Hessian symmetries of multifield cosmological models

Calin Lazaroiu

IBS Center for Geometry and Physics, Pohang, South Korea

Outline

- Multifield scalar cosmology
- Noether symmetries
- 3 Characterization of Hessian models
- 4 Hesse functions
- 5 Locally maximally Hesse manifolds
- 6 Hessian two-field models
- Further results
- 8 Appendix

Cosmological models with scalar fields

Definition

An n-dimensional scalar triple is an ordered system $(\mathcal{M}, \mathcal{G}, V)$, where:

- \bullet $(\mathcal{M}, \mathcal{G})$ is a connected Riemannian *n*-manifold (called scalar manifold)
- $V \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R})$ is a smooth function (called scalar potential).

Assumptions

 $(\mathcal{M}, \mathcal{G})$ is oriented and complete.

Each *n*-dimensional scalar triple $(\mathcal{M}, \mathcal{G}, V)$ defines a cosmological model on \mathbb{R}^4 , with Lagrange density:

$$\mathcal{L}_{\mathcal{M},\mathcal{G},V} = \left[\frac{R(g)}{2} - \frac{1}{2} \operatorname{Tr}_{g} \varphi^{*}(\mathcal{G}) - V(\varphi) \right] \operatorname{vol}_{g} , \qquad (1)$$

where the space-time metric g has 'mostly plus' signature. Take g to describe a simply-connected and spatially flat FLRW universe:

$$ds_g^2 := -dt^2 + a^2(t)d\vec{x}^2 \quad (x^0 = t , \vec{x} = (x^1, x^2, x^3) , a(t) > 0 \ \forall t)$$
 (2)

and φ to depends only on the cosmological time t:

$$\varphi = \varphi(t) \quad . \tag{3}$$

The minisuperspace Lagrangian

Substituting (2) and (3) in (1) and ignoring the integration over \vec{x} gives the minisuperspace action:

$$\mathcal{S}_{\mathcal{M},\mathcal{G},\mathcal{V}}[\textbf{\textit{a}},\varphi] = \int_{-\infty}^{\infty}\!\mathrm{d}t\,L_{\mathcal{M},\mathcal{G},\mathcal{V}}(\textbf{\textit{a}}(t),\varphi(t),\dot{\varphi}(t)) \ ,$$

where the minisuperspace Lagrangian is:

$$L_{\mathcal{M},\mathcal{G},V}\!\!\left(a,\varphi,\dot{\varphi}\right) \stackrel{\mathrm{def.}}{=} -3a\dot{a}^2 + a^3 \left[\frac{1}{2}||\dot{\varphi}||_{\mathcal{G}}^2 - V(\varphi)\right] = a^3 \left[-3H^2 + \frac{1}{2}||\dot{\varphi}||_{\mathcal{G}}^2 - V(\varphi)\right] \ .$$

Here $\stackrel{\cdot}{=} \stackrel{\text{def.}}{=} \frac{d}{dt}$ and $H \stackrel{\text{def.}}{=} \frac{\dot{a}}{2}$ is the Hubble parameter. This Lagrangian describes a classical system with n+1 degrees of freedom and configuration space $\mathcal{N} \stackrel{\mathrm{def.}}{=} \mathbb{R}_{>0} \times \mathcal{M}$. The Euler-Lagrange equations are equivalent with:

$$3H^{2} + 2\dot{H} + \frac{1}{2}||\dot{\varphi}||_{\mathcal{G}}^{2} - V(\varphi) = 0$$
$$(\nabla_{t} + 3H)\dot{\varphi} + (\operatorname{grad}_{\mathcal{G}}V)(\varphi) = 0 .$$

We must also impose the (non-holonomic) Friedmann constraint:

$$\frac{1}{2}||\dot{\varphi}||^2 + V \circ \varphi = 3H^2 \quad ,$$

which amounts to the zero energy condition. 4D> 4A> 4B> 4B> B 900

The cosmological equations and geometric dynamical system

Proposition

When supplemented with the Friedmann constraint, the Euler-Lagrange equations of $L_{\mathcal{M},\mathcal{G},\mathcal{V}}$ are equivalent with the cosmological equations:

$$\begin{array}{rcl} \nabla_t \dot{\varphi} + 3H\dot{\varphi} + (\operatorname{grad}_{\mathcal{G}} V) \circ \varphi & = & 0 \\ \dot{H} + 3H^2 - V \circ \varphi & = & 0 \\ \dot{H} + \frac{1}{2} ||\dot{\varphi}||_{\mathcal{G}}^2 & = & 0 \end{array}.$$

