TWISTED JACOBI VERSUS JACOBI WITH BACKGROUND STRUCTURES

Eugen-Mihaita CIOROIANU

University of Craiova
cioroianu.eugen@ucv.ro

joint work with Cornelia VIZMAN
Bucharest, September 4, 2019

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background - Jacobi-like pairs as distinguished elements of a Lie algebroid - Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background - Jacobi-like pairs as distinguished elements of a Lie algebroid - Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background
- Jacobi-like pairs as distinguished elements of a Lie algebroid
- Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background
- Jacobi-like pairs as distinguished elements of a Lie algebroid
- Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background
- Jacobi-like pairs as distinguished elements of a Lie algebroid
- Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background - JJacobi-like pairs as distinguished elements of a Lie algebroid - Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

From Jacobi pairs to twisted Jacobi pairs

Let M be a smooth manifold. By definition, a Jacobi pair (Π, E) consists in

$$
\Pi \in \mathfrak{X}^{2}(M), \quad E \in \mathfrak{X}^{1}(M)
$$

that enjoy the properties

$$
\begin{equation*}
[\Pi, \Pi]+2 \Pi \wedge E=0, \quad[\Pi, E]=0 \tag{1}
\end{equation*}
$$

with $[\bullet, \bullet]$ the Schouten-Nijenhuis bracket in the Gerstenhaber algebra of multi-vector fields

$$
\mathfrak{X}^{\bullet}(M) \equiv \mathcal{F}(M) \oplus \mathfrak{X}^{1}(M) \oplus \cdots \oplus \mathfrak{X}^{\operatorname{dim} M}(M)
$$

coming from the Lie algebra of smooth vector fields

$$
\left(\mathfrak{X}(M) \equiv \mathfrak{X}^{1}(M),[\bullet, \bullet]\right) .
$$

From Jacobi pairs to twisted Jacobi pairs

A Jacobi pair, naturally structures the vector space $\mathcal{F}(M)$ as a Lie algebra, but not a Poisson one with respect to

$$
\begin{align*}
& \{\bullet, \bullet\}: \mathcal{F}(M) \times \mathcal{F}(M) \rightarrow \mathcal{F}(M) \\
& \{f, g\} \equiv i_{\Pi} \mathrm{d} f \wedge \mathrm{~d} g+i_{E}(f \mathrm{~d} g-g \mathrm{~d} f) \tag{2}
\end{align*}
$$

The bracket in the above display the 'Hamiltonian' morphism of Lie algebras

$$
\begin{align*}
& \mathcal{H}: \mathcal{F}(M) \rightarrow \mathfrak{X}^{1}(M), \\
& \mathcal{H}(f) \equiv X_{f}=\Pi^{\sharp} \mathrm{d} f+f E, \tag{3}
\end{align*}
$$

with

$$
\begin{equation*}
\Pi^{\sharp}: T^{*} M \rightarrow T M, \quad \Pi^{\sharp} \alpha \equiv-j_{\alpha} \Pi . \tag{4}
\end{equation*}
$$

The Hamiltonian vector fields enjoy the properties

$$
\begin{equation*}
\left[X_{f}, X_{g}\right]=X_{\{f, g\}}, \quad\left[X_{f}, E\right]=-X_{\mathcal{L}_{E} f} \tag{5}
\end{equation*}
$$

From Jacobi pairs to twisted Jacobi pairs

A Jacobi pair is said to be transitive if the 'Hamiltonian' distribution coincides with the tangent one i.e iff

$$
\begin{equation*}
\left\langle\operatorname{Im} \Pi_{x}^{\sharp}, E_{x}\right\rangle=T_{x} M, \quad x \in M \tag{6}
\end{equation*}
$$

Example

A locally conformal symplectic structure on an even-dimensional smooth manifold M consists in a pair (Ω, α) with Ω non-degenerate, α closed and

$$
\mathrm{d} \Omega+\alpha \wedge \Omega=0
$$

This results in a Jacobi pair (Π, E) with

$$
\langle\rho \wedge \lambda, \Pi\rangle \equiv\left\langle\Omega, \Omega^{\sharp} \rho \wedge \Omega^{\sharp} \lambda\right\rangle, \quad E \equiv \Omega^{\sharp} \alpha .
$$

By Ω^{\sharp} we denoted the inverse of the isomorphism

$$
\Omega^{b}: \mathfrak{X}^{1}(M) \rightarrow \Omega^{1}(M), \quad \Omega^{b} X \equiv-i_{X} \Omega .
$$

From Jacobi pairs to twisted Jacobi pairs

Example

A coorientable contact structure on an odd-dimensional smooth manifold M is given by a 1-form θ such that

$$
\mu \equiv \theta \wedge(\mathrm{d} \theta)^{m}
$$

is a volume form, i.e.,

$$
\mu^{b}: \mathfrak{X}^{1}(M) \rightarrow \Omega^{2 m}(M), \quad \mu^{b} X \equiv-i_{X} \mu
$$

is an isomorphism. The pair (Π, E) is a Jacobi one where E is the Reeb vector field, i.e., the unique solution to

$$
i_{E} \theta=1, \quad i_{E} \mathrm{~d} \theta=0
$$

and

$$
\langle\mathrm{d} f \wedge \mathrm{~d} g, \Pi\rangle \equiv\left\langle\mathrm{d} \theta, X_{f} \wedge X_{g}\right\rangle .
$$

From Jacobi pairs to twisted Jacobi pairs

Example

Previously, by X_{f} we meant the Hamiltonian vector field associated with the smooth function $f \in \mathcal{F}(M)$ given by the considered coorientable contact structure, i.e., the unique solution to the equations

$$
i_{X_{f}} \theta=f, \quad i_{X_{f}} \mathrm{~d} \theta=i_{E}(\mathrm{~d} f \wedge \theta) .
$$

From Jacobi pairs to twisted Jacobi pairs

Theorem

If a Jacobi pair (Π, E) on a smooth manifold M is transitive then M is either a locally conformal symplectic manifold or a coorientable contact one.

