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CAUSAL PERTURBATION THEORY

The purpose of perturbative quantum field theory (pQFT) is the construction of the
scattering matrix as a formal perturbative series. The coefficients of the series are the
chronological products. In other words, to give a mathematical status of Feynman
integrals.

We try to obtain in a natural way pQFT. The evolution operator in non-relativistic
quantum mechanics verifies

d
dt

U(t, s) = −iVint(t)U(t, s); U(s, s) = I . (1)

In terms of the interaction potential and can be expressed as follows:

U(t, s) ≡
∑ (−i)n

n!

∫
dt1 · · · dtnT (t1, . . . , tn) (2)

where the chronological products Tn(t1, . . . , tn) verify the following properties:
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Initial condition

T (t1) = Vint(t1) (3)

Symmetry

T2(t1, t2) = (1↔ 2) (4)

Causality:

T2(t1, t2) = T1(t1) T1(t2), for t1 > t2 (5)

and a similar formula in general.

Unitary

U(t, s)† U(t, s) = I (6)
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In terms of the chronological products, define the anti-chronological products

T̄2(t1, t2) = T1(t1) T1(t2) + T1(t2) T1(t1)− T2(t1, t2) (7)

and we have

T̄2(t1, t2) = T2(t1, t2)† (8)

and similar formulas in arbitrary order.

Invariance properties
If the interaction potential is translation invariant then we have

Tn(t1 + τ, . . . , tn + τ) = Tn(t1, . . . , tn) (9)

We can write an explicit formula

T2(t1, t2) = θ(t1 − t2) Vint(t1) Vint(t2) + θ(t2 − t1) Vint(t2) Vint(t1). (10)

The purpose is to generalize this idea in the relativistic context especially the causality
property.
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BOGOLIUBOV AXIOMS

One writes the scattering matrix

S(g) ≡ I + i
∫

dxg(x)T (x)

+
i2

2

∫
dx dy g(x) g(y) T (x , y) + · · · (11)

where g :M→ R is some test function over the Minkowski space and the sum is formal.
The expressions of the type T (x , y) are called chronological products. They are
distribution-valued operators in a Hilbert space H.
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One can justfy as above the following set of axioms:

Initial condition
The expression T (x1) is an input of the theory, called the interaction Lagrangian.

Symmetry

T (x1, x2) = (1↔ 2) (12)

Causality
We have a more refined causality property involving the light cones from the
Minkowski space:

T (x , y) = T (x)T (y) (13)

for x � y i.e. y ∩ (x + V̄+) = ∅ i.e. the point x succeeds causally the point y .

Poincaré invariance
We must have a natural action of the Poincaré group in H and we impose that for
all elements g ∈ inSL(2,C) of the universal covering group of the Poincaré group:

UgT (x1, x2)U−1
g = T (g · x1, g · x2) (14)
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Unitarity: If we define the anti-chronological products according to

T̄ (x1, x2) ≡ T (x1)T (x2) + T (x2)T (x1)− T (x1, x2) (15)

then the unitarity axiom is:

T̄ (x1, x2) = T (x1, x2)†. (16)

The formula

T2(x1, x2) = θ(x0
1 − t02 ) T (x1) T (x2) + θ(x0

2 − x0
1 ) T (x2) T (x1). (17)

involves an illegal operation - the multiplication of distributions - and is not true in
general. We have to find more sophisticated ways to construct the chronological products.
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One can generalize these axioms for arbitrary chronological products T (x1, . . . , xn) and
even more for expressions of the type

T (A1(x1), . . . ,An(xn))

where A1(x1), . . . ,An(xn) are some operators in the Hilbert space H. From the causality
axiom one can derive that we must have

[Aj (x),Ak(y)] = 0, (x − y)2 < 0. (18)

i.e. for causally separated points.
It is a non-trivial problem to find solutions of this axiom. We remark that there is no
non-relativistic analogue of the axiom. This is the first instance where we see the
difficulty of unifying relativity with quantum mechanics.
There are some interesting solutions of the preceding relation: the free fields and the
associated Wick monomials.
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GENERAL QUANTUM FIELD THEORY

A quantum field is a distribution-valued operator

Φ(x) (19)

acting in some Hilbert space. For a free field the Hilbert space is of Fock type.
There are various methods to construct quantum free fields.

