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Motivation and Goals

Methods of nonholonomic & almost Kéhler geometry — unified formalism for geometric & DQ
of (supersymmetric) Ricci flows/ solitons and (non) commutative modified gravity theories

Goals
0 Geometry of nonholonomic complex manifolds endowed with standard complex structures
and induced almost Kahler—Cartan geometric objects.

e Elaborate a new geometric framework for quanting Ricci soliton and modified gravity
models by generalizing the Berezin and Berezin—Toeplitz quantization for nonhlonomic real
and complex manifolds.

© A comparative study of DQ of Ricci solitons

0 Study a few explicit examples of (noncommutative) quantum almost Kahler — Ricci solitons
and generic off-diagonal metrics

Former results on nonholonomic Ricci flows, DQ and NC exact solutions

@ S. Vacaru, J. Math. Phys. 50 (2009) 073503 and 54 (2013) 073511; J. Geom. Phys. 60
(2010) 1289; Class. Quant. Grav. 27 (2010) 105003 and 20 similar papers

@ C. Lazaroiu et all. JHEP 0809 (2008) 059 and 0905 (2009) 055
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Outline

0 Ricci Solitons & Almost Kahler Geometry
@ Canonical almost symplectic variables
@ Nonholonomic Ricci solitons and modified gravity

e Almost Kahler Structures and Nonholonomic Complex Manifolds
@ N-connection and double almost complex structures
@ Nonholonomic almost Hermitian and Ké&hler structures

e Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics
@ Polarizations, almost Kahler nonholonomic structures and quantum line bundles
@ Nonholonomic almost Hermitian bundle d—metrics and polarized almost K&hler — Cartan
forms

e Deformation Quantization of Ricci Solitons
@ Fedosov operators and nonholonomic Ricci solitons
@ Main theorems for Fedosov—Ricci solitons

e Noncommutative Ricci Solitons
@ Canonical and Cartan star products
@ Decoupling and integrability of Ricci solitonic eqgs
@ Black ellipsoids and solitonic waves as Ricci solitons

e Conclusions
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Ricci Solitons & Almost Kéhler Geometry Canonical almost symplectic variables

Canonical metric compatible connections for (g, N)

Nonholonomic manifolds V and 2+2 splitting N: TV = hV @ vV

h- / v-coordinates u = (x, y), u® = (x',y?); i,j,k,...=1,2;a,b,c... = 3,4;
frames e, = (ey, x), 8o = €5,/ (U)0a, O = 0/0U* = (0}, Oa)

Aim: state geometric principles when (V, g,N) — N-adapted and metric

compatible linear connections and almost symplectic structures
all values are determined by data (g(,ﬁ; N = N3(x, y)dx' ® diya)

A& Vg =0; V7 =0, Levi-Civita connection ;
g=9— WD : .Dg=0; h, 7*=0,v , 7% = 0, canonical d—connection ;
D : Dg=0; h T*=0,v,T® =0, Cartan d—connection .
g — distortions: D=V + ,Z, for exact solutions;

D=V + Z for DQ
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Ricci Solitons & Almost Kéhler Geometry Canonical almost symplectic variables

Cartan d—connection D [in brief]

@ Prescribe function £L(u) onV, hap = det| hgp| # 0.

2 F) aaylﬂ

2 G2 1 %L 2
@ Construct N = { NA(u) = 5y} for (G2 =g h B (Wyz” = a—ﬁ)
semi—sprays are equivalent to Euler—Lagrange eqgs for £(u).
e N-elongated bases [ e~, €3] = €a €3 — €3 €a = WZB 1€,

1€ = ( € =0 — IN;aaaa €a = 82)7 e% = (ei = dxi7 e? = dya + ‘Nfadxi)
Q d-metric: . = % e, and g,/ 5 €% eBB/ = Gus
9= \gijdxi ® dx/ + hap €% ® ‘eb, gij = hoyioy

@ d—connection: D = (hD; vD) = {r", 5= (L /w L2;CL, VC&.)}, Dg =0,

oo
1—form I, := r”aﬁeﬁ, torsion 2-form 7 := De® = de™ 4 I'% A el = T“Mef3 Anev,
Cartan d-connection:

3 D={TI";=(LK C&)}: Dg=0hT=0,vT=0
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Ricci Solitons & Almost Kéhler Geometry Canonical almost symplectic variables

(pseudo) Riemannian as a canonical almost Kahler

Canonical almost symplectic (Kahler) variables
@ Almost complex structure determined by N, or £:
J(e)) = —exyjand J(62+,) =ej,whereJod = —
J=J%e.me’ = _671 ® dx’ + (ax/ N12+/ a?//) ® (dy' + .N;f+’dx")

@ The Neijenhuis d-tensor, for X = X%e, = X'e; + X%e,,
IQX,Y) == —[X, Y] + [UX, JY] — J[UX, Y] — J[X, JY]

© Almost symplectic structureg = g, N= N J= J— 0(,):= g(J,"),
0= .gi(x, y)(dy*™ + NETax¥) A dxl,

0 =dw,for w:i=1%dx = d0=ddw=0;0upe%6’% = bus
@ the Cartan D = ?Dis a unique almost symplectic: °D §=0& D J=0

© Almost Kahler-Cartan spaces:

(g7N7D) ~ ( \g7 \N7 'D) ~ (07‘]7 HD) ~ ( ‘9> IJ7 |9D)
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Ricci Solitons & Almost Kéhler Geometry Nonholonomic Ricci solitons and modified gravity

Nonholonomic Ricci solitons and modified gravity

Almost Kahler Ricci solitons

Gradient d—vector Xg = ,DgK(u) for some smooth potential function K(x, y); gradient
almost Kahler Ricci solitons are solutions of

|RQB A |Da \DBK: )\gaﬁ;
steady if A = 0; shrinking, for A > 0; expanding, for A < 0

Ricci solitons, MG and effective EG; Lagrange density R — f(R, T); f( °R),

1
f,qRaﬂ — Efgaﬁ + (gaEDA{D’Y = DaD,B) frR=0

associate to nonholonomic Ricci solitonic egs Rag + DaDsK = Agag, K = fr
effective gravitational egs Ruas = A(X', ¥¥)das,

polarized cosmological "constant” A = W; for massive gravity, the effective

cosmological constant contains additional terms. _
Off—diagonal configurations with Killing symmetry on 8/9y*, A ~ A(x').
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Almost Kéhler Structures and Nonholonomic Complex Manifolds N—connection and double almost complex structures

Almost Kahler Structures and Nonholonomic Complex Manifolds

N—connection and double almost complex structures

Local coordinates z* = i = (u®, iu®) = (¥ = x/ + ixl, ya =y2 +iy?). Inbrief, z = (X, ), u = (x, y), U = (X, }).
Complex conjugated coordinates 2% = (2 = x/ — ix/, Z° = y@ — iy?); N-connection: gNF = NP — iNI? and

mﬁ = N7 + i3,

g 1 . a 2 0 1 1 8 @
55 it = L= 5@ R =5 = o we = ple — e = 5505 — i)
5] _ _ 1 o 5] —a O 1 N 1 0 .0
978 pes = [he/:E(eer’ef):E* aN /8237 heb*E(ebJr’eb):E(aiW +I@f}/b)]‘

Definition: A pair (Y, 4N) with TYC := TY®gC and N—connection structure

kN : TYC = hYCavYC, is referred to as an almost complex nonholonomic manifold.

All real endomorphisms and N—adapted differential operators are extended from TY to TYC by
C-linearity. In local complex coordinate coefficient forms, ;N = { ;N?} and ;N = { 2N}
The formulas for the almost complex structure are generalized in ;N-adapted form following
such formulas with yJo J = T,

ve)) = —ieeqyand pJd(yexy)) = ve;,
0

B pze
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Almost Kahler Structures and Nonholonomic Complex Manifolds N-connection and double almost complex structures

Almost Kahler Structures and Nonholonomic Complex Manifolds

Theorem: An almost complex J for (Y, J) comes from a holomorphic structure if and only if 7Oy s integrable.
Definition:

@ Let us call the natural complex structure the structure °J arising from a holomorphic
structure on a complex manifold Y.

