# Cosmological Two-field $\alpha$-attractor Models 

(Hidden Symmetries and Exact Solutions)

Lilia Anguelova<br>INRNE, Bulgarian Academy of Sciences

arXiv:1809.10563 [hep-th]; arXiv:1905.01611 [hep-th]
( with E.M. Babalic and C.I. Lazaroiu )

## Motivation

## Cosmic Microwave Background (CMB) radiation:

## WMAP (2003-2012) and Planck (2013) satellites:

Detailed map of CMB temperature fluctuations on the sky


## According to CMB data:

Temperature fluctuations $\frac{\delta T(\theta, \varphi)}{\bar{T}},(\theta, \varphi)$ coord. on $S^{2}$, measured with great precision:

- On large scales:

Universe is homogeneous and isotropic

- In Early Universe:

Small perturbations that seed structure formation
[ (Clusters of) Galaxies ]

## Cosmological Inflation:

Period of very fast expansion of space in the Early Universe (faster than speed of light)
$\Rightarrow$ homogeneity and isotropy observed today


## Inflation: Traces of Quantum Gravity?

Dark Energy
Accelerated Expansion

(Shortly after) Big Bang: Origin of all structure we see today!

## Cosmological Inflation:

## Standard description:

- expansion driven by the potential energy of a single scalar field $\varphi$ called inflaton
- weakly coupled Lagrangian for the inflaton within QFT framework:

$$
S=\int d^{4} x \sqrt{-\operatorname{det} g}\left[\frac{R}{2}-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi-V(\varphi)\right]
$$

- slow roll approximation:

$$
\epsilon_{\mathrm{v}} \stackrel{\text { def. }}{=} \frac{1}{2}\left[\frac{V^{\prime}(\varphi)}{V(\varphi)}\right]^{2} \ll 1 \quad, \quad \eta_{\mathrm{v}} \stackrel{\text { def. }}{=} \frac{V^{\prime \prime}(\varphi)}{V(\varphi)} \ll 1
$$

BUT: Many reasons to consider non-standard models

- Embedding in a fundamental theory:
- In string compactifications 4d scalars arise in pairs (chiral superfields)
- Compatibility with quantum gravity

$$
\begin{aligned}
& \text { ('swampland' conjectures, in particular, constraints on } V(\varphi) \text {; } \\
& \text { very restrictive for a single scalar) }
\end{aligned}
$$

- Richer phenomenology:
- Decoupling the generation of curvature perturbations (curvaton) from the inflaton
- Non-Gaussianity of primordial fluctuations


## Two-field $\alpha$-attractor Models

## Action:

$$
S=\int d^{4} x \sqrt{-\operatorname{det} g}\left[\frac{R}{2}-\frac{1}{2} G_{i j}(\varphi) g^{\mu \nu} \partial_{\mu} \varphi^{i} \partial_{\nu} \varphi^{j}-V(\varphi)\right],
$$

$g_{\mu \nu}(x)$ - spacetime metric ,
Ansatz: $\quad d s_{g}^{2}=-d t^{2}+a(t)^{2} d \vec{x}^{2}, \quad \varphi^{i}=\varphi^{i}(t)$,

$$
H(t) \equiv \frac{\dot{a}(t)}{a(t)} \quad-\quad \text { Hubble parameter },
$$

$G_{i j}(\varphi)$ - target space metric: $\quad i, j=1,2$
Gaussian curvature of $G_{i j}$ - constant and negative

## Two-field $\alpha$-attractors:

Kallosh, Linde et al. (arXiv:1311.0472 [hep-th], arXiv:1405.3646 [hep-th], arXiv:1503.06785 [hep-th], arXiv:1504.05557 [hep-th] )

Two-dim. manifold $\mathcal{M}$ with metric $d s_{G}^{2}=G_{i j} d \varphi^{i} d \varphi^{j}$ and Gaussian curvature $K_{G}=$ const $<0$ : hyperbolic surface
$\rightarrow$ simplest example: Poincaré disk

Initial studies: radial trajectories on the Poincaré disk

Generalization to any hyperbolic surface:

Lazaroiu and Shahbazi (arXiv:1702.06484 [hep-th] )

## Two-field $\alpha$-attractors:

Note:

In single-field models potential $V(\varphi)$ plays key role:
Always: field redefinition $\rightarrow$ canonical kinetic term
$\left(G_{i j} \partial \varphi^{i} \partial \varphi^{j} \rightarrow \delta_{i j} \partial \hat{\varphi}^{i} \partial \hat{\varphi}^{j} \Rightarrow\right.$ Can transfer complexity to the potential)
In multi-field models:
Cannot redefine away the curvature of $G_{i j}$ !
$\Rightarrow$ kinetic term becomes important
In particular: Can have genuine two (or multi-) field trajectories, $\left\{\varphi^{i}(t)\right\}$, even when $\partial_{\varphi^{i}} V=0$ !