Theorem

The characteristic distribution of a Jacobi pair is completely integrable with the characteristic leaves either locally conformal symplectic manifolds or coorientable contact ones.

From Jacobi pairs to twisted Jacobi pairs

Let $\left(M, \mathcal{A}_{M}\right)$ be a smooth manifold. By definition, a twisted Jacobi pair $((\Pi, E), \omega)$ consists in

$$
\Pi \in \mathfrak{X}^{2}(M), \quad E \in \mathfrak{X}^{1}(M), \quad \omega \in \Omega^{2}(M)
$$

that enjoy the properties

$$
\begin{align*}
\frac{1}{2}[\Pi, \Pi]+E \wedge \Pi & =\Pi^{\sharp} \mathrm{d} \omega+\Pi^{\sharp} \omega \wedge E \tag{7}\\
{[E, \Pi] } & =-\left(\Pi^{\sharp} i_{E} \mathrm{~d} \omega+\Pi^{\sharp} i_{E} \omega \wedge E\right) . \tag{8}
\end{align*}
$$

From Jacobi pairs to twisted Jacobi pairs

A twisted Jacobi pair endows the vector space $\mathcal{F}(M)$ with the \mathbb{R}-linear and skew-symmetric bracket

$$
\begin{align*}
& \{\bullet, \bullet\}: \mathcal{F}(M) \times \mathcal{F}(M) \rightarrow \mathcal{F}(M), \\
& \{f, g\} \equiv i_{\Pi} \mathrm{d} f \wedge \mathrm{~d} g+i_{E}(f \mathrm{~d} g-g \mathrm{~d} f), \tag{9}
\end{align*}
$$

which verifies

$$
\begin{equation*}
\{f, g h\}-g\{f, h\}-h\{f, g\}=g h \mathcal{L}_{E} f, \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Jac}\{f, g, h\} & =i_{\Pi \sharp \mathrm{d} \omega+\Pi^{\sharp} \omega \wedge E}(\mathrm{~d} f \wedge \mathrm{~d} g \wedge \mathrm{~d} h) \\
& -i_{\Pi^{\sharp} i_{E} \mathrm{~d} \omega+\Pi^{\sharp} i_{E} \omega \wedge E}(f \mathrm{~d} g \wedge \mathrm{~d} h+g \mathrm{~d} h \wedge \mathrm{~d} f+h \mathrm{~d} f \wedge \mathrm{~d} g), \tag{11}
\end{align*}
$$

From Jacobi pairs to twisted Jacobi pairs

The bracket in the above allows display the introduction of Hamiltonian vector fields

$$
\begin{align*}
& \mathcal{H}: \mathcal{F}(M) \rightarrow \mathfrak{X}^{1}(M), \\
& \mathcal{H}(f) \equiv X_{f}=\Pi^{\sharp} \mathrm{d} f+f E, \tag{12}
\end{align*}
$$

which verify the relations

$$
\begin{align*}
{\left[X_{f}, X_{g}\right]-X_{\{f, g\}} } & =\Pi^{\sharp} i_{X_{f} \wedge X_{g}} \mathrm{~d} \omega-\left(\mathcal{L}_{E} f\right) \Pi^{\sharp} i_{X_{g}} \omega \\
& +\left(\mathcal{L}_{E} g\right) \Pi^{\sharp} i_{X_{f}} \omega+\left(i_{X_{f} \wedge X_{g}} \omega\right) E . \tag{13}\\
{\left[X_{f}, E\right]+X_{\mathcal{L}_{E} f} } & =\Pi^{\sharp}\left(i_{X_{f} \wedge E} \mathrm{~d} \omega-\left(\mathcal{L}_{E} f\right) i_{E} \omega\right)+\left(i_{X_{f} \wedge E} \omega\right) E . \tag{14}
\end{align*}
$$

From Jacobi pairs to twisted Jacobi pairs

A twisted Jacobi pair $((\Pi, E), \omega)$ is said to be transitive if the characteristic distribution coincides with the tangent one i.e iff

$$
\begin{equation*}
\left\langle\operatorname{Im} \Pi_{x}^{\sharp}, E_{x}\right\rangle=T_{x} M, \quad x \in M \tag{15}
\end{equation*}
$$

Example

The pair (Ω, α), with Ω non-degenerate and α closed, is said to be a locally conformal symplectic structure twisted by $\omega \in \Omega^{2}(M)$ if

$$
\mathrm{d}(\Omega-\omega)+\alpha \wedge(\Omega-\omega)=0
$$

This results in a twisted Jacobi pair $((\Pi, E), \omega)$ with

$$
\langle\rho \wedge \lambda, \Pi\rangle \equiv\left\langle\Omega, \Omega^{\sharp} \rho \wedge \Omega^{\sharp} \lambda\right\rangle, \quad E \equiv \Omega^{\sharp} \alpha .
$$

By Ω^{\sharp} we denoted the inverse of the isomorphism

$$
\Omega^{b}: \mathfrak{X}^{1}(M) \rightarrow \Omega^{1}(M), \quad \Omega^{b} X \equiv-i_{X} \Omega .
$$

From Jacobi pairs to twisted Jacobi pairs

Example

The contact structure θ is said to be twisted by the 2 -form ω if

$$
\mu \equiv \theta \wedge(\mathrm{d} \theta+\omega)^{m}
$$

is a volume form, i.e.,

$$
\mu^{b}: \mathfrak{X}^{1}(M) \rightarrow \Omega^{2 m}(M), \quad \mu^{b} X \equiv-i_{X} \mu
$$

is an isomorphism. The structure $((\Pi, E), \omega)$ is a twisted Jacobi pair where E is the twisted Reeb vector field, i.e., the unique solution to

$$
i_{E} \theta=1, \quad i_{E}(\mathrm{~d} \theta+\omega)=0
$$

and

$$
\langle\mathrm{d} f \wedge \mathrm{~d} g, \Pi\rangle \equiv\left\langle\mathrm{d} \theta, X_{f} \wedge X_{g}\right\rangle .
$$