@ OnY, alternative ,J exists, determined by any splitting ,N; in particular, be induced by
any real canonical N, or arbitrary real N, and corresponding J, or J.

Lemma: The almost complex and N—connection structures define
CATY = A10Y @ A%TY, where ATOY = AATOY @ vATOY and A% 1Y = A0 TY @ Al Ty.

Proof: explicit calculus with differential forms, A1:0Y = {a—iaodlace A‘V}, A0y = {atiaodlac /\1Y} and
A0V = {h(a—iaoJd)|ae A'Y}, vAT0Y = {v(a—iaoJ)|a e A'Y},

hO'Y = {h(a+iaocd)|aec A'Y}, vA'O0Y = {v(a+iaoJ)|a e A'Y},

for instance, h (a — ia o J) means that it is taken the h—part of the distinguished 1—forma — jao J. O

— of o of o
df = Of 4+ of, withof = ——dz™ and 8f = —dz™,
7 oz«
“%ef = "of+ %91, with Faf = (%enf) "e® and 15f = (fe,f) fE.
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Almost Kéhler Structures and Nonholonomic Complex Manifolds N—connection and double almost complex structures

Almost Kahler Structures and Nonholonomic Complex Manifolds

Holomorphic nonholonomic vector bundles

We can define the differential operators 8 : C°° (AP:9Y) — C>°(APT1:9Y) where @ : C°°(AP:9Y) — Co°(AP9H1y),
Considering the operator a2 for d := & + 8, we prove another

Lemma-Definitions: One hold the identities 82 = 0, 9> = 0, 8 + 88 = 0,
when a) a vector field X C C°°( il Y) is holomorhic if X(f) is holomorphic for every locally defined holomorphic function f;

b) a differential form S of type (p, q) is holomorphic if S = 0.
Theorem: For a fixed splitting ;N = { tha} and 4N = { bﬁf} with holomorphic coefficients for a

(Y, yJ), there is a system of nonlinaer frame (vielbein) transforms and their duals with
coefficients linear on hl\ljf'i and, respectively, on hﬁf preserving the holomorphic configurations.

Proof: In explicit form, we can verify that yeq = hef/(z,?)ai, and fef = t‘e%,(z,?)dzﬁ/,
z
éi(z2) NPz 2k (2,2)

el(2,2) - yNP(z,2)ed(2,2)
0 e%(2,2)

e;(z,2)
satisfy the conditions of this theorem. O

e O‘/(z,E): and he[;,(z,f): s

o

d:=0+08 +— ge: ye+ ,€, with respective & «+— ,e,0 «— 4€,

for ye = hye+vyeand ye = hyetv ye.

f is holomorphic if 9f = andlor ,ef = 0.

ST VNIV E LTI (VAN (O Teln E VB erezin quantization & almost Kahler—Cartan March 21, 2014 10/38



Almost Kahler Structures and Nonholonomic Complex Manifolds N-connection and double almost complex structures

Almost Kahler Structures and Nonholonomic Complex Manifolds

Using previous Lemma, we have d(i88) = i(d + 8)98 = i(828 — 882) = 0. This provides a proof for

Proposition: [ The local i99—Lemma and its N-adapted version.] A real 2—form Q of type (1, 1) on a compact manifold Y is
closed if and only if in the vicinity of any point z € 'Y there is an open neighborhood U such that Q y = i98q for some real
function q on U. In N-adapted form, we have Q = i ye p€eq.

Generalizing on nonholonomic manifolds (using N—elongated operators), we prove such an important result:

Lemma: [—Poincaré Lemma in N-adapted form]. A d—closed (0, 1)~form A is locally d—exact. For a nontrivial N—connection
structure, the condition of exactness results in conventional h ;eA = 0 and v ;eA = 0.

Definition: A N-anholonomic holomorphic vector bundle (E, ;N) is defined as a holomorphic
vector bundle 7 : E — V< over a complex manifold V< with typical fieber being a complex vector
space and a N—connection: ;N : TE = hE®VE.

In particular, E =TV defines a N-anholonomic holomorphic tangent bundle.

