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From Jacobi pairs to twisted Jacobi pairs

Let M be a smooth manifold. By definition, a Jacobi pair (Π, E) consists in

Π ∈ X2 (M) , E ∈ X1 (M)

that enjoy the properties

[Π,Π] + 2Π ∧ E = 0, [Π, E] = 0, (1)

with [•, •] the Schouten-Nijenhuis bracket in the Gerstenhaber algebra of
multi-vector fields

X• (M) ≡ F (M)⊕ X1 (M)⊕ · · · ⊕ XdimM (M)

coming from the Lie algebra of smooth vector fields(
X (M) ≡ X1 (M) , [•, •]

)
.

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 4 / 53



From Jacobi pairs to twisted Jacobi pairs

A Jacobi pair, naturally structures the vector space F (M) as a Lie algebra,
but not a Poisson one with respect to

{•, •} : F (M)×F (M)→ F (M) ,

{f, g} ≡ iΠdf ∧ dg + iE (fdg − gdf) . (2)

The bracket in the above display the ‘Hamiltonian’ morphism of Lie algebras

H : F (M)→ X1 (M) ,

H (f) ≡ Xf = Π]df + fE, (3)

with
Π] : T ∗M → TM, Π]α ≡ −jαΠ. (4)

The Hamiltonian vector fields enjoy the properties

[Xf , Xg] = X{f,g}, [Xf , E] = −XLEf (5)

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 5 / 53



From Jacobi pairs to twisted Jacobi pairs

A Jacobi pair is said to be transitive if the ‘Hamiltonian’ distribution
coincides with the tangent one i.e iff

〈ImΠ]
x, Ex〉 = TxM, x ∈M. (6)

Example

A locally conformal symplectic structure on an even-dimensional smooth
manifold M consists in a pair (Ω, α) with Ω non-degenerate, α closed and

dΩ + α ∧ Ω = 0.

This results in a Jacobi pair (Π, E) with

〈ρ ∧ λ,Π〉 ≡ 〈Ω,Ω]ρ ∧ Ω]λ〉, E ≡ Ω]α.

By Ω] we denoted the inverse of the isomorphism

Ω[ : X1(M)→ Ω1(M), Ω[X ≡ −iXΩ.
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From Jacobi pairs to twisted Jacobi pairs

Example

A coorientable contact structure on an odd-dimensional smooth manifold M
is given by a 1-form θ such that

µ ≡ θ ∧ (dθ)m

is a volume form, i.e.,

µ[ : X1(M)→ Ω2m(M), µ[X ≡ −iXµ

is an isomorphism. The pair (Π, E) is a Jacobi one where E is the Reeb
vector field, i.e., the unique solution to

iEθ = 1, iEdθ = 0

and
〈df ∧ dg,Π〉 ≡ 〈dθ,Xf ∧Xg〉.

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 7 / 53



From Jacobi pairs to twisted Jacobi pairs

Example

Previously, by Xf we meant the Hamiltonian vector field associated with the
smooth function f ∈ F(M) given by the considered coorientable contact
structure, i.e., the unique solution to the equations

iXf
θ = f, iXf

dθ = iE (df ∧ θ) .
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From Jacobi pairs to twisted Jacobi pairs

Theorem

If a Jacobi pair (Π, E) on a smooth manifold M is transitive then M is
either a locally conformal symplectic manifold or a coorientable contact one.

Theorem

The characteristic distribution of a Jacobi pair is completely integrable with
the characteristic leaves either locally conformal symplectic manifolds or
coorientable contact ones.
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From Jacobi pairs to twisted Jacobi pairs

Let (M,AM ) be a smooth manifold. By definition, a twisted Jacobi pair
((Π, E) , ω) consists in

Π ∈ X2 (M) , E ∈ X1 (M) , ω ∈ Ω2 (M)

that enjoy the properties

1

2
[Π,Π] + E ∧Π = Π]dω + Π]ω ∧ E (7)