Remark

One can eliminate H algebraically from the cosmological equations as:

$$H(t) = \frac{1}{\sqrt{6}} \epsilon(t) \left[||\dot{\varphi}(t)||_{\mathcal{G}}^2 + 2V(\varphi(t)) \right]^{1/2} , \text{ where } \epsilon(t) \stackrel{\text{def.}}{=} \mathrm{sign} H(t) ,$$

thereby obtaining the reduced cosmological equation:

$$\nabla_t \dot{\varphi}(t) + \sqrt{\frac{3}{2}} \epsilon(t) \left[||\dot{\varphi}(t)||_{\mathcal{G}}^2 + 2V(\varphi(t)) \right]^{1/2} \dot{\varphi}(t) + (\operatorname{grad}_{\mathcal{G}} V)(\varphi(t)) = 0 \ ,$$

which defines a (dissipative) geometric dynamical system on TM.

The characteristic system for strong variational symmetries

We have a natural decomposition $T\mathcal{N}=T_1\mathcal{N}\oplus T_2\mathcal{N}$, where:

$$T_1\mathcal{N}\stackrel{\mathrm{def.}}{=} p_1^*(T\mathbb{R}_{>0}) \;,\;\; T_2\mathcal{N}\stackrel{\mathrm{def.}}{=} p_2^*(T\mathcal{M}) \;\; (p_1:T\mathcal{N} \to \mathbb{R}_{>0},\; p_2:T\mathcal{N} \to \mathcal{M}) \;.$$

Theorem

A vector field $X \in \mathcal{X}(\mathcal{N})$ is a time-independent Noether symmetry iff:

$$X(a,\varphi) = X_{\Lambda,Y}(a,\varphi) = \frac{\Lambda(\varphi)}{\sqrt{a}} \partial_a + Y(\varphi) - \frac{4}{a^{3/2}} (\operatorname{grad}_{\mathcal{G}} \Lambda)(\varphi) \ ,$$

where $\Lambda \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R})$ satisfies the Λ -system:

$$\operatorname{Hess}_{\mathcal{G}}(\Lambda) = \frac{3}{8} \mathcal{G} \Lambda \quad , \quad \langle \operatorname{d} V, \operatorname{d} \Lambda \rangle_{\mathcal{G}} = \frac{3}{4} V \Lambda$$

and $Y \in \mathcal{X}(\mathcal{M})$ satisfies the Y-system:

$$\mathcal{K}_{\mathcal{G}}(Y) = 0$$
 , $Y(V) = 0$.

The two systems can also be written as follows:

$$\begin{split} \left(\partial_i \partial_j - \Gamma^k_{ij} \partial_k\right) \Lambda &= \frac{3}{8} \mathcal{G}_{ij} \Lambda \quad , \quad \nabla_i Y_j + \nabla_j Y_i = 0 \\ \mathcal{G}^{ij} \partial_i V \partial_j \Lambda &= \frac{3}{4} V \Lambda \qquad \qquad , \quad Y^i \partial_i V = 0 \quad . \end{split}$$

Visible and Hessian symmetries

Definition

A time-independent Noether symmetry $X = X_{\Lambda,Y}$ is called:

- visible if $\Lambda = 0$.
- Hessian if Y = 0.

The scalar triple $(\mathcal{M}, \mathcal{G}, V)$ and cosmological model are called visibly-symmetric or Hessian if they admit visible or Hessian symmetries, respectively.

Let $N_H(\mathcal{M}, \mathcal{G}, V)$, $N_V(\mathcal{M}, \mathcal{G}, V)$ and $N(\mathcal{M}, \mathcal{G}, V)$ denote the linear spaces of Hessian, visible and time-independent Noether symmetries.