From Jacobi pairs to twisted Jacobi pairs

Example

Previously, by X_{f} we meant the twisted Hamiltonian vector field associated with the smooth function $f \in \mathcal{F}(M)$ given by the considered twisted coorientable contact structure, i.e., the unique solution to the equations

$$
i_{X_{f}} \theta=f, \quad i_{X_{f}}(\mathrm{~d} \theta+\omega)=i_{E}(\mathrm{~d} f \wedge \theta) .
$$

From Jacobi pairs to twisted Jacobi pairs

Theorem

If a twisted Jacobi pair $((\Pi, E), \omega)$ on a smooth manifold M is transitive then M is either a twisted locally conformal symplectic manifold or a twisted coorientable contact one.

Theorem

The characteristic distribution of a twisted Jacobi pair is completely integrable with the characteristic leaves either twisted locally conformal symplectic manifolds or twisted coorientable contact ones.

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi pairs: Jacobi pair with background - Jacobi-like pairs as distinguished elements of a Lie algebroid - Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Relaxing twisted Jacobi pairs: Jacobi pair with background

Definition

A pair $((\Pi, E),(\phi, \omega))$ consisting in

$$
\Pi \in \mathfrak{X}^{2}(M), \quad E \in \mathfrak{X}^{1}(M), \quad \phi \in \Omega^{3}(M), \quad \omega \in \Omega^{2}(M)
$$

which enjoys the properties

$$
\begin{align*}
\frac{1}{2}[\Pi, \Pi]+E \wedge \Pi & =\Pi^{\sharp} \phi+\Pi^{\sharp} \omega \wedge E \tag{16}\\
{[E, \Pi] } & =-\left(\Pi^{\sharp} i_{E} \phi+\Pi^{\sharp} i_{E} \omega \wedge E\right) \tag{17}
\end{align*}
$$

is called Jacobi pair (Π, E) with background (ϕ, ω).
It is immediate that if in the above we take

$$
\begin{equation*}
\phi \equiv \mathrm{d} \omega \tag{18}
\end{equation*}
$$

then we recover the twisted Jacobi pair.

Relaxing twisted Jacobi pairs: Jacobi pair with background

Example

Let's consider the four-dimensional smooth manifold \mathbb{R}^{4} with the global coordinates $x=\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ and the real smooth functions $f, e \in \mathcal{C}^{\infty}\left(\mathbb{R}^{4}\right)$ among which f is nowhere vanishing and

$$
e=e\left(x^{1}, x^{2}\right)
$$

The geometric objects

$$
\begin{aligned}
\Pi & =\frac{1}{f}\left(\partial_{1} \wedge \partial_{4}+\partial_{2} \wedge \partial_{3}\right) \\
E & =-\frac{1}{f}\left(\left(\partial_{1} e\right) \partial_{4}+\left(\partial_{2} e\right) \partial_{3}\right)=-\Pi^{\sharp} \mathrm{d} e, \quad \omega=0, \\
\phi & =\mathrm{d}\left(f \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+f \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{4}\right)-f \mathrm{~d}\left(e \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+e \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{4}\right)
\end{aligned}
$$

organize \mathbb{R}^{4} as a Jacobi pair with background whose 3 -form is non-closed and twisting 2 -form ω vanishes.

Relaxing twisted Jacobi pairs: Jacobi pair with background

Example

Let's consider the same four-dimensional smooth manifold \mathbb{R}^{4} and take the smooth functions a, b with a nowhere vanishing. We introduce the objects

$$
\begin{aligned}
\Omega & =a\left(\mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+\mathrm{d} x^{3} \wedge \mathrm{~d} x^{4}\right) \quad \omega=a \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \\
\phi & =\mathrm{d} \omega+(\mathrm{d} a+a \mathrm{~d} b) \wedge \mathrm{d} x^{3} \wedge \mathrm{~d} x^{4} \\
\Pi & =-\frac{1}{a}\left(\partial_{1} \wedge \partial_{2}+\partial_{3} \wedge \partial_{4}\right), \quad E=\Omega^{\sharp} \mathrm{d} b .
\end{aligned}
$$

With these tools at hand $((\Pi, E),(\phi, \omega))$ is nothing but a Jacobi pair with background defined by 3 -form ϕ and non-trivial twisting 2 -form ω. The background 3-form is closed if and only if

$$
(\mathrm{d} a+a \mathrm{~d} b) \wedge \mathrm{d} x^{3} \wedge \mathrm{~d} x^{4}=0
$$

Relaxing twisted Jacobi pairs: Jacobi pair with background

A Jacobi pair with background endows the vector space $\mathcal{F}(M)$ with the \mathbb{R}-linear and skew-symmetric bracket

$$
\begin{align*}
& \{\bullet, \bullet\}: \mathcal{F}(M) \times \mathcal{F}(M) \rightarrow \mathcal{F}(M), \\
& \{f, g\} \equiv i_{\Pi} \mathrm{d} f \wedge \mathrm{~d} g+i_{E}(f \mathrm{~d} g-g \mathrm{~d} f), \tag{19}
\end{align*}
$$

which verifies

$$
\begin{equation*}
\{f, g h\}-g\{f, h\}-h\{f, g\}=g h \mathcal{L}_{E} f, \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Jac}\{f, g, h\} & =i_{\Pi^{\sharp} \phi+\Pi \sharp \omega \wedge E}(\mathrm{~d} f \wedge \mathrm{~d} g \wedge \mathrm{~d} h) \\
& -i_{\Pi^{\sharp} i_{E} \phi+\Pi^{\sharp} i_{E} \omega \wedge E}(f \mathrm{~d} g \wedge \mathrm{~d} h+g \mathrm{~d} h \wedge \mathrm{~d} f+h \mathrm{~d} f \wedge \mathrm{~d} g) \tag{21}
\end{align*}
$$