Using creation and annihilation operators in a Fock space; the fields are linear
combinations of them

Using Weyl algebras

Using Borchers algebra; It is based essentially on the reconstruction theorem of
Wightman: this theorem says that from the vacuum averages

< Ω,Φ(x1) · · ·Φ(xn)Ω > (20)

one can reconstruct the quantum field Φ(x).

Using GNS construction
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We illustrate the last method considering for simplicity a real scalar field. We consider
the algebra

S =
∑
Sn; (21)

Here Sn are distributions in the variables x1, . . . , xn ∈M.
One defines a quasi-free state on S (which is endowed with a structure of ∗-unital
algebra) according to

ω(f ⊗ g) =

∫
D(+)

m (x − y) f (x) g(y) (22)

where D(+)
m (x − y) is the positive part of the Pauli-Villars distribution. In general

ω(f1 ⊗ · · · ⊗ fn) =
∑

ω(fi1 , fi2) · · ·ω(fin−1 , fin ) (23)

for n even and null for n odd; in an equivalent language, the state is defined by imposing
that the associated truncated state is zero for more that three entries. Then one
generates the GNS representation.
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As a consequence, we can prove that we have obtained the (quantum) free scalar field:
the attribute free is due to the verification of Klein-Gordon equation

(2 + m2) Φ = 0. (24)

We also have the causal commutation relation (CCR):

[Φ(x),Φ(y)] = −i Dm(x − y) · I (25)

and:

Φ† = Φ (26)

The quantum (real) scalar field constructed above is used to describe Higgs Bosons.
Scalar fields are also used in MOND theories: modified gravitation theories describing
dark matter.
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The same construction works for other cases:
Generalized quantum fields: in this case one puts in the right hand side of the
preceding equation:

Dm(x − y)→
∫
ρ(λ)Dλ(x − y) (27)

so we loose Klein-Gordon equation. These fields are used for regularization
(Pauli-Villars, dimensional, etc.)
Dirac fields: the fields are: ψα, α = 1, . . . , 4 verifying Dirac equation and associated
to the representation [m, 1/2] of the Poincaré group. These fields are used to
describe leptons (the electron, miuons) and quarks.
Thermal fields: one multiplies by a Boltzmann factor the Fourier transform of the
Pauli-Jordan distribution (this breaks Lorentz covariance!).
Quantum fields on Riemann manifolds.
In the last case one has to replace the positive part of Pauli-Jordan distribution

D(+)
m (x1 − x2) (28)

by a distribution of Hadamard type

ω2(x1, x2). (29)

Such distributions are not unique so there is no unique vacuum. Accordingly, there is
no unique decomposition of the fields in the creation and annihilation parts.
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A similar construction makes sense of monomials in one or more variables : Φ(x)n :,
: Φ(x)nΦ(y)m : etc. These are the Wick monomials. It is a non-trivial result that such
expressions make sense and verify a causality property as above. If the interaction
Lagrangian is a Wick monomial then one can supplement Bogoliubov axioms as follows:

We start from Wick theorem

: Φ(x)m :: Φ(y)n :=
∑
k=l

C k
mC

l
n < Ω, : Φ(x)k :: Φ(y)l : Ω > ×

: Φ(x)m−kΦ(y)n−l : (30)

we impose Wick expansion property:

T (: Φ(x)m :, : Φ(y)n :) =
∑
k=l

C k
mC

l
n < Ω,T (: Φ(x)k :, : Φ(y)l :)Ω > ×

: Φ(x)m−kΦ(y)n−l : (31)

We note the first appearence of a loop expansion and of a Hopf algebra structure.
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Power counting There is an upper bound on the degree of singularity of the
distributions

tk,l (x , y) ≡< Ω,T (: Φ(x)k :, : Φ(y)l :)Ω > (32)

appearing above:

ω(tk,l ) ≤ k + l − 4. (33)