Proposition

There exists a linear isomorphism $N(\mathcal{M}, \mathcal{G}, V) \simeq_{\mathbb{R}} N_H(\mathcal{M}, \mathcal{G}, V) \oplus N_V(\mathcal{M}, \mathcal{G}, V).$

Remark

Existence of a Hessian symmetry simplifies various cosmological problems. For example, it gives the following formula for the number of efolds:

$$\left[\frac{a(t)}{a(t_0)}\right]^{3/2} \Lambda(\varphi(t)) - \Lambda_0 = \left(\frac{3}{2}H_0\Lambda_0 + (\mathrm{d}_{\varphi_0}\Lambda)(\dot{\varphi}_0)\right)(t-t_0) .$$

Rescaling the metric. The Hesse and Λ -V-equations

Let
$$\beta = \sqrt{3/8}$$
 and $G = \beta^2 \mathcal{G}$.

Definition

The rescaled scalar manifold is the Riemannian manifold (\mathcal{M}, G) .

The Λ -system of $(\mathcal{M}, \mathcal{G}, V)$ is equivalent with:

- $\operatorname{Hess}_{\mathcal{G}}(\Lambda) = \Lambda \mathcal{G}$ (the Hesse equation of the rescaled scalar manifold)
- $\langle dV, d\Lambda \rangle_G = 2V\Lambda$ (the Λ -V equation of the rescaled scalar manifold)

Definition

Let (\mathcal{M}, G) be a complete Riemannian manifold. A Hesse function of (\mathcal{M}, G) is a smooth solution of the Hesse equation of (\mathcal{M}, G) :

$$\operatorname{Hess}_{G}(\Lambda) = \Lambda G$$
.

Let $\mathcal{S}(\mathcal{M}, G)$ be the linear space of Hesse functions of (\mathcal{M}, G) . The Hesse index of (\mathcal{M}, G) is defined through:

$$\mathfrak{h}(\mathcal{M},\mathcal{G})\stackrel{\mathrm{def.}}{=} \mathsf{dim}\,\mathcal{S}(\mathcal{M},\mathcal{G})\ .$$

The complete Riemannian manifold (\mathcal{M}, G) is called globally of Hesse type if it admits non-trivial Hesse functions, i.e. if $\mathfrak{h}(\mathcal{M}, G) > 0$.

The Hesse pairing

Proposition

We have $\mathfrak{h}(\mathcal{M},G) \leq n+1$. We say that (\mathcal{M},G) is globally maximally Hesse if equality is attained.

Definition

The Hesse pairing of (\mathcal{M}, G) is the symmetric \mathbb{R} -bilinear map $(\ ,\)_G: \mathcal{C}^\infty(\mathcal{M}) \times \mathcal{C}^\infty(\mathcal{M}) \to \mathcal{C}^\infty(\mathcal{M})$ defined through:

$$(f_1,f_2)_G \stackrel{\mathrm{def.}}{=} f_1 f_2 - \langle \mathrm{d} f_1, \mathrm{d} f_2 \rangle_G = f_1 f_2 - \langle \mathrm{grad}_G f_1, \mathrm{grad}_G f_2 \rangle_G \ , \ \forall f_1,f_2 \in \mathcal{C}^\infty(\mathcal{M}) \ .$$

Proposition

Let $\Lambda_1, \Lambda_2 \in \mathcal{S}(\mathcal{M}, G)$ be two Hesse functions on (\mathcal{M}, G) . Then the Hesse pairing $(\Lambda_1, \Lambda_2)_G$ is constant on \mathcal{M} .

Hence the Hesse pairing restricts to a symmetric \mathbb{R} -bilinear map:

$$(\ ,\)_G:\mathcal{S}(\mathcal{M},G)\times\mathcal{S}(\mathcal{M},G)\to\mathbb{R}\ ,\ (\Lambda_1,\Lambda_2)_G\stackrel{\mathrm{def.}}{=}(\Lambda_1,\Lambda_2)_G$$

on the vector space $\mathcal{S}(\mathcal{M}, G)$.

General solution of the Λ -V equation

Theorem

For any non-trivial Hesse function $\Lambda \in \mathcal{S}(\mathcal{M}, G)$, any smooth solution of the Λ -V-equation of (\mathcal{M}, G) takes the following form:

$$V = \Omega ||\mathrm{d}\Lambda||_{\mathcal{G}}^2 = \Omega \left[\Lambda^2 - (\Lambda, \Lambda)_{\mathcal{G}} \right] , \qquad (4)$$

where $\Omega \in \mathcal{C}^{\infty}(\mathcal{M} \setminus \mathrm{Crit}(\Lambda))$ is constant along the gradient flow of Λ :

$$\langle \mathrm{d}\Omega, \mathrm{d}\Lambda \rangle_G = 0$$
 . (5)

Definition

The cosmological model defined by the scalar triple $(\mathcal{M},\mathcal{G},V)$ is called *weakly Hessian* if the rescaled scalar manifold $(\mathcal{M},\mathcal{G})$ is globally of Hesse type. It is called *Hessian* if it admits non-trivial Hessian symmetries.