Relaxing twisted Jacobi pairs: Jacobi pair with background

The bracket in the above allows display the introduction of Hamiltonian vector fields

$$
\begin{align*}
& \mathcal{H}: \mathcal{F}(M) \rightarrow \mathfrak{X}^{1}(M), \\
& \mathcal{H}(f) \equiv X_{f}=\Pi^{\sharp} \mathrm{d} f+f E, \tag{22}
\end{align*}
$$

which verify the relations

$$
\begin{align*}
{\left[X_{f}, X_{g}\right]-X_{\{f, g\}} } & =\Pi^{\sharp} i_{X_{f} \wedge X_{g}} \phi-\left(\mathcal{L}_{E} f\right) \Pi^{\sharp} i_{X_{g}} \omega \\
& +\left(\mathcal{L}_{E} g\right) \Pi^{\sharp} i_{X_{f}} \omega+\left(i_{X_{f} \wedge X_{g}} \omega\right) E . \tag{23}\\
{\left[X_{f}, E\right]+X_{\mathcal{L}_{E} f} } & =\Pi^{\sharp}\left(i_{X_{f} \wedge E} \phi-\left(\mathcal{L}_{E} f\right) i_{E} \omega\right)+\left(i_{X_{f} \wedge E} \omega\right) E . \tag{24}
\end{align*}
$$

Relaxing twisted Jacobi pairs: Jacobi pair with background

A Jacobi pair with background $((\Pi, E),(\phi, \omega))$ is said to be transitive if its characteristic distribution coincides with the tangent one i.e iff

$$
\begin{equation*}
\left\langle\operatorname{Im} \Pi_{x}^{\sharp}, E_{x}\right\rangle=T_{x} M, \quad x \in M . \tag{25}
\end{equation*}
$$

Example

A locally conformal symplectic structure (Ω, α), with Ω non-degenerate and α closed, is said to be with background (ϕ, ω) if

$$
\phi=\mathrm{d} \Omega+\alpha \wedge(\Omega-\omega) .
$$

It generates a transitive Jacobi pair with background $((\Pi, E),(\phi, \omega))$ where

$$
\langle\rho \wedge \lambda, \Pi\rangle=\left\langle\Omega, \Omega^{\sharp} \rho \wedge \Omega^{\sharp} \lambda\right\rangle, \quad E=\Omega^{\sharp} \alpha .
$$

Relaxing twisted Jacobi pairs: Jacobi pair with background

Theorem

Let M be a smooth manifold and $\left((\Pi, E),\left(\phi_{1}, \omega_{1}\right)\right)$ and $\left((\Pi, E),\left(\phi_{2}, \omega_{2}\right)\right)$ be two Jacobi pairs with background on M. If both structures are transitive then the following alternative cases hold:
(1) $\operatorname{dim} M$ is even: there exists a 2 -form, $\omega \in \Omega^{2}(M)$, such that

$$
\begin{equation*}
\omega_{1}=\omega_{2}+\omega, \quad \phi_{1}=\phi_{2}-\omega \wedge \Pi^{b} E ; \tag{26}
\end{equation*}
$$

(2) $\operatorname{dim} M$ is odd:

$$
\begin{equation*}
\omega_{1}=\omega_{2}, \quad \phi_{1}=\phi_{2} \tag{27}
\end{equation*}
$$

Relaxing twisted Jacobi pairs: Jacobi pair with background

Theorem

If a Jacobi pair with background $((\Pi, E),(\phi, \omega))$ on a smooth manifold M is transitive then M is either a locally conformal symplectic manifold with background or a twisted coorientable contact one.

Theorem

The characteristic distribution of a Jacobi pair with background is completely integrable with the characteristic leaves either locally conformal symplectic manifolds with background or twisted coorientable contact ones.

Relaxing twisted Jacobi pairs: Jacobi pair with background

Let $((\Pi, E),(\phi, \omega))$ be a Jacobi pair with background on the smooth manifold M. Then, to each everywhere non-vanishing smooth function

$$
a \in \mathcal{F}(M)
$$

we can associate the Jacobi pair with background $\left(\left(\Pi^{a}, E^{a}\right),\left(\phi^{a}, \omega^{a}\right)\right)$, where

$$
\begin{align*}
\Pi^{a} & =a \Pi, \quad E^{a}=a E+\Pi^{\sharp} \mathrm{d} a, \tag{28}\\
\phi^{a} & =\frac{1}{a} \phi+\mathrm{d}\left(\frac{1}{a}\right) \wedge \omega, \quad \omega^{a}=\frac{1}{a} \omega . \tag{29}
\end{align*}
$$

It can be shown that the brackets associated with the above Jacobi pairs with backgrounds are related via

$$
\begin{equation*}
\{f, g\}^{a}=\frac{1}{a}\{a f, a g\} \tag{30}
\end{equation*}
$$

Relaxing twisted Jacobi pairs: Jacobi pair with background

The 'Poissonization' procedure also works for Jacobi pairs with background.

Definition

Let smooth manifold $\left(M, \mathcal{A}_{M}\right)$ endowed with a pair (Π, ϕ) consisting in

$$
\Pi \in \mathfrak{X}^{2}(M), \quad \phi \in \Omega^{3}(M),
$$

which verify

$$
\begin{equation*}
\llbracket \Pi, \Pi \rrbracket=2 \Pi^{\sharp} \phi \tag{31}
\end{equation*}
$$

is called a Poisson manifold with background. If in addition there exists the vector field Z such that

$$
\begin{equation*}
\mathcal{L}_{Z} \Pi \equiv \llbracket Z, \Pi \rrbracket=-\Pi, \quad \mathcal{L}_{Z} \phi=\phi \tag{32}
\end{equation*}
$$

then the Poisson manifold with background is said to be homogeneous.