## Action:

Substituting ansatz $d s^{2}=-d t^{2}+a(t)^{2} d \vec{x}^{2}, \varphi^{i}=\varphi^{i}(t):$

$$
L=-3 a \dot{a}^{2}+a^{3}\left[\frac{1}{2} G_{i j} \dot{\varphi}^{i} \dot{\varphi}^{j}-V(\varphi)\right]
$$

$\rightarrow$ classical mechanical action for $\left\{a, \varphi^{i}\right\}$ ds.o.f.

Euler-L. eqs of $L \equiv$ original EoMs, when imposing constraint:

$$
E_{L} \equiv \dot{a} \frac{\partial L}{\partial \dot{a}}+\dot{\varphi}^{i} \frac{\partial L}{\partial \dot{\varphi}^{i}}-L=0
$$

Note: $E_{L}=$ const on solutions of EL eqs., so Hamiltonian constraint $\rightarrow$ relation between integration constants

## Noether Symmetry

Will impose condition that $L$ has Noether symmetry
Motivation:

- can restrict:
- form of potential $V$ (expected)
- value of Gaussian curvature $K_{G}$ (unexpected!)
(hence: may help for embedding in fundamental theory)
- can facilitate finding exact solutions of EoMs
(as opposed to numerical ones)
- conserved quantity may play important role

Noether symmetry:
Recall: $\quad L=-3 a \dot{a}^{2}+a^{3}\left[\frac{1}{2} G_{i j} \dot{\varphi}^{i} \dot{\varphi}^{j}-V(\varphi)\right]$
Denote $q^{I} \equiv\left\{a, \varphi^{i}\right\}$ - generalized coordinates on $\widetilde{\mathcal{M}}$
Consider transformation $q^{I} \rightarrow Q^{I}(q)$ :

- generated by: $X=X^{a}(a, \varphi) \partial_{a}+X^{i}(a, \varphi) \partial_{\varphi^{i}}$
- induces transf. on tangent bundle $T \widetilde{\mathcal{M}}$, generated by : (with coord. $\left\{q^{I}, \dot{q}^{I}\right\}$ )

$$
\hat{X}=X+\dot{X}^{a}(a, \varphi, \dot{a}, \dot{\varphi}) \partial_{\dot{a}}+\dot{X}^{i}(a, \varphi, \dot{a}, \dot{\varphi}) \partial_{\dot{\varphi}^{i}}
$$

Symmetry condition: $\quad \mathcal{L}_{\hat{X}}(L)=0$

Noether symmetry:
$\mathcal{L}_{\hat{X}}(L)=0 \Rightarrow$ coupled system of equations:

$$
\begin{aligned}
X^{a}+2 a \partial_{a} X^{a} & =0 \\
-6 \partial_{i} X^{a}+a^{2} G_{i j} \partial_{a} X^{j} & =0 \\
3 G_{i j} X^{a}+a\left(\nabla_{i} X_{j}+\nabla_{j} X_{i}\right) & =0 \\
3 V X^{a}+a X^{i} \partial_{i} V & =0,
\end{aligned}
$$

$\nabla_{i}$ - covariant derivative on $\mathcal{M}$ (with coord. $\left\{\varphi^{i}\right\}$ )

Look for functions $X^{a}(a, \varphi), X^{i}(a, \varphi)$ satisfying this system identically
(I.e., look for global symmetries, independent of $t$ !)