Proposition

The cosmological model defined by the scalar triple $(\mathcal{M}, \mathcal{G}, V)$ is Hessian iff it is weakly Hessian and the scalar potential V has the form (4), with Ω a solution of (5).

The minisuperspace Lagrangian in natural coordinates

Theorem

Let $\Lambda \in \mathcal{S}(\mathcal{M},G)$ be a Hesse function of (\mathcal{M},G) and suppose that V satisfies the $\Lambda\text{-}V$ equation with respect to Λ . Then the minisuperspace Lagrangian takes the following form in natural local coordinates (a_0,y,v) on the configuration space \mathcal{N} :

$$L(y, \dot{y}, v, \dot{v}) = -3(\Lambda, \Lambda)_G \dot{v}^2 - 3a_0 \dot{a}_0^2 + a_0^3 L_{\lambda}(y, \dot{y}) , \qquad (6)$$

where the reduced Lagrangian L_{λ} is given by:

$$L_{\lambda}(y,\dot{y}) \stackrel{\text{def.}}{=} \frac{1}{2\beta^2} ||\dot{y}||_{g}^2 - V_{\lambda}(y) . \tag{7}$$

with $V_{\lambda} \stackrel{\mathrm{def.}}{=} V|_{\mathcal{M}_{\Lambda}(\lambda)}$ the restriction of V to the level set $\mathcal{M}_{\Lambda}(\lambda)$ and g the metric induced by G on this level set. We have:

$$V_{\lambda}(y) = \left[\lambda^2 - (\Lambda, \Lambda)_{\mathcal{G}}\right] \Omega(y) , \qquad (8)$$

with Ω a smooth arbitrary function defined on $\mathcal{M}_{\Lambda}(\lambda)$.

Definition

The Hesse norm of a Hesse function $\Lambda \in \mathcal{S}(\mathcal{M},G)$ is the non-negative number $\kappa_{\Lambda} \stackrel{\mathrm{def.}}{=} \sqrt{|(\Lambda,\Lambda)_G|}$, while its type indicator is the sign factor $\epsilon_{\Lambda} \stackrel{\mathrm{def.}}{=} \mathrm{sign}(\Lambda,\Lambda)_G$. A non-trivial Hesse function Λ is called timelike, *spacelike* or lightlike when ϵ_{Λ} equals +1, -1 or 0.

Proposition

Let $\Lambda \in \mathcal{S}(\mathcal{M},G)$ be a non-trivial Hesse function. Then:

- **9** If Λ is timelike, then its vanishing locus $Z(\Lambda)$ is empty and Λ has constant sign (denoted η_{Λ}) on \mathcal{M} . Moreover, Λ has exactly one critical point, with critical value $\eta_{\Lambda} \kappa_{\Lambda}$, which is a global minimum or maximum according to whether $\eta_{\Lambda} = +1$ or -1.
- **9** If Λ is spacelike, then $\operatorname{Crit}(\Lambda) = \emptyset$. Moreover, the vanishing locus of Λ is the following non-singular hypersurface in \mathcal{M} :

$$Z(\Lambda) = \{ m \in \mathcal{M} \, | \, ||\mathrm{d}_m \Lambda||_G = \kappa_\Lambda \}$$
 .

• If Λ is lightlike, then $Z(\Lambda) = \operatorname{Crit}(\Lambda) = \emptyset$ and Λ has constant sign on \mathcal{M} , which we denote by η_{Λ} .

Hesse functions

Definition

A timelike or lightlike non-trivial Hesse function $\Lambda \in \mathcal{S}(\mathcal{M}, \mathcal{G})$ is called future (resp. past) pointing when $\eta_{\Lambda} = +1$ (resp. -1).

Let $\mathcal{M}_{\Lambda}(\lambda) \subset \mathcal{M}$ denote the λ -level set of Λ .