Relaxing twisted Jacobi pairs: Jacobi pair with background

Theorem

If $((\Pi, E),,(\phi, \omega))$ is a Jacobi pair with background, then the manifold

$$
\begin{equation*}
\tilde{M}=M \times \mathbb{R} \tag{33}
\end{equation*}
$$

can be naturally organized as a 'homogeneous' Poisson manifold with background defined by

$$
\begin{equation*}
\tilde{\Pi}=\mathrm{e}^{-\tau}\left(\Pi+\partial_{\tau} \wedge E\right), \quad \tilde{\phi}=\mathrm{e}^{\tau}(\phi+\omega \wedge \mathrm{d} \tau), \quad \tilde{Z}=\partial_{\tau} \tag{34}
\end{equation*}
$$

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi nairs: Jacobi nair with background
- Jacobi-like pairs as distinguished elements of a Lie algebroid - Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Jacobi-like pairs as distinguished elements of a Lie algebroid

We start from the Lie algebroid

$$
(T M \times \mathbb{R}, \llbracket \bullet, \bullet \rrbracket, \rho)
$$

with

$$
\llbracket(X, f),(Y, g) \rrbracket \equiv([X, Y], X g-Y f), \quad \rho(X, f) \equiv X
$$

By means of the isomorphisms

$$
\Gamma\left(\Lambda^{r+1}(T M \times \mathbb{R})\right) \simeq \mathfrak{X}^{r+1}(M) \times \mathfrak{X}^{r}(M)
$$

its Gerstenhaber algebra $\left(\Gamma\left(\wedge^{\bullet}(T M \times \mathbb{R}), \llbracket \bullet \bullet \bullet\right)\right)$ reads

$$
\llbracket(P, Q),(R, S) \rrbracket=\left([P, R],[P, S]+(-)^{r}[Q, R]\right) .
$$

Jacobi-like pairs as distinguished elements of a Lie algebroid

Moreover, the differential of its de Rham complex $\left(\Gamma\left(\wedge^{\bullet}(T M \times \mathbb{R})^{*}\right), \mathbf{d}\right), \mathbf{d}$ can be written, by means of the isomorphisms

$$
\Gamma\left(\Lambda^{r+1}(T M \times \mathbb{R})^{*}\right) \simeq \Omega^{r+1}(M) \times \Omega^{r}(M)
$$

in terms of the standard de Rham differential, d as

$$
\mathbf{d}(\omega, \alpha) \equiv(\mathrm{d} \omega,-\mathrm{d} \alpha), \quad(\omega, \alpha) \in \Lambda^{k}(M) \times \Lambda^{k-1}(M)
$$

We consider the d-cocycle $(0,1) \in \Omega^{1}(M) \times \mathcal{F}(M)$,

$$
\mathbf{d}(0,1)=0
$$

and construct the Lie algebroid with 1-cocycle

$$
\left(T M \times \mathbb{R}, \llbracket \bullet, \bullet \rrbracket^{(0,1)}, \rho\right)
$$

Jacobi-like pairs as distinguished elements of a Lie algebroid

The previous bracket has the concrete expression

$$
\llbracket(P, Q),(R, S) \rrbracket^{(0,1)}=(I, I I)
$$

where

$$
\begin{gathered}
I \equiv[P, R]+p(-)^{r} P \wedge S-r Q \wedge R \\
I I \equiv[P, S]+(-)^{r}[Q, R]+(p-r) Q \wedge S
\end{gathered}
$$

Jacobi-like pairs as distinguished elements of a Lie algebroid

Within the previous context, the equations governing the Jacobi pair (Π, E) on the smooth manifold M simply read

$$
\llbracket(\Pi, E),(\Pi, E) \rrbracket^{(0,1)}=0 .
$$

Also, the equations exhibiting the twisted Jacobi pair $((\Pi, E), \omega)$ reduce to

$$
\llbracket(\Pi, E),(\Pi, E) \rrbracket^{(0,1)}=2(\Pi, E)^{\sharp}(\mathrm{d} \omega, \omega) .
$$

Finally, the equations displaying the Jacobi pair with background $((\Pi, E),(\phi, \omega))$ are

$$
\llbracket(\Pi, E),(\Pi, E) \rrbracket^{(0,1)}=2(\Pi, E)^{\sharp}(\phi, \omega) .
$$

Jacobi-like pairs as distinguished elements of a Lie algebroid

Previously, we denoted by $(\Pi, E)^{\sharp}$ the $\mathcal{F}(M)$-module morphism

$$
\begin{equation*}
(\Pi, E)^{\sharp}: \Gamma\left(\Lambda^{k}\left(T^{*} M \times \mathbb{R}\right)\right) \rightarrow \Gamma\left(\Lambda^{k}(T M \times \mathbb{R})\right), \tag{35}
\end{equation*}
$$

which is the linear extension of

$$
\Omega^{1}(M) \times \mathcal{F}(M) \ni(\beta, f) \rightarrow\left(\Pi^{\sharp} \beta+f E,-i_{E} \beta\right) \in \mathfrak{X}^{1}(M) \times \mathcal{F}(M)
$$

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi nairs: Jacobi nair with background
- Jacobi-like pairs as distinguished elements of a Lie algebroid
- Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Jacobi-like line bundles

By definition, a Jacobi bundle consists in a line bundle $L \rightarrow M$ endowed with a bracket

$$
\{\bullet, \bullet\}: \Gamma(L) \times \Gamma(L) \rightarrow \Gamma(L),
$$

that enjoys the properties:

- It is \mathbb{R}-linear and skew-symmetric;
- It verifies the Jacobi identity i.e.