[E,Π] = −
(

Π]iEdω + Π]iEω ∧ E
)
. (8)
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From Jacobi pairs to twisted Jacobi pairs

A twisted Jacobi pair endows the vector space F (M) with the R-linear and
skew-symmetric bracket

{•, •} : F (M)×F (M)→ F (M) ,

{f, g} ≡ iΠdf ∧ dg + iE (fdg − gdf) , (9)

which verifies
{f, gh} − g {f, h} − h {f, g} = ghLEf, (10)

and

Jac {f, g, h} = iΠ]dω+Π]ω∧E (df ∧ dg ∧ dh)

− iΠ]iEdω+Π]iEω∧E (fdg ∧ dh+ gdh ∧ df + hdf ∧ dg) , (11)
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From Jacobi pairs to twisted Jacobi pairs

The bracket in the above allows display the introduction of Hamiltonian
vector fields

H : F (M)→ X1 (M) ,

H (f) ≡ Xf = Π]df + fE, (12)

which verify the relations

[Xf , Xg]−X{f,g} = Π]iXf∧Xgdω − (LEf) Π]iXgω

+ (LEg) Π]iXf
ω +

(
iXf∧Xgω

)
E. (13)

[Xf , E] +XLEf = Π]
(
iXf∧Edω − (LEf) iEω

)
+
(
iXf∧Eω

)
E. (14)
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From Jacobi pairs to twisted Jacobi pairs

A twisted Jacobi pair ((Π, E) , ω) is said to be transitive if the characteristic
distribution coincides with the tangent one i.e iff

〈ImΠ]
x, Ex〉 = TxM, x ∈M. (15)

Example

The pair (Ω, α), with Ω non-degenerate and α closed, is said to be a locally
conformal symplectic structure twisted by ω ∈ Ω2(M) if

d (Ω− ω) + α ∧ (Ω− ω) = 0.

This results in a twisted Jacobi pair ((Π, E) , ω) with

〈ρ ∧ λ,Π〉 ≡ 〈Ω,Ω]ρ ∧ Ω]λ〉, E ≡ Ω]α.

By Ω] we denoted the inverse of the isomorphism

Ω[ : X1(M)→ Ω1(M), Ω[X ≡ −iXΩ.
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From Jacobi pairs to twisted Jacobi pairs

Example

The contact structure θ is said to be twisted by the 2-form ω if

µ ≡ θ ∧ (dθ + ω)m

is a volume form, i.e.,

µ[ : X1(M)→ Ω2m(M), µ[X ≡ −iXµ

is an isomorphism. The structure ((Π, E) , ω) is a twisted Jacobi pair where
E is the twisted Reeb vector field, i.e., the unique solution to

iEθ = 1, iE (dθ + ω) = 0

and
〈df ∧ dg,Π〉 ≡ 〈dθ,Xf ∧Xg〉.
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From Jacobi pairs to twisted Jacobi pairs

Example

Previously, by Xf we meant the twisted Hamiltonian vector field associated
with the smooth function f ∈ F(M) given by the considered twisted
coorientable contact structure, i.e., the unique solution to the equations

iXf
θ = f, iXf

(dθ + ω) = iE (df ∧ θ) .
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From Jacobi pairs to twisted Jacobi pairs

Theorem

If a twisted Jacobi pair ((Π, E) , ω) on a smooth manifold M is transitive
then M is either a twisted locally conformal symplectic manifold or a twisted
coorientable contact one.

Theorem

The characteristic distribution of a twisted Jacobi pair is completely
integrable with the characteristic leaves either twisted locally conformal
symplectic manifolds or twisted coorientable contact ones.
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Relaxing twisted Jacobi pairs: Jacobi pair with background

Definition

A pair ((Π, E) , (φ, ω)) consisting in

Π ∈ X2 (M) , E ∈ X1 (M) , φ ∈ Ω3 (M) , ω ∈ Ω2 (M)

which enjoys the properties

1

2
[Π,Π] + E ∧Π = Π]φ+ Π]ω ∧ E (16)

[E,Π] = −
(

Π]iEφ+ Π]iEω ∧ E
)

(17)

is called Jacobi pair (Π, E) with background (φ, ω).

