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Motivation

Cosmic Microwave Background (CMB) radiation:

WMAP (2003-2012) and Planck (2013) satellites:
Detailed map of CMB temperature fluctuations on the sky




According to CMB data:
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measured with great precision:

Temperature fluctuations (0, ) coord. on S?,

e On large scales:

Universe i1s homogeneous and isotropic

e In Early Universe:

Small perturbations that seed structure formation

[ (Clusters of ) Galaxies |



Cosmological Inflation:

Period of very fast expansion of space in the Early Universe
(faster than speed of light)

= homogeneity and isotropy observed today
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Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

Inflation

Quantum Gravity

|
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

(Shortly after) Big Bang: Origin of all structure we see today!

MASAWMAP Science Tea




Cosmological Inflation:

Standard description:

— expansion driven by the potential energy of a single

scalar field ¢ called inflaton

— weakly coupled Lagrangian for the inflaton within
QFT framework:

1

R
G — /d4a3 V/—detg [5 — 59" 0up Ovp — Vi(p)

— slow roll approximation:

/ 2 /!
def. 1 | V'(¢) def. V7 (p)
€ = 5{‘/(:;)} <1l , =35 <l




BUT: Many reasons to consider non-standard models

e Embedding in a fundamental theory:

— In string compactifications 4d scalars arise in pairs

(chiral superfields)

— Compatibility with quantum gravity
(‘swampland’ conjectures, in particular, constraints on V(y);

very restrictive for a single scalar)

e Richer phenomenology:

— Decoupling the generation of curvature perturbations

(curvaton) from the inflaton

— Non-Gaussianity of primordial fluctuations



Two-field a-attractor Models

Action:

1

R . .
S = / d'z\/—detg [5 =5 Gij(#) 9" 04" D’ = V(p)|

g () - spacetime metric

Ansatz: ds; = —dt* + a(t)?dz® , ¢" = ¢'(1)

1(t
H(t) = att) Hubble parameter
a(t)
Gi(p) - target space metric: i,7=1,2

Gaussian curvature of G;; - constant and negative



Two-field a-attractors:

Kallosh, Linde et al. (arXiv:1311.0472 [hep-th], arXiv:1405.3646 [hep-th],
arXiv:1503.06785 [hep-th], arXiv:1504.05557 [hep-th] )

Two-dim. manifold M with metric dsZ = G;;dp*dy’ and

Gaussian curvature Ko = const < 0: hyperbolic surface

— simplest example: Poincaré disk
Initial studies: radial trajectories on the Poincaré disk

Generalization to any hyperbolic surface:

Lazaroiu and Shahbazi (arxiv:1702.06484 [hep-th] )



Two-field a-attractors:

Note:

In single-field models potential V' (¢) plays key role:

Always: field redefinition — canonical kinetic term

(Gi;0p"0p? — §;;0$'0p7 = Can transfer complexity to the potential)

In multi-field models:
Cannot redefine away the curvature of G;; !

= kinetic term becomes important

In particular: Can have genuine two (or multi-) field

trajectories, {¢*(t)}, even when 0_;V =0



Action:
Substituting ansatz ds? = —dt? + a(t)*dz? , ©' = ©'(t) :
L = —3aa* + a* %Gijw)j — V()
—s classical mechanical action for {a, ©*} ds.o.f.

Euler-L. egs of L = original EoMs, when imposing constraint:

OL . 0L
EFr=4—+¢p'— — L =
L= a8a+ e 0

Note: F; = const on solutions of EL eqgs., so Hamiltonian

constraint — relation between integration constants



Noether Symmetry

Will impose condition that L has Noether symmetry

Motivation:

e can restrict:
— form of potential V' (expected)
— value of Gaussian curvature K¢ (unexpected!)

(hence: may help for embedding in fundamental theory)

e can facilitate finding exact solutions of EoMs

(as opposed to numerical ones)

e conserved quantity may play important role



Noether symmetry:
Recall: L= —3aa*+ a®[2G;;0'¢7 — V(p)]
Denote ¢! = {a, ¢} - generalized coordinates on M
Consider transformation ¢! — Q1 (q):
— generated by: X = X%(a, )0, + X*(a, )0,

— induces transf. on tangent bundle T//\/lv, generated by:
(with coord. {q*,¢'})

X=X+ X%a,¢,a,$)0, + X'(a, ¢, a, ©)0 i

Symmetry condition: L(L)=0



Noether symmetry: (arXiv:1905.01611 [hep-th] )

L+(L)=0 = coupled system of equations:

X+ 2a0, X% = 0
—60; X"+ a*G;;0,X? = 0
3G X"+ a(V;X; +V;X;) = 0

3VX%+aX0;V = 0

,

V, - covariant derivative on M (with coord. {¢'})

Look for functions X%(a, ©), X*(a, p) satisfying this system

identically

(l.e., look for global symmetries, independent of ¢ !)



Noether symmetry: (arXiv:1905.01611 [hep-th] )

Have shown: The solutions of L (L) = 0 have the form:

4
 q3/2

Xe — A\(/é) 7 Xz _ Y’L(SO)

where A and Y satisfy:

Go,A |

° Vi}/j-FVjY;':O : Yi&&-V:O

— Y - Killing vector on M, preserving V()

3 ¥ 3

— A - Hessian symmetry (hidden symmetry)



Hidden symmetry:

. ~, def.
Convenient to rescale G =

G

ool

Then the A-conditions become:

VdA = GA
(dV,dA) s =2V A

Note: These egs. are invariant under the natural action of the

isometry group of M, i.e. under

A

(A, V) = (Ao ™", Vo) | Vo € Iso(M, G)

— Very useful for finding general solutions!