Definition

Let $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ be a non-trivial Hesse function of \mathcal{M} . The characteristic set of Λ is the following closed subset of \mathcal{M} :

$$Q_{\Lambda} \stackrel{\mathrm{def.}}{=} \left\{ \begin{array}{ll} \mathrm{Crit}(\Lambda) \;, & \text{ if } \Lambda \; \mathrm{is \; timelike} \\ Z(\Lambda) \;, & \text{ if } \Lambda \; \mathrm{is \; spacelike} \\ \mathcal{M}_{|\Lambda|}(1) \;, & \text{ if } \Lambda \; \mathrm{is \; lightlike} \end{array} \right. .$$

The characteristic constant of Λ is defined through:

$$C_{\Lambda} \stackrel{\mathrm{def.}}{=} \left\{ egin{array}{ll} \kappa_{\Lambda} \;, & \mathrm{if} \; \epsilon = +1 \ 0 \;, & \mathrm{if} \; \epsilon = -1 \ 1 \;, & \mathrm{if} \; \epsilon = 0 \end{array}
ight. \; .$$

Setting $\mathcal{U}_{\Lambda}\stackrel{\mathrm{def.}}{=} \mathcal{M} \setminus \mathrm{Crit}(\Lambda)$, we have:

$$Q_{\Lambda} = \{m \in \mathcal{U}_{\Lambda} \mid |\Lambda(m)| = C_{\Lambda}\}$$
.

Hesse functions

Definition

The characteristic sign function $\Theta_{\Lambda}: \mathcal{M} \to \mathbb{R}$ of a non-trivial Hesse function $\Lambda \in \mathcal{S}(\mathcal{M}, \mathcal{G})$ is defined through:

$$\Theta_{\Lambda}(m) \stackrel{\mathrm{def.}}{=} \left\{ egin{array}{ll} 1 \;, & \text{if } \epsilon_{\Lambda} = +1 \ \mathrm{sign}\Lambda(m) \;, & \text{if } \epsilon_{\Lambda} = -1 \ \mathrm{sign}(|\Lambda(m)| - 1) \;, & \text{if } \epsilon_{\Lambda} = 0 \end{array}
ight. .$$

The Λ -distance function $d_{\Lambda}: \mathcal{M} \to \mathbb{R}$ is defined through:

$$d_{\Lambda}(m) \stackrel{\mathrm{def.}}{=} \Theta_{\Lambda}(m) \mathrm{dist}_{G}(m, Q_{\Lambda})$$
.

Theorem

Let $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ be a non-trivial Hesse function. Then the following relation holds for all $m \in \mathcal{M}$:

$$\Lambda(m) = \left\{ \begin{array}{ll} \operatorname{sign}(\Lambda) \kappa_{\Lambda} \cosh d_{\Lambda}(m) \;, & \text{ if } \epsilon_{\Lambda} = +1 \\ \kappa_{\Lambda} \sinh d_{\Lambda}(m) \;, & \text{ if } \epsilon_{\Lambda} = -1 \\ \operatorname{sign}(\Lambda) e^{d_{\Lambda}(m)} \;, & \text{ if } \epsilon_{\Lambda} = \; 0 \end{array} \right. .$$

The proof uses properties of solutions to the eykonal equation of $(\mathcal{M}, \mathcal{G})$.

The Hesse representation

The isometry group $\operatorname{Iso}(\mathcal{M}, G)$ acts on $\mathcal{C}^{\infty}(\mathcal{M})$ through:

$$\psi^*(f) \stackrel{\text{def.}}{=} f \circ \psi^{-1} , \quad \forall \psi \in \text{Iso}(\mathcal{M}, G) , \quad \forall f \in \mathcal{C}^{\infty}(\mathcal{M}) .$$

This action preserves the subspace of Hesse functions and hence it corestricts to the Hesse representation:

$$\mathcal{H}_{\mathcal{G}}(\psi)(f) \stackrel{\mathrm{def.}}{=} \psi^*(\Lambda) = \Lambda \circ \psi^{-1} \ , \ \forall \Lambda \in \mathcal{S}(\mathcal{M}, \mathcal{G}) \ .$$

Proposition

The Hesse representation is $(,)_{G}$ -orthogonal, i.e. any representation operator $\mathcal{H}_G(\psi)$ preserves the Hesse pairing:

$$(\mathcal{H}_G(\psi)\Lambda_1, \mathcal{H}_G(\psi)\Lambda_2)_G = (\Lambda_1, \Lambda_2)_G, \forall \Lambda_1, \Lambda_2 \in \mathcal{S}(\mathcal{M}, G)$$
.