Ona(E, ;N)3 ye: C>®(AP9E) — C°° (AP-9+1E) satisfying the Leibniz property and defining a pseudo—holomorphic
structure. For d—operators with & «— hé = hye+veand 3% = 0, hE defines a nonholonomic holomorphic structure.

A section o in a pseudo—holomorphic nonholonomic vector bundle (E, ;N) is called N-holomorphic if y€o = 0 and 9o = 0.

Theorem: A complex nonholonomic vector bundle (E, yN) is holomorphic if and only if it has a
holomorphic structure do = 0. It is N-adapted and N—holomorphic if peo = 0.
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Nonholonomic almost Hermitian and Kéhler structures
Nonholonomic almost Hermitian and Kahler structures

We consider that V is a differential manifold, not necessarily complex, and thatE — Vis a
complex nonholonomic vector bundle over V and N—connection ;N.

Distinguished connections on nonholonomic vector bundles

Definition: A d—connection ;D = (hD, v D) on (E, ;N) is a C-linear connection preserving
under parallelism the h- and v—decomposition determined by ,;N.

We can associate to ;D a C-linear differential operator ;D : C*°(E) — C>°(A'E) satisfying

yD(fo)
h ,D(fo)

yef ® o + fyDo, where
h,ef ® ho + f hyD(ho) and v |D(fo) = v yef ® vo + f hyD(ho),

Vf e C>(V) and a section o = ho + vo € C*(E).
The curvature of ;D the End(E)-valued 2—form ,R(c) := ;D( ;Do).
With respect to N—adapted frames, ;D can be characterized by a 1—form [, := urVa 5 heh.

In N—-adapted form, the d-torsion, 7< = {T<%_ }, and d—curvature, R% = {R%;_;} are

yT %= :D"e” = dfe* + ;I% A el = T% fef A fe,

yR%:= WDal% =dy % — a5 A 4% = 4R%G 5 "e7 A fel.
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Almost Kahler Structures and Nonholonomic Complex Manifolds Nonholonomic almost Hermitian and Kahler structures

Nonholonomic almost Hermitian and K&hler structures

Almost Hermitian structures and Chern connection and d—connection

We shall work with nonholonomic (E — V, ;N) when for every point u € V there is an nonholonomic Hermitian structure H :
Ey x Ey — C on the fibers of E with such properties VX, Z € E, : a) H(X, Z) is C-linear in u; b) H(X, Z) = H(Z, X) ; ¢)
H(X,Z) > 0VZ # 0; d) H(, ) is a smooth function on V for every smooth sections of E. Every rank k complex vector bundles E
admits Hermitian structures and this property is preserved if we endow such spaces with nonholonomic distributions.

Suppose that V is a complex manifold for a nonholonomic complex bundle (E, 4N),

consider the projections 7':% : AT(E) — A":O(E) and %1 : A(E) — A%(E) and introduce the corresponding (1, 0) and
(0, 1)—components of a chosen d—connection D, when

yD10 = 71006 D :Cc®(API(E)) — ¢ (AWPTTI(E)) and yDO1 = 701 o D : C®(API(E)) — C° (NPT (E)).
VA € C>®°(AP9(V)) and ¢ € C°°(E), such d—operators satisfy the Leibniz rule
4D 0(A® o) = eA® o + (—1)PTIAA ;D05 and ,D*'(A® o) = 1EA® o + (—1)PYIAA ;D% 0.

Viewing H as a field of C-valued real forms on aE, we argue that ;D is a H—connection if H is parallel with respect to , D.

Theorem: [The Chern connection, ‘h’D, and the Chern d—connection, ¢D] For every
nonholonomic Hermitian structure in a holomorphic N-anholonomic vector bundle (E, yN) with
N-holonomic structure e, there exists a d—connection g D which is such a unique H—connection
that hDO’1 = e. This is just the Chern connection (in this work denoted ED) such that

gDO" = J if the nonholonomic structure became integrable or if we work with respect to
holonomic frames.
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Almost Kahler Structures and Nonholonomic Complex Manifolds Nonholonomic almost Hermitian and Kahler structures

Nonholonomic almost Hermitian and K&hler structures

Hermitian and K&hler d—metrics
Definition: A (nonholonomc) Hermitian d-metric on (Y, yJ) is a d-metric R(A, B) = X( 4JA, ,JB), VA,B € TY = hYDVY.
The fundamental form of this Hermitian d—metric is jO(A, B) := R(yJA, B).