$$
\begin{equation*}
\left\{s_{1},\left\{s_{2}, s_{3}\right\}\right\}+\text { circular }=0, \quad s_{1}, s_{2}, s_{3} \in \Gamma(L) \tag{36}
\end{equation*}
$$

- It is local i.e.

$$
\begin{equation*}
\operatorname{supp}\left\{s_{1}, s_{2}\right\} \subset \operatorname{supp} s_{1} \cap \operatorname{supp} s_{2}, \quad s_{1}, s_{2} \in \Gamma(L) \tag{37}
\end{equation*}
$$

Jacobi-like line bundles

It is immediate that Jacobi pairs are equivalent to trivial Jacobi bundles. Indeed, any Jacobi pair (Π, E) on a given manifold endows the trivial line bundle

$$
\mathbb{R}_{M} \equiv \mathbb{R} \times M
$$

$\mathcal{F}(M)$-module of smooth sections

$$
\Gamma\left(\mathbb{R}_{M}\right)=\mathcal{F}(M)
$$

with the bracket

$$
\begin{equation*}
\{f, g\} \equiv i_{\Pi} \mathrm{d} f \wedge \mathrm{~d} g+i_{E}(f \mathrm{~d} g-g \mathrm{~d} f) \tag{38}
\end{equation*}
$$

and conversely, any Jacobi structure on the trivial line bundle displays a bracket in $\mathcal{F}(M)$.

Jacobi-like line bundles

We consider the Lie algebroid $(D L,[\bullet, \bullet], \sigma)$ whose sections

$$
\mathcal{D}(L) \equiv \Gamma(D L)
$$

are nothing but the derivations of the module [over $\mathcal{F}(M)] \Gamma(L)$ i.e. \mathbb{R}-linear maps \triangle which enjoy the existence of a [unique] vector field X_{\triangle} such that

$$
\begin{equation*}
\triangle(f s)=\left(X_{\triangle} f\right) s+f \triangle s, \quad s \in \Gamma(L), f \in \mathcal{F}(M) \tag{39}
\end{equation*}
$$

Previously, the bracket is given by

$$
\left[\triangle, \triangle^{\prime}\right] \equiv \triangle^{\prime}-\triangle^{\prime} \triangle
$$

while the anchor returns symbols of derivations

$$
\sigma(\triangle) \equiv X_{\triangle}
$$

Jacobi-like line bundles

Now, associated with the tautological representation of $D L$ on L

$$
\begin{equation*}
\nabla: \Gamma(D L) \longrightarrow \Gamma(D L), \quad \nabla \square \lambda \equiv \square \lambda, \quad \lambda \in \Gamma(L), \tag{40}
\end{equation*}
$$

the Jacobi algebroid $(D L, L)$ is at hand. This is equivalent to

- the Gerstenhaber-Jacobi algebra consisting in the module

$$
\begin{equation*}
\mathcal{D}^{\bullet} L \equiv \Gamma\left(\wedge^{\bullet} J_{1} L \otimes L\right) \quad \text { over the algebra } \quad \Gamma\left(\wedge^{\bullet} J_{1} L\right) \tag{41}
\end{equation*}
$$

- der-complex consisting in the module

$$
\begin{equation*}
\Omega_{L}^{\bullet} \equiv \Gamma\left(\wedge^{\bullet}(D L)^{*} \otimes L\right) \quad \text { over the algebra } \quad \Gamma\left(\wedge^{\bullet}(D L)^{*}\right) \tag{42}
\end{equation*}
$$

In the above we used the notation

$$
\begin{equation*}
J_{1} L \equiv\left(J^{1} L\right)^{*} \tag{43}
\end{equation*}
$$

and also the vector bundle isomorphism

$$
\begin{equation*}
J_{1} L \simeq D L \otimes L^{*} \tag{44}
\end{equation*}
$$

Jacobi-like line bundles

The homogeneous elements in the algebra (41) consists in skew-symmetric, first-order differential operators

$$
\begin{equation*}
\triangle: \Gamma(L) \times \cdots \times \Gamma(L) \rightarrow \mathcal{F}(M) \equiv \Gamma\left(\mathbb{R}_{M}\right) \tag{45}
\end{equation*}
$$

while those of the module (41) are the skew-symmetric, first-order differential operators

$$
\begin{equation*}
\square: \Gamma(L) \times \cdots \times \Gamma(L) \rightarrow \Gamma(L) \tag{46}
\end{equation*}
$$

The bracket in the previous Gerstenhaber-Jacobi algebra reads

$$
\begin{equation*}
\llbracket \square_{1}, \square_{2} \rrbracket \equiv(-)^{k_{1} k_{2}} \square_{1} \circ \square_{2}-\square_{2} \circ \square_{1}, \quad \square_{a} \in \mathcal{D}^{k_{a}+1} L \tag{47}
\end{equation*}
$$

with \circ the Gerstenhaber multiplication

$$
\square_{1} \circ \square_{2}\left(s_{1}, \cdots, s_{k_{1}+k_{2}+1}\right) \equiv
$$

$$
\sum_{\tau \in S_{k_{1}+1, k_{2}}}(-)^{\tau} \square_{1}\left(\square_{2}\left(s_{\tau(1)}, \cdots, s_{\tau\left(k_{1}+1\right)}\right), s_{\tau\left(k_{1}+2\right)}, \cdots, s_{\tau\left(k_{1}+k_{2}+1\right)}\right)
$$