Locally maximally Hesse manifolds

The Hesse equation of (\mathcal{M},G) is overdetermined ellyptic, being equivalent with a system of Hessian equations which containing the Poisson and Monge-Ampere equations. Local solutions are called *local Hesse functions*; their germs form the *Hesse sheaf* \mathcal{H}_G , which has rank $\leq n+1$. We say that (\mathcal{M},G) is locally of Hesse type if $\mathrm{rk}\mathcal{H}_G>0$ and locally maximally Hesse if $\mathrm{rk}\mathcal{H}_G=n+1$. Notice that (\mathcal{M},G) is globally of Hesse type iff $\mathrm{H}^0(\mathcal{H}_G)\neq 0$.

Theorem

A Riemannian manifold is locally maximally Hesse iff it is hyperbolic.

Theorem

Let (\mathcal{M},G) be a complete Riemannian manifold. The following are equivalent:

- \bullet (\mathcal{M}, G) is locally maximally Hesse and globally of Hesse type.
- \bullet (\mathcal{M} , G) is isometric with the Poincaré n-ball or with an elementary hyperbolic space form.

Moreover, (\mathcal{M}, G) is globally maximally Hesse iff it is isometric with the Poincaré n-ball.

Elementary hyperbolic space forms

Definition

An *n*-dimensional elementary hyperbolic space form is a complete hyperbolic *n*-manifold uniformized by a non-trivial torsion-free elementary discrete subgroup $\Gamma \subset SO_o(1, n)$.

Any torsion-free elementary discrete subgroups of $SO_o(1, n)$ is:

- hyperbolic, if it conjugates to a subgroup of the canonical squeeze group $\mathcal{T}_n \stackrel{\mathrm{def.}}{=} \mathrm{Stab}_{\mathrm{SO}_o(1,n)}(\mathcal{E}_n) \simeq \mathrm{SO}(1,n-1)$. In this case, Γ is a hyperbolic cyclic group.
- parabolic if it conjugates to a subgroup of the canonical shear group $\mathcal{P}_n \stackrel{\mathrm{def.}}{=} \mathrm{Stab}_{\mathrm{SO}_o(1,n)}(E_0 + E_n) \simeq \mathrm{ISO}(n)$. In this case, Γ is a free Abelian group of rank at most n-1.

Definition

An elementary hyperbolic space form is said to be of hyperbolic or parabolic type according to the type of its uniformizing group.

Example. The two-dimensional elementary hyperbolic space forms are:

- The hyperbolic annuli $\mathbb{A}(R)$ (hyperbolic type, $\Gamma \simeq \mathbb{Z}$, $\mathfrak{h}(\mathbb{A}(R) = 1)$
- ullet The hyperbolic punctured disk \mathbb{D}^* (parabolic type, $\Gamma\simeq\mathbb{Z}$, $\mathfrak{h}(\mathbb{D}^*)=1$.)

Hesse surfaces and Hessian 2-field models

Theorem

Any Hesse surface (Σ, G) is locally maximally Hesse and hence isometric with one of the following:

- The hyperbolic disk $\mathbb{D} := \mathbb{D}^2$ (Hesse index 3)
- ullet The hyperbolic punctured disk \mathbb{D}^* (Hesse index 1)
- A hyperbolic annulus $\mathbb{A}(R)$ (Hesse index 1)

Theorem

The two-field cosmological model defined by the two-dimensional scalar triple (Σ, \mathcal{G}, V) is weakly-Hessian iff its rescaled scalar manifold $(\mathcal{M}, \mathcal{G})$ is isometric with the hyperbolic disk, the hyperbolic punctured disk or a hyperbolic annulus $\mathbb{A}(R)$ of arbitrary modulus $\mu = 2\log R > 0$. In this case, the model is Hessian iff the scalar potential V has the form $V = \Omega[\Lambda^2 - (\Lambda, \Lambda)_G]$, where $\Lambda \in \mathcal{S}(\Sigma, \mathcal{G})$ is a non-trivial Hesse function and Ω is a smooth function which is constant along the gradient flow of Λ .

The space $S(\Sigma, G)$ can be determined in each of the three cases. This leads to an explicit classification of all Hessian two-field cosmological models.