Let us consider a (Y, hJ,N), dimg = 2k, with holomorphic local coordinates z% when the coefficients of the Hermitian metric

d~tensor and fundamental form are respectively X 7 == R(52 , 52+ )and £0 =X _zdz* A dz”.
7 —_n! —

Using N-adapted frame transforms, 30 = iNa,E/ g’ A bgh’, for&a,E, = ”e‘fy, heﬁﬁ/?“aﬁ-

We can extract (almost) K&hler configurations if the fundamental form 39 — 'h(G is closed. Such a form can be expressed

2
f 3 = Ko . i93, _ _ Ky _ — 9%q Ko ._j =
locally using a real function q(z%,z%), when b 6 := i9dq, for Naﬁ = Naﬁ -k or y 0 :=iyeyeq.
Definition:
@ A nonholonomic Hermitian d-metric X on (Y, yJ) /s called an almost Kéhler d—metric if the fundamental form

EG<" -) == R(d-, ) is closed, i.e. d §6 = 0, but it is (in general) with non-vanishing Neijenhuis tensor 1Yq.

@ Such a d-metric X is called a Kéhler d-metric if yJ is a complex structure, 30 = Ko is closed, d 'h‘o =0 and

59Q = 0. A local real function q is a local Kéhler potential if 'h(e = i9dq.

Theorem: Prescribing on holomorphic manifold Y a fundamental generating holomorphic function £ = q with nondegenerate

real part, we can construct a canonical almost Kéhler nonholonomic model with fundamental geometric objects determined by

the almost Kahler d-metric KX _—.
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Almost Kahler Structures and Nonholonomic Complex Manifolds Nonholonomic almost Hermitian and Kahler structures

Nonholonomic almost Hermitian and Kéhler structures

Comparison of preferred d—connections

Theorem-Definitions: Let data[Y, 4N, KG(», :) := R( yJ-, )] define an almost Kéhler geometric model on a nonholonomic

holomorphic manifold YC. There are preferred linear connections uniquely and completely defined by the metric, X, and/or,
equivalently, almost symplectic, 'u(G, structures for a prescribed N—-connection N following such geometric principles:

o
o
Q

o

The Levi-Civita connection 'V (in brief, V7 ) is determined by X: a) ;' VX = 0, and b) zero torsion.

The canonical d—connection ‘b'D is determined by data (R, yN) by the conditions: a) EDN =0, and b) IblhT < =0and
‘h‘vTo‘ =0but3 'h'th“ +# 0; by unique distortion relation IhID =yV+ ‘h‘Z
|

The Cartan d—connection nD determined by the data ( 'R, IhN) stated by a generating function y L by extending on

holonomorphic manifolds the constructions with the normal d—connection, IhD =4V + ‘hZ.

The almost Kahler - Cartan d-connection, op ~ ltD’ is constructed as the Cartan d—connection but with fundamental
generating holomorphic function y L = q and geometric objects determined by the almost K&hler a—metric & Naﬁ and
almost symplectic nonholonomic variables.

The Chern d—connection ‘;D, or ‘;D, is a unique H—connection that th = ué, or ‘hDU’1 = ‘hé, which can be

N-adapted to a general yN, or IhN structure, with dependence on d—metric or fundamental 1—form encoded into
respective distortion d—tensors, §D = ;V + EZ and ‘h':D =V + ‘u"Z.
The Chern connection § D, or ‘th, is a unique H—connection that ‘h’DO'1 =9, o0r ‘hc p%' =3,

cpH_ c cH _ ic
th vV + uZand th VvV + hZ'
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Almost Kahler Structures and Nonholonomic Complex Manifolds Nonholonomic almost Hermitian and Kahler structures

Nonholonomic almost Hermitian and K&hler structures

Using the last Theorem, we can generalize for holomorphic nonholonomic manifolds:
Corollary: The almost Ké&hler - Cartan d-connection ;’D ~ ‘tD is a unique almost symplectic d—connection which satisfies the
conditions gD ‘tﬁ = 0and ?D ‘tJ = 0 and can be constructed if there are prescribed any data

(g,N) ~ (R, ‘JN) ~ (10, 5d) = ( ‘10, »J) on a holomorphic nonholonomic manifold.

