theta) \sinh(\beta r),$$

where $\beta \equiv \sqrt{\frac{3}{8}}$ and $B_{0,1,2} = const$

Finding V complicated! To simplify Λ -V equation, note:

Can write $\Lambda = B_{\mu} \Xi^{\mu}$, $(\mu = 0, 1, 2)$

where $(\Xi^0)^2 - (\Xi^1)^2 - (\Xi^2)^2 = 1$ and $\Xi^0 > 0$

Poincaré disk case:

 $\Xi^{\mu}\,$ - Weierstrass coordinates for the Poincaré disk D

Weierstrass map: $\ \ \Xi \, : \, {
m D} o S^+$,

where S^+ - future sheet of the unit hyperboloid in 3d Minkowski space $\mathbb{R}^{1,2}$

Can identify orientation-preserving isometries of $\mathbb D$ with proper and orthochronous Lorentz transf. in 3d

 \rightarrow Solve $\Lambda\text{-}V$ equation in 3 simple canonical cases

(B_{μ} : timelike, spacelike, lightlike)

 \Rightarrow Find general solution for V (in each case) by Lorentz transf.

Orientation-preserving isometries of \mathbb{D} :

 $Iso_o(\mathbb{D})$ - orientation preserving isometries of \mathbb{D} $SO_o(1,2)$ - connected component of Lorentz group in 3d

Can identify the two groups by using PSU(1,1):

1) Consider morphism of groups:

$$\psi$$
 : SU(1,1) \rightarrow Diff(D),

where $\psi_U(z) = \frac{\eta z + \sigma}{\bar{\sigma} z + \bar{\eta}}$, $z \in D$, $\psi_U \stackrel{\text{def.}}{=} \psi(U)$ and $\eta, \sigma \in \mathbb{C}$, $U(\eta, \sigma) \stackrel{\text{def.}}{=} \begin{bmatrix} \eta & \sigma \\ \bar{\sigma} & \bar{\eta} \end{bmatrix} \in \text{SU}(1, 1)$

 $\rightarrow \quad \psi(\mathrm{PSU}(1,1)) = \mathrm{Iso}_o(\mathbb{D})$ (PSU(1,1) $\stackrel{\mathrm{def.}}{=} \mathrm{SU}(1,1)/\{-I_2, I_2\}$: for effective action) Orientation-preserving isometries of \mathbb{D} :

2) Identify Lie algebra su(1,1) with 3d Minkowski space $\mathbb{R}^{1,2}$:

$$Z = Z(X) \stackrel{\text{def.}}{=} \begin{bmatrix} X^0 & X^1 + \mathbf{i}X^2 \\ X^1 - \mathbf{i}X^2 & X^0 \end{bmatrix} ,$$
$$X \stackrel{\text{def.}}{=} (X^0, X^1, X^2) \in \mathbb{R}^3 , Z = \frac{\mathbf{i}}{\sqrt{8}} AJ , A \in \text{su}(1, 1) , J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

AND

adjoint representation Ad : $SU(1,1) \rightarrow Aut_{\mathbb{R}}(su(1,1))$ $(\rightarrow Ad(U)(Z) = UZU^{\dagger}, \forall U \in SU(1,1))$

with $SO_o(1,2)$ Lorentz transformations

(su(1,1) Killing form \rightarrow pairing $(X,Y) = X^0Y^0 - X^1Y^1 - X^2Y^2)$

Poincaré disk case:

Exact solutions in a special case:

(arising from separation-of-variables Ansatz)

$$V = V_0 \cosh^2(\beta r) \coth^m(\beta r) \left(C_1 \cos \theta - C_2 \sin \theta\right)^{-m}$$
,
where $m, V_0, C_1, C_2 = const$

To solve EL equations, transform to generalized coord., adapted to the symmetry: $(a, r, \theta) \rightarrow (u, v, w)$, $\frac{\partial L}{\partial w} = 0$

[see arXiv:1809.10563 [hep-th] for the explicit expressions for:

$$a=a(u,v,w)$$
 , $r=r(u,v,w)$, $\theta=\theta(u,v,w)$]

 \rightarrow easily solve EL eq. for cyclic variable: w = w(t)

Poincaré disk case:

Exact solutions:

•
$$m = 0$$
:
 $u(t) = C_1^u \sinh(\kappa t) + C_2^u \cosh(\kappa t)$, $\kappa = \frac{1}{2}\sqrt{3V_0}$
 $v(t) = C_1^v t + C_2^v$

•
$$m = -2$$
:

$$u(t) = C_1^u t + C_2^u$$
$$v(t) = C_1^v \sin(\omega t) + C_2^v \cos(\omega t) \quad , \quad \omega = \frac{1}{2}\sqrt{3V_0(C_1^2 + C_2^2)}$$

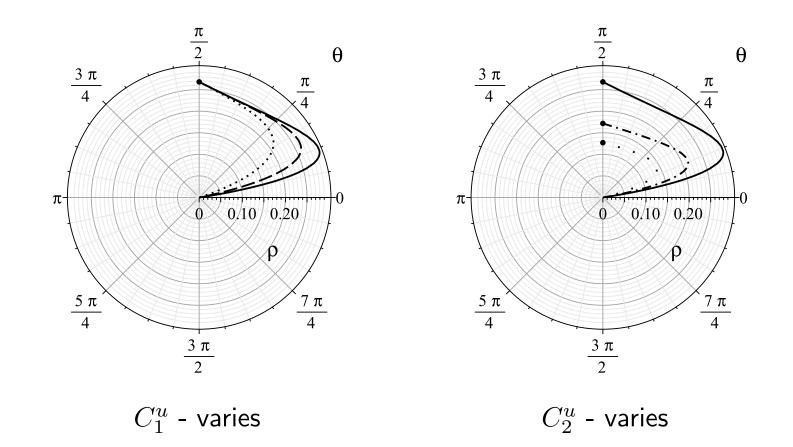
• m = -1:

$$\begin{aligned} v &= \left[C_1^v \cosh(\hat{\kappa}t) + C_2^v \sinh(\hat{\kappa}t)\right] \cos(\hat{\kappa}t) \\ &+ \left[C_3^v \cosh(\hat{\kappa}t) + C_4^v \sinh(\hat{\kappa}t)\right] \sin(\hat{\kappa}t) \quad \text{,} \quad u = const \times \ddot{v} \end{aligned}$$

Note:

For m = 0: V is θ -independent, but still there are genuine 2-field trajectories $(\rho(t), \theta(t))$!

Illustration: (all constants fixed, except one)



Summary

Found so far:

- Most general hidden symmetries of cosmological two-field α-attractor models with rot.-invariant scalar manifold metric [In particular: Gaussian curvature - fixed !]
- Form of scalar potential compatible with hidden symmetry
- Exact solutions in special case [separation-of-variables Ansatz]

Open issues:

- Exact solutions in general case ?...
- Embedding in string theory (points of enhanced symmetry) ?...
- Perturbations, cosmological observables ?...

Thank you!