Hessian two-field models with hyperbolic disk target

Theorem

The space of Hesse functions of the hyperbolic disk is 3-dimensional. A basis of this space is given by the classical Weierstrass coordinates Ξ^0, Ξ^1, Ξ^2 , where $\Xi = (\Xi^0, \Xi^1, \Xi^2) : D \to \mathbb{R}^3$ is the Weierstrass map:

$$\Xi(u) \stackrel{\text{def.}}{=} \left(\frac{1 + |u|^2}{1 - |u|^2}, \frac{2\text{Re}u}{1 - |u|^2}, \frac{2\text{Im}u}{1 - |u|^2} \right) . \tag{9}$$

Hence the general Hesse function on \mathbb{D}^2 has the form:

$$\Lambda_B(u) = (B, \Xi(u)) \quad \forall u \in D \quad , \tag{10}$$

where, $B = (B^0, B^1, B^2) \in \mathbb{R}^3$ is any non-vanishing 3-vector and (,) is the Minkowski pairing of signature (1,2) on \mathbb{R}^3 .

Theorem

The following statements hold for the weakly-Hessian two-field cosmological model with scalar manifold $\mathbb{D}_{\beta}=(\mathrm{D},\mathcal{G})$, where \mathcal{G} is the complete metric of constant negative curvature $K=-\frac{3}{8}$:

■ When B is timelike, the model admits the Hessian symmetry generated by (10) iff:

$$V_B(u) = \omega(n_B(u)) \left[\frac{\Lambda_B(u)^2}{(B,B)} - 1 \right] , \qquad (11)$$

where $\omega \in \mathcal{C}^{\infty}(S^1)$ and $n_B(u) = \frac{(B,B)\Xi(u)-(B,\Xi(u))B}{\sqrt{(B,B)(B,\Xi(u))^2-(B,B)^2}} = \frac{(B,B)\Xi(u)-B\Lambda_B(u)}{\sqrt{(B,B)\Lambda_B(u)^2-(B,B)^2}}$. The model also

admits visible symmetries iff ω is constant, in which case visible symmetries form an elliptic subgroup of PSU(1,1) conjugate to the canonical rotation subgroup $\mathcal{R} \simeq U(1)$.

When B is spacelike, the model admits the Hessian symmetry generated by (10) iff its scalar potential V has the form:

$$V_B(u) = \omega(n_B(u)) \left[\frac{\Lambda_B(u)^2}{|(B,B)|} + 1 \right] ,$$
 (12)

where $\omega \in \mathcal{C}^{\infty}(\mathbb{R})$ and $n_B(u) = \frac{|(B,B)| \, \Xi(u) + (B,\Xi(u))B}{\sqrt{(B,B)^2 + (B,B)|(B,\Xi(u))^2}} = \frac{|(B,B)| \, \Xi(u) + \Lambda_B(u)B}{\sqrt{(B,B)^2 + (B,B)|\Lambda_B(u)^2}}$. The model also admits visible symmetries iff ω is constant, in which case visible symmetries form a hyperbolic subgroup of

 $\mathrm{PSU}(1,1)$ conjugate to the canonical squeeze subgroup $\mathcal{T}\simeq(\mathbb{R},+)$.
 When B is lightlike, the model admits the Hessian symmetry generated by (10) iff:

$$V_B(u) = \omega(B_0 n_B(u)) \frac{\Lambda_B(u)^2}{B_0^2} ,$$
 (13)

where $\omega \in \mathcal{C}^{\infty}(\mathbb{R})$ and $n_B(u) = \frac{2(B,\Xi(u))\Xi(u)-B}{2(B,\Xi(u))^2} = \frac{2\Lambda_B(u)\Xi(u)-B}{2\Lambda_B(u)^2}$. The model also admits visible symmetries iff ω is constant, in which case visible symmetries form a parabolic subgroup of $\mathrm{PSU}(1,1)$ conjugate to the canonical shear subgroup $\mathcal{P} \simeq (\mathbb{R},+)$.