Hidden symmetry:

Remark on scalar potential:

Consider ~(s) - gradient flow curve of A with gradient

flow parameter s:

dy(s)
ds

= —(gradgA)(v(s))

Then equation (dV,dA)s =2V A implies:

V(3(s)) = V(7(s0)) exp (—z [ a6 ds’)

S0

— Can find V in full generality, once we know A



Rotationally-invariant 2-field models

Consider rot.-invariant metric G;; on M with 7,5 = 1, 2:
dsy, = dr* + f(r)d6> | {p'} = {r,0}
Then the hidden symmetry conditions become:
e Hessian equation V,;V;A = $G;;A:

3 !
2
_ _ A
8,,“/\— 8A , 8r89A 9 89 =0

on g2
Oy A + 28TA_8fA

. 1
o \-V equation:  9,.VO,A + =0V Oy = %/A

f



Rotationally-invariant G (recall: 4,5 = 1,2)

Showed that Hessian equation implies:

Ko = _§ (K¢ - Gaussian curvature of M)

8
— A-symmetry requires hyperbolic M!

Rotationally-invariant hyperbolic surfaces:

(zeC, p=12], 0% arg(2))

- Poincaré disk D
(,0< 1, ds%:(ljﬁ(dpQ—i—deW) , Kp = —1)
- hyperbolic punctured disk D*
(O <p<1l , dsi :m(dp2—|—p2d02) , Kp+ = —1)

- hyperbolic annuli A
2 (dp2+p2d02
(é<p<R , d81§:<21(Z;R)[< Wogp) ,KA1>

1 2
pcos(Qlog R)]




Poincaré disk case:

4
' : 2 _ 2 2 102
Metric G;;: dsg = B1_ ) (dp + p°db ) , o p <l
2
r = Earctanh(p) c (0,00) — dsg =dr*+ f(r)do?

Showed that general solution for A is:
A = By cosh(fr) 4+ (B cos + By sin ) sinh(8r),
where [ = \/é and By 12 = const
Finding V' complicated! To simplify A-V equation, note:
Can write A=DB,=", (©p=0,1,2)

where (E))? - (EH? - (E%)*=1 and =">0



Poincaré disk case:

=H - Welerstrass coordinates for the Poincaré disk D

Weierstrass map: = : D — ST,
where ST - future sheet of the unit hyperboloid in 3d

Minkowski space R1:?

Can identify orientation-preserving isometries of ID with

proper and orthochronous Lorentz transf. in 3d

— Solve A-V equation in 3 simple canonical cases

(B,.: timelike, spacelike, lightlike)

= Find general solution for V' (in each case) by Lorentz transf.



Orientation-preserving isometries of ID:

Iso,(ID) - orientation preserving isometries of D

SO,(1,2) - connected component of Lorentz group in 3d

Can identify the two groups by using PSU(1, 1):

1) Consider morphism of groups:

W : SU(1,1) — Diff(D),

nz +o def.
h = D =
where g (2) . €D, Yy =9{U)
and n,0e€C |, U(n,a)de:f'lz Z]ESU(LU

— P (PSU(1,1)) = Iso,(D)

(PSU(1,1) = SU(1,1)/{—1s, I} : for effective action)



Orientation-preserving isometries of ID:

2) Identify Lie algebra su(1,1) with 3d Minkowski space R*2:

def. XO X1_|_iX2
Z:Z(X) — Xl—iX2 XO ] ?

def.- 'v0 y1 y2 3 _ i (10
X = (X" X, X°)eR ,Z—\/gAJ,AESU.(l,l),J—[O _1]

AND

adjoint representation Ad : SU(1,1) — Autg(su(1,1))
(— Ad(U)(Z)=UZU' |, YU € SU(1,1))

with SO,(1,2) Lorentz transformations

(su(1,1) Killing form — pairing (X,Y) = X% - X'y — X2y?2)



Poincaré disk case:

Exact solutions in a special case:

(arising from separation-of-variables Ansatz)

V=1V Cosh2(ﬁ7“) coth™(Br) (Cqcosf — Cysinf) ™",

where m, Vy, C1, Cy = const

To solve EL equations, transform to generalized coord.,

adapted to the symmetry: (a,r,0) = (u,v,w) , g—i =0

[ see arXiv:1809.10563 [hep-th] for the explicit expressions for:

a=a(u,v,w),r=r(uv,w), ==0(uvw)]

— easily solve EL eq. for cyclic variable: w = w(t)



Poincaré disk case:

Exact solutions:

o m = 0:
u(t) = Ci'sinh(kt) + C§ cosh(kt) , x=121iV/3V
v(t) =C7t+ CY
= —2:
) =C{t+ CY
t) = Cysin(wt) + CY cos(wt) , w=1=1/3V(C?+C?)

3

t

u(
v

= —1:

3

v = |C7 cosh(kt) + C3 sinh(&t)] cos(kt)
+ [CF cosh(kt) + CF sinh(k/t)] sin(kt) , uw = const X ¥



Note:

For m = 0: V is 6-independent, but still there are genuine
2-field trajectories (p(t),0(t)) !

[llustration:  (all constants fixed, except one)

3m
4

0

C1 - varies Cs - varies



Summary

Found so far:

e Most general hidden symmetries of cosmological two-field
a-attractor models with rot.-invariant scalar manifold metric

[ In particular: Gaussian curvature - fixed !]

e Form of scalar potential compatible with hidden symmetry

e Exact solutions in special case [separation-of-variables Ansatz]

Open issues:
e Exact solutions in general case?...
e Embedding in string theory (points of enhanced symmetry) ?...

e Perturbations, cosmological observables?...



Thank youl!