It is immediate that if in the above we take

φ ≡ dω (18)

then we recover the twisted Jacobi pair.
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Relaxing twisted Jacobi pairs: Jacobi pair with background

Example

Let’s consider the four-dimensional smooth manifold R4 with the global
coordinates x =

(
x1, x2, x3, x4

)
and the real smooth functions

f, e ∈ C∞
(
R4
)

among which f is nowhere vanishing and

e = e
(
x1, x2

)
.

The geometric objects

Π =
1

f
(∂1 ∧ ∂4 + ∂2 ∧ ∂3) ,

E = − 1

f
((∂1e) ∂4 + (∂2e) ∂3) = −Π]de, ω = 0,

φ = d
(
f dx2 ∧ dx3 + f dx1 ∧ dx4

)
− fd

(
e dx2 ∧ dx3 + e dx1 ∧ dx4

)
,

organize R4 as a Jacobi pair with background whose 3-form is non-closed
and twisting 2-form ω vanishes.
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Relaxing twisted Jacobi pairs: Jacobi pair with background

Example

Let’s consider the same four-dimensional smooth manifold R4 and take the
smooth functions a, b with a nowhere vanishing. We introduce the objects

Ω = a
(
dx1 ∧ dx2 + dx3 ∧ dx4

)
ω = a dx1 ∧ dx2,

φ = dω + (da+ a db) ∧ dx3 ∧ dx4,

Π = −1

a
(∂1 ∧ ∂2 + ∂3 ∧ ∂4) , E = Ω]db.

With these tools at hand ((Π, E) , (φ, ω)) is nothing but a Jacobi pair with
background defined by 3-form φ and non-trivial twisting 2-form ω. The
background 3-form is closed if and only if

(da+ adb) ∧ dx3 ∧ dx4 = 0.
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Relaxing twisted Jacobi pairs: Jacobi pair with background

A Jacobi pair with background endows the vector space F (M) with the
R-linear and skew-symmetric bracket

{•, •} : F (M)×F (M)→ F (M) ,

{f, g} ≡ iΠdf ∧ dg + iE (fdg − gdf) , (19)

which verifies
{f, gh} − g {f, h} − h {f, g} = ghLEf, (20)

and

Jac {f, g, h} = iΠ]φ+Π]ω∧E (df ∧ dg ∧ dh)

− iΠ]iEφ+Π]iEω∧E (fdg ∧ dh+ gdh ∧ df + hdf ∧ dg) (21)
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Relaxing twisted Jacobi pairs: Jacobi pair with background

The bracket in the above allows display the introduction of Hamiltonian
vector fields

H : F (M)→ X1 (M) ,

H (f) ≡ Xf = Π]df + fE, (22)

which verify the relations

[Xf , Xg]−X{f,g} = Π]iXf∧Xgφ− (LEf) Π]iXgω

+ (LEg) Π]iXf
ω +

(
iXf∧Xgω

)
E. (23)

[Xf , E] +XLEf = Π]
(
iXf∧Eφ− (LEf) iEω

)
+
(
iXf∧Eω

)
E. (24)
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Relaxing twisted Jacobi pairs: Jacobi pair with background

A Jacobi pair with background ((Π, E) , (φ, ω)) is said to be transitive if its
characteristic distribution coincides with the tangent one i.e iff

〈ImΠ]
x, Ex〉 = TxM, x ∈M. (25)

Example

A locally conformal symplectic structure (Ω, α), with Ω non-degenerate and
α closed, is said to be with background (φ, ω) if

φ = dΩ + α ∧ (Ω− ω) .

It generates a transitive Jacobi pair with background ((Π, E) , (φ, ω)) where

〈ρ ∧ λ,Π〉 =
〈

Ω,Ω]ρ ∧ Ω]λ
〉
, E = Ω]α.