Jacobi-like line bundles

Concerning der-complex, Ω_{L}^{\bullet}, it is endowed with a homological derivation, d_{D}, which symbol is nothing but de Rham differential, $\mathrm{d}_{D L}$, associated with the Lie algebroid $D L$

$$
\begin{align*}
\left\langle\mathrm{d}_{D} \lambda, \square\right\rangle & =\left\langle\square, j^{1} \lambda\right\rangle \tag{48}\\
\mathrm{d}_{D}(\omega \wedge \Omega) & =\left(\mathrm{d}_{D L} \omega\right) \wedge \Omega+(-)^{|\omega|} \omega \wedge \mathrm{d}_{D} \Omega, \omega \in \Gamma\left(\wedge^{\bullet}(D L)^{*}\right), \Omega \in \Omega_{L}^{\bullet} \tag{49}
\end{align*}
$$

It can be shown that the cohomology of d_{D} in the der-complex is always trivial i.e.

$$
\begin{equation*}
\mathrm{d}_{D} \Omega_{k>0}=0 \Longleftrightarrow \Omega_{k>0}=\mathrm{d}_{D} \Theta_{k-1} . \tag{50}
\end{equation*}
$$

Jacobi-like line bundles

In this unified context, a Jacobi bundle consists in a line bundle $L \rightarrow M$ endowed with a first-order bi-differential operator

$$
J \in \mathcal{D}^{2} L
$$

that verifies Maurer-Cartan equation

$$
\begin{equation*}
\llbracket J, J \rrbracket \equiv-2 J \circ J=0 . \tag{51}
\end{equation*}
$$

The connection between the bracket and the bi-differential operator J simply reads

$$
\begin{equation*}
\left\{s_{1}, s_{2}\right\} \equiv J\left(s_{1}, s_{2}\right), \quad s_{1}, s_{2} \in \Gamma(L) . \tag{52}
\end{equation*}
$$

Jacobi-like line bundles

By means of the vector bundle morphism

$$
\begin{equation*}
\hat{J}: J^{1} L \wedge J^{1} L \rightarrow L, \quad\left\langle\hat{J}, j^{1} \lambda \wedge \rho\right\rangle \equiv J(\lambda, \rho) \tag{53}
\end{equation*}
$$

the Jacobi bundle $(L \rightarrow M, J)$ is said to be transitive if

$$
\operatorname{Im}\left(\sigma \circ \hat{J}^{\sharp}\right)=T M .
$$

Example

Let \mathcal{K} be a contact structure on M,i.e.,

$$
\omega_{\mathcal{K}}: \mathcal{K} \times \mathcal{K} \rightarrow T M / \mathcal{K}, \quad\left\langle\omega_{\mathcal{K}}, X \wedge Y\right\rangle \equiv[X, Y] \quad \bmod \mathcal{K}
$$

is non-degenerate. It defines a unique Jacobi bundle $\left(T M / \mathcal{K} \rightarrow M, J_{\mathcal{K}}\right)$ which is transitive.

Jacobi-like line bundles

Example

An Ics structure on a given line bundle $L \rightarrow M$ is a pair (∇, Ω) consisting in a representation ∇ of the tangent Lie algebroid $T M \rightarrow M$ on a line bundle and a non-degenerate L-valued 2-form $\Omega \in \Omega^{2}(M ; L)$ which is closed with respect to the homological degree 1 derivation d_{∇} associated with the Jacobi algebroid structure $([\bullet, \bullet], \nabla)$ on the pair $(T M, L)$,

$$
d_{\nabla} \Omega=0
$$

It defines a unique transitive Jacobi bundle $(L \rightarrow M, J)$ with

$$
J(\lambda, \mu) \equiv\left\langle\Omega, \Omega^{\sharp}\left(\mathrm{d}_{\nabla} \mu\right) \wedge \Omega^{\sharp}\left(\mathrm{d}_{\nabla} \lambda\right)\right\rangle .
$$

Jacobi-like line bundles

Moreover, a twisted Jacobi bundle consists in a line bundle $L \rightarrow M$ endowed with a first-order bi-differential operator

$$
J \in \mathcal{D}^{2} L
$$

which 'nilpotency' (51) is 'twisted' via the closed Atiyah 3-form

$$
\begin{equation*}
\Phi \in \Omega_{L}^{3}, \quad \mathrm{~d}_{D} \Phi=0 \tag{54}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\llbracket J, J \rrbracket=2 \hat{J}^{\sharp} \Phi . \tag{55}
\end{equation*}
$$

Also here, the twisted Jacobi bundle $(L \rightarrow M, J, \Phi)$ is said to be transitive if

$$
\operatorname{Im}\left(\sigma \circ \hat{J}^{\sharp}\right)=T M .
$$

Jacobi-like line bundles

Example

A hyperplane distribution \mathcal{K} together with a 2 -form $\psi \in \Gamma\left(\wedge^{2} \mathcal{K}^{*} \otimes L\right)$, $L \equiv T M / \mathcal{K}$ is said to be a twisted contact structure on M if

$$
\omega_{\mathcal{K}}+\psi \in \Gamma\left(\wedge^{2} \mathcal{K}^{*} \otimes L\right)
$$

is non-degenerate. It defines a unique twisted Jacobi bundle ($L \rightarrow M, J_{\mathcal{K}, \psi}, \Omega_{\mathcal{K}, \psi}$) which is transitive.

Jacobi-like line bundles

Example

A twisted Ics structure on a given line bundle $L \rightarrow M$ is pair $((\nabla, \Omega), \omega)$ consisting in a representation ∇ of the tangent Lie algebroid $T M \rightarrow M$ on a line bundle, a non-degenerate L-valued 2 -form $\Omega \in \Omega^{2}(M ; L)$ and an L-valued 2 -form $\omega \in \Omega^{2}(M ; L)$ which verify the compatibility condition

$$
d_{\nabla} \Omega=d_{\nabla} \omega
$$

It defines a unique transitive twisted Jacobi bundle $\left(L \rightarrow M, J, \mathrm{~d}_{D} \sigma^{*} \omega\right)$ with

$$
J(\lambda, \mu) \equiv\left\langle\Omega, \Omega^{\sharp}\left(\mathrm{d}_{\nabla} \mu\right) \wedge \Omega^{\sharp}\left(\mathrm{d}_{\nabla} \lambda\right)\right\rangle .
$$