Noether symmetry:

Have shown: The solutions of $\mathcal{L}_{\hat{X}}(L)=0$ have the form:

$$
X^{a}=\frac{\Lambda(\varphi)}{\sqrt{a}} \quad, \quad X^{i}=Y^{i}(\varphi)-\frac{4}{a^{3 / 2}} G^{i j} \partial_{j} \Lambda
$$

where $\Lambda$ and $Y^{i}$ satisfy:

- $\quad \nabla_{i} Y_{j}+\nabla_{j} Y_{i}=0 \quad, \quad Y^{i} \partial_{i} V=0$
$\rightarrow Y^{i}$ - Killing vector on $\mathcal{M}$, preserving $V(\varphi)$
- $\quad \nabla_{i} \nabla_{j} \Lambda=\frac{3}{8} G_{i j} \Lambda \quad, \quad G^{i j} \partial_{i} V \partial_{j} \Lambda=\frac{3}{4} V \Lambda$
$\rightarrow \Lambda$ - Hessian symmetry (hidden symmetry)


## Hidden symmetry:

Convenient to rescale $\hat{G} \stackrel{\text { def. }}{=} \frac{3}{8} G$
Then the $\Lambda$-conditions become:

$$
\begin{aligned}
& \nabla \mathrm{d} \Lambda=\hat{G} \Lambda \\
& \langle\mathrm{~d} V, \mathrm{~d} \Lambda\rangle_{\hat{G}}=2 V \Lambda
\end{aligned}
$$

Note: These eqs. are invariant under the natural action of the isometry group of $\mathcal{M}$, i.e. under

$$
\begin{aligned}
& (\Lambda, V) \rightarrow\left(\Lambda \circ \psi^{-1}, V \circ \psi^{-1}\right) \quad, \quad \forall \psi \in \operatorname{Iso}(\mathcal{M}, \hat{G}) \\
\rightarrow & \text { Very useful for finding general solutions! }
\end{aligned}
$$

## Hidden symmetry:

## Remark on scalar potential:

Consider $\gamma(s)$ - gradient flow curve of $\Lambda$ with gradient flow parameter $s$ :

$$
\frac{\mathrm{d} \gamma(s)}{\mathrm{d} s}=-\left(\operatorname{grad}_{\hat{G}} \Lambda\right)(\gamma(s))
$$

Then equation $\langle\mathrm{d} V, \mathrm{~d} \Lambda\rangle_{\hat{G}}=2 V \Lambda$ implies:

$$
V(\gamma(s))=V\left(\gamma\left(s_{0}\right)\right) \exp \left(-2 \int_{s_{0}}^{s} \Lambda\left(\gamma\left(s^{\prime}\right)\right) \mathrm{d} s^{\prime}\right)
$$

$\rightarrow$ Can find $V$ in full generality, once we know $\Lambda$

## Rotationally-invariant 2-field models

Consider rot.-invariant metric $G_{i j}$ on $\mathcal{M}$ with $i, j=1,2$ :

$$
d s_{G}^{2}=d r^{2}+f(r) d \theta^{2} \quad, \quad\left\{\varphi^{i}\right\}=\{r, \theta\}
$$

Then the hidden symmetry conditions become:

- Hessian equation $\nabla_{i} \nabla_{j} \Lambda=\frac{3}{8} G_{i j} \Lambda$ :

$$
\begin{aligned}
& \partial_{r}^{2} \Lambda=\frac{3}{8} \Lambda \quad, \quad \partial_{r} \partial_{\theta} \Lambda-\frac{f^{\prime}}{2 f} \partial_{\theta} \Lambda=0 \\
& \partial_{\theta}^{2} \Lambda+\frac{f^{\prime}}{2} \partial_{r} \Lambda=\frac{3}{8} f \Lambda
\end{aligned}
$$

- $\Lambda$ - $V$ equation: $\quad \partial_{r} V \partial_{r} \Lambda+\frac{1}{f} \partial_{\theta} V \partial_{\theta} \Lambda=\frac{3}{4} V \Lambda$


## Rotationally-invariant $G_{i j}$ : (recall: $i, j=1,2$ )

Showed that Hessian equation implies:

$$
K_{G}=-\frac{3}{8} \quad\left(K_{G}-\text { Gaussian curvature of } \mathcal{M}\right)
$$

$\rightarrow \Lambda$-symmetry requires hyperbolic $\mathcal{M}$ !
Rotationally-invariant hyperbolic surfaces:

$$
(z \in \mathbb{C}, \rho \stackrel{\text { def. }}{=}|z|, \theta \stackrel{\text { def. }}{=} \arg (z))
$$