On curvatures on almost complex nonholonomic manifolds

v hD on (real or holomorphic) (Y, hN’ 19), dimcV = k, the curvature tensor is defined in standard form
yR(X,A)Z := (,Dy 4D, — D, ;,Dy — hD[x,A])Zv VX,A,Z € C°(4TY).

This tensor is identified with a h-projection on , TY, hR(X, A, Z,B) = hh( hR(X, A)Z,B),VX,A,Z,B € gTY.
The Ricci tensor of D is defined by yRic(X, A) := Tr{B — ,R(B, X), A}.

Encode the modified Ricci soliton / Einstein equations for real theories are , Ric(X, A) := A(z, 2)g(X, A).

For almost K&hler - Cartan models, a similar Ricci form 'up(X, A) = | Ric( Ith’ A)=—i Ihe E@Iog det | KNQ,T\,

for Na,gl = he‘;, bé%,Naﬁ, which is closed in N-adapted form, ‘h’e( Ep) =0.

The main geometric idea is to perform a necessary type geometric quantization for certain data

[fDﬁ(gﬁ N) ~ (RN, ‘JN) ~ (40, gd) =~ ( ‘hG, ‘tJ)] and then to deform them into generalized ones with [ ;D, 6, ,J, X].
" |

The distortion of the Riemann tensor is computed: IhD =4V + ‘hZ and hD =44V + ‘hZ into corresponding formula when
pR= YR+ Zand {R= TR+, Z

pRic = hVRi(H yZicand | Ric = nVR/‘CJr'h'Zic.
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VS uantum line bundles

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

We reformulate some most important results about polarizations for quantum line bundles
endowed with nonlinear connection structure.

Polarizations, almost K&hler nonholonom strs & quantum line bundles

Consider a connected compact nonholonomic complex manifold Y, dim¢ Y = k, and define a
polarization of this manifold as a positive holomorphic line bundle L over Y.

Work with polarized complex N—anholonomic manifolds (Y, L) when Y can be presented as a
projective algebraic variety by the Kodaira embedding determined by €L := L®S Vs > sy, where
Sp is a positive integer.

Definition: A Hodge nonholonomic manifold is defined by a pair (Y, ‘he) with ‘he being integral,
i.e. with its cohomology class [ 6] € H(Y, Z).

For a polarization L of Y, the almost Kahler form is called nonholonomically L—polarized if
ci(L) = ‘he]. We can define a triple (Y, L, 'he) as a polarized Hodge nonholonomic manifold.

There is a standard result that any Hodge manifold admits Kahler polarizations.

Additional nonholonomic distributions with N—connection splitting do not change such a property
which result in unique nonholonomic configurations when Y is simply connected. We can
formulate an inverse statement that a polarized nonholonomic complex manifold (Y, L) admits
Kahler metrics whose Kéhler class equals ¢ (L).
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quantum line bundles

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

Proposition: For any polarized nonholonomic manifold (Y, L), there exists a bijection between
L—polarized admits Kédhler metrics on Y and homothey (positive constant prefactor rescaling)
classes of almost Hermitian nonholonomic bundle d—-metrics on L.

Proof: Such bejections using standard ones for Kahler forms and than nonholonomically deforming the constructions.

o Taking a Hermitian d—metric X on L, we construct a unique Kéhler metric and d—metric ( gD, or ‘th, and gD).

lg_ i ¢ g _ i il Vo cp _ V cz:
The formulas hG = 5= hR’ or he = 2y ‘R, transform via NR* b R+hZ and hRf h R+ thnto

| _i | | c | _i | | c
uefg(unf R 2+ hZ), or hé)fg(hRf uZanZ),

where both the left and write parts are parameterized in almost Kéhler — Cartan variables and can be expressed via
coefficients of an almost Hermitian d—metric X.
Multiplying X by a positive constant, we do not change the associated almost Kahler d-metric.