Jacobi-like line bundles

Finally, a Jacobi bundle with background consists in a line bundle $L \rightarrow M$ endowed with a first-order bi-differential operator

$$
J \in \mathcal{D}^{2} L
$$

which 'nilpotency' (51) is 'broken' via an Atiyah 3-form

$$
\begin{equation*}
\Phi \in \Omega_{L}^{3} \tag{56}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\llbracket J, J \rrbracket=2 \hat{J}^{\sharp} \Phi . \tag{57}
\end{equation*}
$$

Also here, Jacobi bundle with background $(L \rightarrow M, J, \Phi)$ is said to be transitive if

$$
\operatorname{Im}\left(\sigma \circ \hat{J}^{\sharp}\right)=T M
$$

Jacobi-like line bundles

Example

An Ics structure with background on a given line bundle $L \rightarrow M$ is pair $((\nabla, \Omega),(\phi, \omega))$ consisting in a representation ∇ of the tangent Lie algebroid $T M \rightarrow M$ on a line bundle, a non-degenerate L-valued 2-form $\Omega \in \Omega^{2}(M ; L)$ an L-valued 3-form $\phi \in \Omega^{3}(M ; L)$ and an L-valued 2-form which verify the compatibility condition

$$
d_{\nabla} \Omega=d_{\nabla} \omega+\phi
$$

It defines a unique transitive Jacobi bundle with background $\left(L \rightarrow M, J, \mathrm{~d}_{D} \sigma^{*} \omega+\sigma^{*} \phi\right)$ with

$$
J(\lambda, \mu) \equiv\left\langle\Omega, \Omega^{\sharp}\left(\mathrm{d}_{\nabla} \mu\right) \wedge \Omega^{\sharp}\left(\mathrm{d}_{\nabla} \lambda\right)\right\rangle .
$$

Outline

- From Jacobi pairs to twisted Jacobi pairs
- Relaxing twisted Jacobi nairs: Jacobi nair with background
- Jacobi-like pairs as distinguished elements of a Lie algebroid
- Jacobi-like line bundles
- Jacobi-like line bundles encompass Jacobi-like pairs

Jacobi-like line bundles encompass Jacobi-like pairs

When the line bundle $L \rightarrow M$ is trivial

$$
L \equiv \mathbb{R}_{M}
$$

by means of the isomorphism

$$
\begin{equation*}
D \mathbb{R}_{M}=T M \times \mathbb{R} \tag{58}
\end{equation*}
$$

the homogeneous elements of the Gerstenhaber-Jacobi algebra (41) reduce to

$$
\begin{equation*}
\mathcal{D}^{0} \mathbb{R}_{M}=\mathcal{F}(M) \quad \mathcal{D}^{k} \mathbb{R}_{M}=\mathfrak{X}^{k}(M) \times \mathfrak{X}^{k-1}(M), \quad k>0 \tag{59}
\end{equation*}
$$

while the Gerstenhaber-Jacobi bracket becomes

$$
\llbracket \bullet \bullet \bullet \rrbracket^{(0,1)}
$$

Jacobi-like line bundles encompass Jacobi-like pairs

In addition, the homogeneous elements of the (Atiyah)der-complex read

$$
\begin{equation*}
\Omega_{\mathbb{R}_{M}}^{0}=\mathcal{F}(M) \quad \Omega_{\mathbb{R}_{M}}^{k}=\Omega^{k}(M) \times \Omega^{k-1}(M), \quad k>0 . \tag{60}
\end{equation*}
$$

Moreover, the homological derivation in the Atiyah complex can be written in terms of de Rham differential like

$$
\begin{equation*}
\mathrm{d}_{D} f \equiv \mathrm{~d} f, \quad \mathrm{~d}_{D}\left(\omega_{k}, \omega_{k-1}\right) \equiv\left(\mathrm{d} \omega_{k}, \omega_{k}-\mathrm{d} \omega_{k-1}\right), \quad k>0 \tag{61}
\end{equation*}
$$

With these identifications at hand, the bi-differential operator J is realised as

$$
J \leftrightarrow(\Pi, E) \in \mathfrak{X}^{2}(M) \times \mathfrak{X}^{1}(M),
$$

the Atiyah 3 -form in the twisted Jacobi bundle (54) becomes

$$
\Phi \leftrightarrow(\mathrm{d} \omega, \omega)=\mathrm{d}_{D}(\omega, 0) \in \Omega^{3}(M) \times \Omega^{2}(M)
$$

while the Atiyah 3-form in the Jacobi bundle with background reads

$$
\Phi \leftrightarrow(\phi, \omega) \in \Omega^{3}(M) \times \Omega^{2}(M) .
$$

References

1. C. M. Marle, The Schouten-Nijenhuis bracket and interior products
2. A. A. Kirillov, Russian Math. Surveys 31(4) (1976) 55-75
3. C. Vizman, A. Blaga, M. A. Salazar, Contact dual pairs
4. I. Vaisman, Selected topics in Geometry and Mathematical Physics 1 (2002) 81-100
5. A. Lichnerowicz, J. Math. Pures et Appl. 57 (1978) 453-488
6. Y. Hirota, Notes on Geometric Morita equivalence of twisted Poisson manifolds, preprint arxiv: 1004.5078
7. J. M. Nunes da Costa, F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids, preprint arxiv: math/0606787
8. F. Petalidou, On twisted contact groupoids and on integration of twisted Jacobi manifolds, preprint arxiv: 0912.3914
9. N. Sansonetto, D. Seppe, Twisted isotropic realisations of twisted Poisson structures, preprint arxiv: 1207.3655
10. A. G. Tortorella, Deformations of coisotropic submanifolds in Jacobi manifolds, PhD thesis, arxiv: 1705.08962