- Poincaré disk $\mathbb{D}$

$$
\left(\rho<1, d s_{\mathbb{D}}^{2}=\frac{4}{\left(1-\rho^{2}\right)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right), K_{\mathbb{D}}=-1\right)
$$

- hyperbolic punctured disk $\mathbb{D}^{*}$

$$
\left(0<\rho<1, d s_{\mathbb{D}^{*}}^{2}=\frac{1}{(\rho \log \rho)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right), K_{\mathbb{D}^{*}}=-1\right)
$$

- hyperbolic annuli $\mathbb{A}$

$$
\left(\frac{1}{R}<\rho<R \quad, \quad d s_{\mathbb{A}}^{2}=\left(\frac{\pi}{2 \log R}\right)^{2} \frac{\left(d \rho^{2}+\rho^{2} d \theta^{2}\right)}{\left[\rho \cos \left(\frac{\pi \log \rho}{2 \log R}\right)\right]^{2}}, K_{\mathbb{A}}=-1\right)
$$

## Poincaré disk case:

Metric $G_{i j}: \quad d s_{G}^{2}=\frac{4}{\beta^{2}\left(1-\rho^{2}\right)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right) \quad, \quad \rho<1$

$$
r=\frac{2}{\beta} \operatorname{arctanh}(\rho) \in(0, \infty) \quad \rightarrow \quad d s_{G}^{2}=d r^{2}+f(r) d \theta^{2}
$$

Showed that general solution for $\Lambda$ is:

$$
\begin{gathered}
\Lambda=B_{0} \cosh (\beta r)+\left(B_{1} \cos \theta+B_{2} \sin \theta\right) \sinh (\beta r) \\
\text { where } \beta \equiv \sqrt{\frac{3}{8}} \text { and } B_{0,1,2}=\text { const }
\end{gathered}
$$

Finding $V$ complicated! To simplify $\Lambda$ - $V$ equation, note:
Can write $\quad \Lambda=B_{\mu} \Xi^{\mu}, \quad(\mu=0,1,2)$
where $\left(\Xi^{0}\right)^{2}-\left(\Xi^{1}\right)^{2}-\left(\Xi^{2}\right)^{2}=1 \quad$ and $\quad \Xi^{0}>0$

## Poincaré disk case:

$\Xi^{\mu}$ - Weierstrass coordinates for the Poincaré disk D
Weierstrass map: $\quad \Xi: \mathrm{D} \rightarrow S^{+}$, where $S^{+}$- future sheet of the unit hyperboloid in 3d Minkowski space $\mathbb{R}^{1,2}$

Can identify orientation-preserving isometries of $\mathbb{D}$ with proper and orthochronous Lorentz transf. in 3d
$\rightarrow$ Solve $\Lambda$ - $V$ equation in 3 simple canonical cases
( $B_{\mu}$ : timelike, spacelike, lightlike)
$\Rightarrow$ Find general solution for $V$ (in each case) by Lorentz transf.

## Orientation-preserving isometries of $\mathbb{D}$ :

Iso $_{o}(\mathbb{D})$ - orientation preserving isometries of $\mathbb{D}$
$\mathrm{SO}_{o}(1,2)$ - connected component of Lorentz group in 3d
Can identify the two groups by using $\operatorname{PSU}(1,1)$ :

1) Consider morphism of groups:

$$
\begin{gathered}
\psi: \operatorname{SU}(1,1) \rightarrow \operatorname{Diff}(\mathrm{D}) \\
\text { where } \psi_{U}(z)=\frac{\eta z+\sigma}{\bar{\sigma} z+\bar{\eta}}, \quad z \in \mathrm{D}, \quad \psi_{U} \stackrel{\text { def. }}{=} \psi(U) \\
\text { and } \eta, \sigma \in \mathbb{C}, \quad U(\eta, \sigma) \stackrel{\text { def. }}{=}\left[\begin{array}{cc}
\eta & \sigma \\
\bar{\sigma} & \bar{\eta}
\end{array}\right] \in \mathrm{SU}(1,1) \\
\rightarrow \quad \psi(\operatorname{PSU}(1,1))=\operatorname{Iso}_{o}(\mathbb{D}) \\
\left(\operatorname{PSU}(1,1) \stackrel{\text { def. }}{=} \operatorname{SU}(1,1) /\left\{-I_{2}, I_{2}\right\}: \text { for effective action }\right)
\end{gathered}
$$