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 23 / 53



Relaxing twisted Jacobi pairs: Jacobi pair with background

Theorem

Let M be a smooth manifold and ((Π, E) , (φ1, ω1)) and ((Π, E) , (φ2, ω2))
be two Jacobi pairs with background on M . If both structures are transitive
then the following alternative cases hold:

1 dimM is even: there exists a 2-form, ω ∈ Ω2 (M), such that

ω1 = ω2 + ω, φ1 = φ2 − ω ∧Π[E; (26)

2 dimM is odd:
ω1 = ω2, φ1 = φ2. (27)
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Relaxing twisted Jacobi pairs: Jacobi pair with background

Theorem

If a Jacobi pair with background ((Π, E) , (φ, ω)) on a smooth manifold M is
transitive then M is either a locally conformal symplectic manifold with
background or a twisted coorientable contact one.

Theorem

The characteristic distribution of a Jacobi pair with background is completely
integrable with the characteristic leaves either locally conformal symplectic
manifolds with background or twisted coorientable contact ones.
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Relaxing twisted Jacobi pairs: Jacobi pair with background

Let ((Π, E) , (φ, ω)) be a Jacobi pair with background on the smooth
manifold M . Then, to each everywhere non-vanishing smooth function

a ∈ F (M)

we can associate the Jacobi pair with background ((Πa, Ea) , (φa, ωa)),
where

Πa = aΠ, Ea = aE + Π]da, (28)

φa =
1

a
φ+ d

(
1

a

)
∧ ω, ωa =

1

a
ω. (29)

It can be shown that the brackets associated with the above Jacobi pairs
with backgrounds are related via

{f, g}a =
1

a
{af, ag} . (30)
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Relaxing twisted Jacobi pairs: Jacobi pair with background

The ‘Poissonization’ procedure also works for Jacobi pairs with background.

Definition

Let smooth manifold (M,AM ) endowed with a pair (Π, φ) consisting in

Π ∈ X2 (M) , φ ∈ Ω3 (M) ,

which verify
[[Π,Π]] = 2Π]φ (31)

is called a Poisson manifold with background. If in addition there exists the
vector field Z such that

LZΠ ≡ [[Z,Π]] = −Π, LZφ = φ (32)

then the Poisson manifold with background is said to be homogeneous.
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Relaxing twisted Jacobi pairs: Jacobi pair with background

Theorem

If ((Π, E, ) , (φ, ω)) is a Jacobi pair with background, then the manifold

M̃ = M × R (33)

can be naturally organized as a ‘homogeneous’ Poisson manifold with
background defined by

Π̃ = e−τ (Π + ∂τ ∧ E) , φ̃ = eτ (φ+ ω ∧ dτ) , Z̃ = ∂τ . (34)
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Jacobi-like pairs as distinguished elements of a Lie
algebroid

We start from the Lie algebroid

(TM × R, [[•, •]], ρ)

with
[[(X, f), (Y, g)]] ≡ ([X,Y ] , Xg − Y f), ρ (X, f) ≡ X.

By means of the isomorphisms

Γ
(
Λr+1 (TM × R)

)
' Xr+1(M)× Xr(M),

its Gerstenhaber algebra (Γ (∧•(TM × R), [[•, •]])) reads

[[(P,Q), (R,S)]] = ([P,R] , [P, S] + (−)r [Q,R]) .

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 30 / 53



Jacobi-like pairs as distinguished elements of a Lie
algebroid

Moreover, the differential of its de Rham complex (Γ (∧•(TM × R)∗) ,d), d
can be written, by means of the isomorphisms

Γ
(
Λr+1(TM × R)∗

)
' Ωr+1(M)× Ωr(M),

in terms of the standard de Rham differential, d as

d (ω, α) ≡ (dω,−dα) , (ω, α) ∈ Λk (M)× Λk−1 (M) .