If we take m = n < 4,m = n = 4,m = n > 4 we obtain super-renormalizable,
renormalizable, and non-renormalizable models. It is assumed that the last case it is
not physical; however it can be treated as an effective field theory.
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SECOND ORDER CHRONOLOGICAL PRODUCTS

We go to the second order of perturbation theory using the causal commutator

DA,B(x , y) ≡ D(A(x),B(y)) = [A(x),B(y)] (34)

where A(x),B(y) are arbitrary Wick monomials. These type of distributions are
translation invariant i.e. they depend only on x − y and the support is inside the light
cones:

supp(D) ⊂ V+ ∪ V−. (35)

A theorem from distribution theory guarantees that one can causally split this
distribution:

D(A(x),B(y)) = A(A(x),B(y))− R(A(x),B(y)). (36)

where:

supp(A) ⊂ V+ supp(R) ⊂ V−. (37)

The expressions A(A(x),B(y)),R(A(x),B(y)) are called advanced resp. retarded
products.
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They are not uniquely defined: one can modify them with quasi-local terms i.e. terms
proportional with δ(x − y) and derivatives.
There are some limitations on these redefinitions coming from Lorentz invariance, and
power counting: this means that we should not make the various distributions appearing
in the advanced and retarded products too singular.
Then we define the chronological product by:

T (A(x),B(y)) = A(A(x),B(y)) + B(y)A(x)

= R(A(x),B(y)) + A(x)B(y). (38)

The expression T (x , y) corresponds to the choice

T (x , y) ≡ T (T (x),T (x)). (39)

The expressions D,A,R,T admit a loop decomposition, according to the number of
Wick contractions from the Wick expansion property.
The preceding relations are inspired by the relations well-knowed relations:

D = Dadv − Dret

Dadv = θ(x0) D, Dret = −θ(−x0) D (40)

DF = Dret + D(+) = Dadv − D(−)

D̄F = D(+) − Dadv = −Dret − D(−) (41)

DF + D̄F = D(+) − D(−) (42)
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GAUGE MODELS

The Fock space is constructed starting from some Hilbert space (called the one-particle
Hilbert space and associating the symmetric (resp. antisymmetric) tensor algebra for
Bosons (resp. Fermions). There is a theorem spin-statistics saying that for integer spins
we should use Bose statistics (symmetric case) and for half-odd spins we should use
Fermi statistics (the antisymmetric case).
One takes the one-particle Hilbert space to carry a (projective) irreducible unitary
representation of the Poincaré group. These are defined up to unitary equivalence. The
choice of the explicit representation is a sort of educated guess.
The construction of a free field associated to some quantum particle [m, s] is not an
unique operation.
Some choices are not very good: for higher spin fields one is tempted to use only the
physical degrees of freedom. For instance the photon or the gluon are described by the
representation [0, 1] and using the Wigner description of this representation one is lead to
a model for which the degree of singularity grows with the order of the perturbation
theory. This leads to a growing number of free constants in the chronological products:
the theory seems to be non-renormalizable.
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The way out of this is suggested by the Faddeev - Popov trick. One looks for new
representations of the Fock space associated to [m, s]. Basically, the Fock space is
generated by physical and un-physical degree of freedom, so one has to select the
subspace of physical states. So, we take a set of fields to Bj (x),FA(x) of Bose (resp.
Fermi) statistics and looks for an operator to Q such that:

[Q,B(x)] ∼ F (x), [Q,F (x)] ∼ B(x), QΩ = 0 (43)

and

Q2 = 0. (44)

Moreover we want that the cohomology space

Ker(Q)/Ran(Q) (45)

should be isomorphic to the Fock space of the physical states. The construction of such
a gauge structure is usually suggested by the classical field version of the theory.
The interaction Lagrangian is a Wick polynomial in the fields Bj (x),FA(x) which should
leave invariant the subspace of physical states. A natural way to do it is to impose

dQT (x) ≡ [Q,T (x)] = 0 (46)
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One easily discovers that this requirement is too strong: there are no solutions! So,
according to Stora, we can relax the preceding axiom to:

[Q,T (x)] ∼ total divergence (47)

in such a way that if we multiply this identity with a test function the right hand side
becomes smaller and smaller as the test function becomes flatter and flatter. However,
the flat limit - called the adiabatic limit - cannot be performed always. It means that the
preceding relation has the status of a new axiom: the gauge invariance condition.
We have an associated relative cohomology structure for the observables. The
observables should be operators verifying the preceding relations (the relative cocycle
condition) and the observables of the type

T (x) = [Q,B(x)] + total divergence (48)

are coboundaries They are trivial from the physical point of view: they give a null
contribution when averaged on physical states (in the formal adiabatic limit).
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Examples:
Photons and gluons
They correspond to the representation [0, 1] of the Poincaré group. In the case of
the photon we have:

B ∼ vµ, F ∼ u, ũ

where all fields are of null mass. The Fermi fields are scalars but of wrong statistics,
so they cannot be physical. Also in the Boson vector field there are non-physical
degrees of freedom. In the case of the r gluons we have r copies of the preceding
construction

B ∼ vµa , F ∼ ua, ũa, a = 1, . . . , r .

Explicitly, the gauge charge operator is given by

QΩ = 0, Q† = Q,

[Q, vµa ] = i∂µua,

{Q, ua} = 0, {Q, ũa} = −i ∂µvµa . (49)
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One can prove that the gauge invariance condition given above restricts drastically the
possible form of T i.e. every such expression is, up to a trivial Lagrangian, equivalent to
the QCD Lagrangian:

T = fabc

(
1
2

: vaµvbνF
νµ
c : − : vµa ub∂µũc :

)
(50)

where the (real) constants fabc are completely antisymmetric. Here

Fµνa = ∂µvνa − (µ↔ ν). (51)

This is the tri-linear part of the classical expression for the YM Lagrangian.
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Massive vector fields W±,Z
They correspond to the representation [m, 1],m > 0 of the Poincaré group. In this
case we have:

B ∼ vµ, Φ, F ∼ u, ũ

where all fields have mass m.
These type of vector particles, together with Dirac fields (describing matter) and a
scalar field (Higgs) are the building blocks of the Standard Model.

Gravity
It corresponds to the representation [0, 2] of the Poincaré group. In this case we
have:

B ∼ hµν , F ∼ uµ, ũν

where all fields are of null mass the first tensor is symmetric.
There is a possibility to generalize the formalism to massive gravity which
corresponds to a theory with non-zero cosmological constant.
One can investigate if a multi-graviton theory is possible. The answer is negative: is
there are more that one species of particles of the type [0, 2] there is no coupling
between them. There is no analogue of YM Lagrangian.
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Supersymmetry
It is an extension of the Poincaré algebra. Besides the generators Pµ, Lµν of the Lie
algebra (corresponding to the translation and Lorentz transformations resp.) we
have some new generators Qα of odd character such that

{Q,Q†} ∼ P, [Q,P] = 0, [Q, L] ∼ Q (52)

The irreducible representations of this super-algebra can classified (Haag).
For instance the Wess-Zumino model corresponds to [m, 0]⊕ [m, 1/2], m > 0 and
the vector model to [m, 1]⊕ [m, 3/2], m > 0. The vector model is used to build
the supersymmetric extensions of the Standard model.
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QUANTUM ANOMALIES

Using the relation

dQT (x) = i∂µTµ(x) (53)

expressing first-order gauge invariance we can obtain

dQT (T (x),T (y))− i
∂

∂xµ
T (Tµ(x),T (y))− i

∂

∂yµ
T (T (x),Tµ(y)) = 0 (54)

for x 6= y . In general we have anomalies i.e a non-trivial expression in the right hand side.
In a condensed notation for the left hand side:

sT (T (x),T (y)) = A(x , y) (55)

where the right hand side is a quasi-local expression i.e. it is localized in the set x = y .
One can compute the anomalies in various ways (for instance using the off-shell
formalism).
The elimination of the anomalies ensures that the cronological products leave invariant
the physical Fock space.
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If the anomaly is a coboundary