20/23

Corollary

The explicit forms of the scalar potential are:

1 For timelike B (i.e. $(B, B) \stackrel{\text{def.}}{=} B_0^2 - B_1^2 - B_2^2 > 0$):

$$V_B(x, y) = \omega(\tilde{\theta}(x, y)) \frac{P}{(B, B)(1 - \rho^2)^2}$$
, (14)

where:

$$P = (B_1^2 + B_2^2)(1 + \rho^4) + 2(B_1^2 - B_2^2)(x^2 - y^2) + 4B_0^2\rho^2 + 4B_0(1 + \rho^2)(B_1x + B_2y) + 8B_1B_2xy \tag{15}$$

and:

$$\tilde{\theta}(x, y) = \arg \left[\frac{\text{sign}(\mathcal{B}_0) (\mathcal{B}_1 - i\mathcal{B}_2) (x + iy) + (|\mathcal{B}_0| - \sqrt{(\mathcal{B}, \mathcal{B})})}{(|\mathcal{B}_0| - \sqrt{(\mathcal{B}, \mathcal{B})}) (x + iy) + \text{sign}(\mathcal{B}_0) (\mathcal{B}_1 + i\mathcal{B}_2)} \right] . \tag{16}$$

2 For spacelike B (i.e. $B_0^2 - B_1^2 - B_2^2 < 0$):

$$V_B(x, y) = \omega(\tilde{\tau}(x, y)) \frac{P}{|(B, B)|(1 - \rho^2)^2},$$
 (17)

where P is given by (15) and:

$$\tilde{\tau}(x,y) = \operatorname{arcsinh} \left[\frac{2\sqrt{|(B,B)|} (B_1 y - B_2 x)}{\sqrt{(B_1^2 + B_2^2)P}} \right] . \tag{18}$$

3 For lightlike B (i.e. $B_0^2 - B_1^2 - B_2^2 = 0$):

$$V_B(x, y) = \omega(\tilde{\tau}(x, y)) \frac{\left(B_0(1 + \rho^2) + 2B_1x + 2B_2y\right)^2}{B_0^2(1 - \rho^2)^2},$$
 (19)

where:

$$\tilde{\tau}(x, y) = \frac{2(B_1y - B_2x)}{B_0(1 + \rho^2) + 2B_1x + 2B_2y}.$$
(20)

21/23

Further results

- One can describe explicitly the space of Hesse functions on the Poincaré \mathbb{D}^n of any dimension n and all scalar potentials on \mathbb{D}^n which solve the Λ -V equation for any non-trivial Hesse function Λ . This leads to an explicit classification of Hessian n-field models on the Poincaré ball.
- Deeper analysis allow one to characterize all Hessian *n*-field models.

Elementary discrete subgroups of $SO_o(1, n)$

The stabilizer of a nontrivial (n+1)-vector $X \in \mathbb{R}^{n+1} \setminus \{0\}$ in the fundamental representation of $SO_o(1, n)$ conjugates to one of the canonical subgroups:

- X timelike: $\operatorname{Stab}_{SO_o(1,n)}(X) \sim \mathcal{R}_n \stackrel{\operatorname{def.}}{=} \operatorname{Stab}_{SO_o(1,n)}(E_0) \simeq \operatorname{SO}(n)$ (elliptic, rotation).
- X spacelike: $\operatorname{Stab}_{\mathrm{SO}_o(1,n)}(X) \sim \mathcal{T}_n \stackrel{\mathrm{def.}}{=} \operatorname{Stab}_{\mathrm{SO}_o(1,n)}(E_n) \simeq \mathrm{SO}(1,n-1)$ (hyperbolic, squeeze)
- $X \text{ lightlike: } \operatorname{Stab}_{\mathrm{SO}_o(1,n)}(X) \sim \mathcal{P}_n \stackrel{\mathrm{def.}}{=} \operatorname{Stab}_{\mathrm{SO}_o(1,n)}(E_0 + E_n) \simeq \operatorname{ISO}(n)$ (parabolic, shear).

Definition

A discrete subgroup Γ of $SO_0(1,n)$ is called elementary if its action on the closure of the Poincaré ball fixes at least one point in $\overline{D^n}$.

An elementary discrete subgroup $\Gamma \subset SO_o(1, n)$ is:

- elliptic if it conjugates to a subgroup of \mathcal{R}_n . In this case, Γ is finite.
- hyperbolic if it conjugates to a subgroup of \mathcal{T}_n . In this case, Γ contains a hyperbolic cyclic group of finite index, to which it reduces iff Γ is torsion-free.
- parabolic if it conjugates to a subgroup of \mathcal{P}_n . In this case, Γ is a finite extension of a free Abelian group of rank at most n-1.