We consider the d-cocycle (0, 1) ∈ Ω1(M)×F(M),

d (0, 1) = 0

and construct the Lie algebroid with 1-cocycle(
TM × R, [[•, •]](0,1), ρ

)
.
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Jacobi-like pairs as distinguished elements of a Lie
algebroid

The previous bracket has the concrete expression

[[(P,Q), (R,S)]](0,1) = (I, II) ,

where
I ≡ [P,R] + p (−)r P ∧ S − rQ ∧R,

II ≡ [P, S] + (−)r [Q,R] + (p− r)Q ∧ S.
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Jacobi-like pairs as distinguished elements of a Lie
algebroid

Within the previous context, the equations governing the Jacobi pair (Π, E)
on the smooth manifold M simply read

[[(Π, E), (Π, E)]](0,1) = 0.

Also, the equations exhibiting the twisted Jacobi pair ((Π, E) , ω) reduce to

[[(Π, E), (Π, E)]](0,1) = 2 (Π, E)] (dω, ω).

Finally, the equations displaying the Jacobi pair with background
((Π, E) , (φ, ω)) are

[[(Π, E), (Π, E)]](0,1) = 2 (Π, E)] (φ, ω).
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Jacobi-like pairs as distinguished elements of a Lie
algebroid

Previously, we denoted by (Π, E)] the F(M)-module morphism

(Π, E)] : Γ(Λk(T ∗M × R))→ Γ(Λk(TM × R)), (35)

which is the linear extension of

Ω1(M)×F(M) 3 (β, f)→ (Π]β + fE,−iEβ) ∈ X1(M)×F(M)

.
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Jacobi-like line bundles

By definition, a Jacobi bundle consists in a line bundle L→M endowed
with a bracket

{•, •} : Γ (L)× Γ (L)→ Γ (L) ,

that enjoys the properties:

It is R-linear and skew-symmetric;

It verifies the Jacobi identity i.e.

{s1, {s2, s3}}+ circular = 0, s1, s2, s3 ∈ Γ (L) (36)

It is local i.e.

supp{s1, s2} ⊂ supps1 ∩ supps2, s1, s2 ∈ Γ (L) (37)

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 36 / 53



Jacobi-like line bundles

It is immediate that Jacobi pairs are equivalent to trivial Jacobi bundles.
Indeed, any Jacobi pair (Π, E) on a given manifold endows the trivial line
bundle

RM ≡ R×M

F(M)-module of smooth sections

Γ (RM ) = F (M)

with the bracket

{f, g} ≡ iΠdf ∧ dg + iE (fdg − gdf) (38)

and conversely, any Jacobi structure on the trivial line bundle displays a
bracket in F (M).
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Jacobi-like line bundles

We consider the Lie algebroid (DL, [•, •] , σ) whose sections

D (L) ≡ Γ (DL)

are nothing but the derivations of the module [over F (M) ] Γ (L) i.e.
R-linear maps 4 which enjoy the existence of a [unique] vector field X4
such that

4 (fs) = (X4f) s+ f4s, s ∈ Γ (L) , f ∈ F (M) . (39)

Previously, the bracket is given by[
4,4′

]
≡ 44′ −4′4,

while the anchor returns symbols of derivations

σ (4) ≡ X4.
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Jacobi-like line bundles

Now, associated with the tautological representation of DL on L

5 : Γ (DL) −→ Γ (DL) , 5�λ ≡ �λ, λ ∈ Γ (L) , (40)

the Jacobi algebroid (DL,L) is at hand. This is equivalent to

the Gerstenhaber-Jacobi algebra consisting in the module

D•L ≡ Γ (∧•J1L⊗ L) over the algebra Γ (∧•J1L) (41)

der-complex consisting in the module

Ω•L ≡ Γ (∧• (DL)∗ ⊗ L) over the algebra Γ (∧• (DL)∗) (42)

In the above we used the notation

J1L ≡
(
J1L

)∗
(43)

and also the vector bundle isomorphism

J1L ' DL⊗ L∗. (44)
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Jacobi-like line bundles

The homogeneous elements in the algebra (41) consists in skew-symmetric,
first-order differential operators