A(x , y) = sN(x , y) =

dQN(x , y)− i
∂

∂xµ
Nµ(x , y)− i

∂

∂yµ
Nµ(y , x) (56)

with N,Nµ quasi-local, then we can redefine the chronological products and eliminate it.
We can fix second order gauge invariance by the redefinitions of the chronological
products

T (T (x),T (y))→ T (T (x),T (y)) + N(x , y),

T (T (x),Tµ(y))→ T (T (x),Tµ(y)) + Nµ(x , y) (57)

where

N(x , y) = δ(x − y) N(x), Nµ(x , y) = δ(x − y) Nµ(x) (58)

The anomalies are restricted by some equations following from the gauge invariance
condition: the so-called Wess-Zumino consistency conditions.

Dan Radu Grigore DFT, NIPNE-HH Perturbative QFT 05.09.2019 26 / 32



For YM models, like QCD we have in second order an anomaly in the tree contribution
from the loop expansion. It can be eliminated iff we have Jacobi identity

fabe fcde + (a↔ c) + (b ↔ c) = 0. (59)

If we add all particles of the standard model we get more identites of this type. The
expression N is the quadri-linear term from the classical YM Lagrangian.
Going in the third order of the perturbation theory we get anomalies in the tree
contribution and in the one-loop contribution. The elimination of the first anomaly gives
the Higgs potential. The one-loop anomaly has an axial part and its elimination gives
constraints on the Dirac part of the interaction Lagrangian.
An interesting supplementary axiom for a gauge model is to impose
super-renormalizablility i.e. to require:

T (x , y) = T0(x , y) + trivial operator (60)

where the first term contains distributions less singular than the power counting.
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CONCLUSIONS

There are other ways to do construct the chronological products:

Hepp:
- uses Feynman amplitudes (essentially vacuum averages of chronological products)
- uses a set of axioms involving only numerical distributions (but implying
Bogoliubov axioms)
- needs a regularization procedure (this means to works with generalized free fields )
- one can use the naive Feynman rules if one adds counter-terms in the interaction
Lagrangian
- forest formula (Zimmermann) and its modern version (Kreimer, Connes): the
separation of the finite part amounts to the Birkhoff decomposition of Laurent series.

Polchinski:
- works with the Green functions, so one must take the masses positive (to avoid
infrared divergences).
- needs a regularization procedure (ultra-violet cut-off)
- flow equations in the ultra-violet cut-off
- recursive procedure
- clever choice of the initial condition
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Advantages:
- a close contact with classical field theory, using a loop expansion so the 0 -loop
contribution is the classical Lagrangian.
Problems:
- complicated proofs for the elimination of ultraviolet divergences (Hepp),
- infrared divergences,
- the BRST transformation is non-linear so it can be defined only for classical fields and
for the asymtotic quantum fields (Kugo, Ojima)
- no axiomatic scheme; recent work of Fredenhagen and collab.
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Causal Method:

Main results:

1 A systematic study of lower orders of perturbation theory (interaction Lagrangians,
constraints on the constants), multi-Higgs models, multi-graviton models;

2 Derivation of the Wess-Zumino consistency for anomaly, anomalies in the third order;
3 Super-renormalizablility; one-loop contribution in linear gravity.

In the the causal method one constructs directly the chronological products.
Advantages:
- the construction of the QFT is done directly quantum mechanically (no quantization
procedure needed),
- proofs for the elimination of ultraviolet divergences is much simpler (Epstein-Glaser,
Steinmann)
- the are no infrared problems,
- BRST transformation is linear so it can be defined for quantum fields,
- there exists an axiomatic approach,
- one can investigate if the singular behavior is better than power counting (i.e. we have
some sort of super-renormalizablility); for one and two-loops contributions this is true in
the second order of pQFT for YM and for massless gravity,
- there are some discrepancies with respect to the BRST and Polchinski approaches:
anomalies, SUSY.
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Problems: Apparently the proof of gauge invariance is much more difficult.
The equivalence with the functional method (BRST gauge invariance) is not rigorously
proved.
The open problems are rather difficult and completely outside of the main stream. This
could change!
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