## Orientation-preserving isometries of $\mathbb{D}$ :

2) Identify Lie algebra $\operatorname{su}(1,1)$ with 3d Minkowski space $\mathbb{R}^{1,2}$ :

$$
\begin{gathered}
Z=Z(X) \stackrel{\text { def. }}{=}\left[\begin{array}{cc}
X^{0} & X^{1}+\mathbf{i} X^{2} \\
X^{1}-\mathbf{i} X^{2} & X^{0}
\end{array}\right], \\
X \stackrel{\text { def. }}{=}\left(X^{0}, X^{1}, X^{2}\right) \in \mathbb{R}^{3}, Z=\frac{\mathbf{i}}{\sqrt{8}} A J, A \in \operatorname{su}(1,1), J=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

AND
adjoint representation $\operatorname{Ad}: \operatorname{SU}(1,1) \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathrm{su}(1,1))$

$$
\left(\rightarrow \operatorname{Ad}(U)(Z)=U Z U^{\dagger}, \quad \forall U \in \operatorname{SU}(1,1)\right)
$$

with $\mathrm{SO}_{o}(1,2)$ Lorentz transformations
$\left(\operatorname{su}(1,1)\right.$ Killing form $\left.\rightarrow \operatorname{pairing}(X, Y)=X^{0} Y^{0}-X^{1} Y^{1}-X^{2} Y^{2}\right)$

## Poincaré disk case:

Exact solutions in a special case:
(arising from separation-of-variables Ansatz)

$$
\begin{gathered}
V=V_{0} \cosh ^{2}(\beta r) \operatorname{coth}^{m}(\beta r)\left(C_{1} \cos \theta-C_{2} \sin \theta\right)^{-m} \\
\text { where } m, V_{0}, C_{1}, C_{2}=\text { const }
\end{gathered}
$$

To solve EL equations, transform to generalized coord., adapted to the symmetry: $(a, r, \theta) \rightarrow(u, v, w), \frac{\partial L}{\partial w}=0$
[see arXiv:1809.10563 [hep-th] for the explicit expressions for:

$$
a=a(u, v, w), r=r(u, v, w), \theta=\theta(u, v, w)]
$$

$\rightarrow$ easily solve EL eq. for cyclic variable: $w=w(t)$

## Poincaré disk case:

## Exact solutions:

- $m=0$ :

$$
\begin{aligned}
& u(t)=C_{1}^{u} \sinh (\kappa t)+C_{2}^{u} \cosh (\kappa t) \quad, \quad \kappa=\frac{1}{2} \sqrt{3 V_{0}} \\
& v(t)=C_{1}^{v} t+C_{2}^{v}
\end{aligned}
$$

- $m=-2$ :

$$
\begin{aligned}
& u(t)=C_{1}^{u} t+C_{2}^{u} \\
& v(t)=C_{1}^{v} \sin (\omega t)+C_{2}^{v} \cos (\omega t) \quad, \quad \omega=\frac{1}{2} \sqrt{3 V_{0}\left(C_{1}^{2}+C_{2}^{2}\right)}
\end{aligned}
$$

- $m=-1$ :

$$
\begin{aligned}
v & =\left[C_{1}^{v} \cosh (\hat{\kappa} t)+C_{2}^{v} \sinh (\hat{\kappa} t)\right] \cos (\hat{\kappa} t) \\
& +\left[C_{3}^{v} \cosh (\hat{\kappa} t)+C_{4}^{v} \sinh (\hat{\kappa} t)\right] \sin (\hat{\kappa} t) \quad, \quad u=\text { const } \times \ddot{v}
\end{aligned}
$$

## Note:

For $m=0: V$ is $\theta$-independent, but still there are genuine 2-field trajectories $(\rho(t), \theta(t))$ !

Illustration: (all constants fixed, except one)

$C_{1}^{u}$ - varies

$C_{2}^{u}$ - varies

## Summary

Found so far:

- Most general hidden symmetries of cosmological two-field $\alpha$-attractor models with rot.-invariant scalar manifold metric
[ In particular: Gaussian curvature - fixed!]
- Form of scalar potential compatible with hidden symmetry
- Exact solutions in special case [separation-of-variables Ansatz]

Open issues:

- Exact solutions in general case?...
- Embedding in string theory (points of enhanced symmetry) ?...
- Perturbations, cosmological observables?...


## Thank you!