4 : Γ (L)× · · · × Γ (L)→ F (M) ≡ Γ (RM ) (45)

while those of the module (41) are the skew-symmetric, first-order
differential operators

� : Γ (L)× · · · × Γ (L)→ Γ (L) (46)

The bracket in the previous Gerstenhaber-Jacobi algebra reads

[[�1,�2]] ≡ (−)k1k2 �1 ◦�2 −�2 ◦�1, �a ∈ Dka+1L, (47)

with ◦ the Gerstenhaber multiplication

�1 ◦�2 (s1, · · · , sk1+k2+1) ≡∑
τ∈Sk1+1,k2

(−)τ �1

(
�2

(
sτ(1), · · · , sτ(k1+1)

)
, sτ(k1+2), · · · , sτ(k1+k2+1)

)
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Jacobi-like line bundles

Concerning der-complex, Ω•L, it is endowed with a homological derivation,
dD, which symbol is nothing but de Rham differential, dDL, associated with
the Lie algebroid DL

〈dDλ,�〉 = 〈�, j1λ〉 (48)

dD (ω ∧ Ω) = (dDLω) ∧ Ω + (−)|ω| ω ∧ dDΩ, ω ∈ Γ (∧• (DL)∗) ,Ω ∈ Ω•L
(49)

It can be shown that the cohomology of dD in the der-complex is always
trivial i.e.

dDΩk>0 = 0⇐⇒ Ωk>0 = dDΘk−1. (50)
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Jacobi-like line bundles

In this unified context, a Jacobi bundle consists in a line bundle L→M
endowed with a first-order bi-differential operator

J ∈ D2L

that verifies Maurer-Cartan equation

[[J, J ]] ≡ −2J ◦ J = 0. (51)

The connection between the bracket and the bi-differential operator J simply
reads

{s1, s2} ≡ J (s1, s2) , s1, s2 ∈ Γ (L) . (52)
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Jacobi-like line bundles

By means of the vector bundle morphism

Ĵ : J1L ∧ J1L→ L, 〈Ĵ , j1λ ∧ ρ〉 ≡ J (λ, ρ) , (53)

the Jacobi bundle (L→M,J) is said to be transitive if

Im
(
σ ◦ Ĵ ]

)
= TM.

Example

Let K be a contact structure on M ,i.e.,

ωK : K ×K → TM/K, 〈ωK, X ∧ Y 〉 ≡ [X,Y ] mod K

is non-degenerate. It defines a unique Jacobi bundle (TM/K →M,JK)
which is transitive.
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Jacobi-like line bundles

Example

An lcs structure on a given line bundle L→M is a pair (∇,Ω) consisting in
a representation ∇ of the tangent Lie algebroid TM →M on a line bundle
and a non-degenerate L-valued 2-form Ω ∈ Ω2(M ;L) which is closed with
respect to the homological degree 1 derivation d∇ associated with the Jacobi
algebroid structure ([•, •] ,∇) on the pair (TM,L),

d∇Ω = 0.

It defines a unique transitive Jacobi bundle (L→M,J) with

J (λ, µ) ≡ 〈Ω,Ω](d∇µ) ∧ Ω](d∇λ)〉.
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Jacobi-like line bundles

Moreover, a twisted Jacobi bundle consists in a line bundle L→M endowed
with a first-order bi-differential operator

J ∈ D2L

which ‘nilpotency’ (51) is ‘twisted’ via the closed Atiyah 3-form

Φ ∈ Ω3
L, dDΦ = 0, (54)

i.e.
[[J, J ]] = 2Ĵ ]Φ. (55)

Also here, the twisted Jacobi bundle (L→M,J,Φ) is said to be transitive if

Im
(
σ ◦ Ĵ ]

)
= TM.
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Jacobi-like line bundles

Example

A hyperplane distribution K together with a 2-form ψ ∈ Γ
(
∧2K∗ ⊗ L

)
,

L ≡ TM/K is said to be a twisted contact structure on M if

ωK + ψ ∈ Γ
(
∧2K∗ ⊗ L

)
is non-degenerate. It defines a unique twisted Jacobi bundle
(L→M,JK,ψ,ΩK,ψ) which is transitive.
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Jacobi-like line bundles

Example

A twisted lcs structure on a given line bundle L→M is pair ((∇,Ω) , ω)
consisting in a representation ∇ of the tangent Lie algebroid TM →M on a
line bundle, a non-degenerate L-valued 2-form Ω ∈ Ω2(M ;L) and an
L-valued 2-form ω ∈ Ω2(M ;L) which verify the compatibility condition

d∇Ω = d∇ω.

It defines a unique transitive twisted Jacobi bundle (L→M,J, dDσ
∗ω) with

J (λ, µ) ≡ 〈Ω,Ω](d∇µ) ∧ Ω](d∇λ)〉.
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Jacobi-like line bundles

Finally, a Jacobi bundle with background consists in a line bundle L→M
endowed with a first-order bi-differential operator

J ∈ D2L

which ‘nilpotency’ (51) is ‘broken’ via an Atiyah 3-form

Φ ∈ Ω3
L, (56)

i.e.
[[J, J ]] = 2Ĵ ]Φ. (57)

Also here, Jacobi bundle with background (L→M,J,Φ) is said to be
transitive if

Im
(
σ ◦ Ĵ ]

)
= TM.
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Jacobi-like line bundles

Example

An lcs structure with background on a given line bundle L→M is pair
((∇,Ω) , (φ, ω)) consisting in a representation ∇ of the tangent Lie algebroid
TM →M on a line bundle, a non-degenerate L-valued 2-form
Ω ∈ Ω2(M ;L) an L-valued 3-form φ ∈ Ω3(M ;L) and an L-valued 2-form
which verify the compatibility condition

d∇Ω = d∇ω + φ.

It defines a unique transitive Jacobi bundle with
background(L→M,J, dDσ

∗ω + σ∗φ) with

J (λ, µ) ≡ 〈Ω,Ω](d∇µ) ∧ Ω](d∇λ)〉.

Eugen-Mihaita CIOROIANU (UCV) Jacobi versus Jacobi Bucharest, September 4, 2019 49 / 53



Outline

From Jacobi pairs to twisted Jacobi pairs

Relaxing twisted Jacobi pairs: Jacobi pair with background

Jacobi-like pairs as distinguished elements of a Lie algebroid

Jacobi-like line bundles

Jacobi-like line bundles encompass Jacobi-like pairs
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Jacobi-like line bundles encompass Jacobi-like pairs

When the line bundle L→M is trivial

L ≡ RM ,

by means of the isomorphism

DRM = TM × R, (58)

the homogeneous elements of the Gerstenhaber-Jacobi algebra (41) reduce to

D0RM = F (M) DkRM = Xk (M)× Xk−1 (M) , k > 0 (59)

while the Gerstenhaber-Jacobi bracket becomes

[[•, •]](0,1).
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Jacobi-like line bundles encompass Jacobi-like pairs

In addition, the homogeneous elements of the (Atiyah)der-complex read

Ω0
RM

= F (M) Ωk
RM

= Ωk (M)× Ωk−1 (M) , k > 0. (60)

Moreover, the homological derivation in the Atiyah complex can be written
in terms of de Rham differential like

dDf ≡ df, dD (ωk, ωk−1) ≡ (dωk, ωk − dωk−1) , k > 0. (61)

With these identifications at hand, the bi-differential operator J is realised as

J ↔ (Π, E) ∈ X2(M)× X1(M),

the Atiyah 3-form in the twisted Jacobi bundle (54) becomes

Φ↔ (dω, ω) = dD (ω, 0) ∈ Ω3(M)× Ω2(M),

while the Atiyah 3-form in the Jacobi bundle with background reads

Φ↔ (φ, ω) ∈ Ω3(M)× Ω2(M).
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