@ The constructions can be inverted for prequantized Hodge nonholonomc manifold (Y, L, ‘he, R), see similar
constructions for holonomic configurations in Section 1 of (Lazaroiu et all).
In our approach, we work with equivalence of (L, th’ w)and (L', | N', R’} if there is an N-adapted isomorphism 1 :
L — L’ of holomorphic line bundles such that 4* (X”) = X and ™ ( ‘bN/) = IhN'

Equivalence classes of N-anholonomic quantum line bundles for (Y, L) for a distinguished Hom( 7 (Y), s! )—torsor
splitting into respective h- and v—torsors, Hom(m1 (hY), S')—torsor and Hom(r1(vY), S')—torsor.

O
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quantum line bundles

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

For a nonholonomc quantum line bundle (L . N, R), consider on °L an induced d—-metric X := R®S: corresponding Chern
d-connection $°D := (gD)®S, or any dlstorted preferred connections; the almost Kahler - Cartan EGD = ( 9D)®5.

We can introduce the almost symplectic fundamental form E' 0 on SL, which can be identified (up to respective coefficients) to

sic c ®s in Slpg _ i sc Sig _ _i sic
the Chern d—connection, n' R: (‘N R)®S. We obtain §'0 = 51 f°R, or }'0 = LR,

Fixing a positive measure u on Y, define an induced almost Hermitian scalar product on the space of sooth sections Sec( L),
N(sy,82) = [ duSR(sy,82), Vsq,82 CSec( °L).
This way we can perform a L?~completion of Sec( SL) to SL(L, ®,u) with such a scalar product which admits further h- and

v—decompositions because a nontrivial N—connection structure. Here we note that the finite—dimensional subspace of
holomorphic nonholonomic sections, HY( $L) C Sec( L), also contains an induced scalar product (the same symbol).

( 1 I’} S
Theorem: 3. standard identified with the Liouville measure determined by the canonical volume form ”S! of (Y, ‘he)

( I 9)5
when the N-adapted scalar product ?(51 ,Sp) = [ JS,— SN(sq, sp), with splitting sy = hsy + vsy andsg = hsy + vsp,

R R R
s (S1,82) = g (hsy,hsp) + ¢ (vs1,vsp),
| S
(Vhe)
s!

(h'O)s
Nhsihs) = [ I (ks hsp) and X (vsy, vea) = [ SR(vsy, vSp),
st

encode the information from possible solutions of the (nonholonomic) Ricci soliton and (modified) Einstein equations.

ST VMY E LTI (VAN (G Teln VB erezin quantization & almost Kahler—Cartan March 21, 2014 19/38



1 IAHEQUVT e, Al Vol Thdliivl IV ol Vidi e alid

quantum line bundles

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

Canonical authomorphis of a prequantized Hodge d—manifold and smooth
N—adapted scalar products

The geometry of nonholonomic almost Kahler — Cartan and Ricci solitons has a rich structure which is characterized by a series
of new properties.

Definition A N-adapted automorphism of a prequantized Hodge nonhlolonomic manifold (Y, L, ‘h 0, R) is a pair

5 = (v0 = hvo + V0, v1 = hv1 + vvq) with h- and v—splitting when ~q is a N—-adapted holomorphic ismotery of (Y, ‘he) and
~ is a holonmorphic bundle isometry of (L, X) above ~q. Such N-adapted automorphisms form a d—group denoted

Aut(Y, L, 'te, R) := hAut @ vAut with Whitney sum induced by the N—connection structure.

In particular, we can consider that in above Definition 4 (u) is a N-adapted isometry from (L, R(u)) to (L ys R(v0(1)))

Yu € Y. An automorphism - is trivial if vg = idy and v¢ (u) = (€ ’“) for a real constant o Vu € Y, i.e. U( ) is contained as a
subgroup in Aut(Y, L, ‘he, R). In general, this group acts linearly on the space of sections HO( SL). The actions

pk - Aut(Y,L, |0, R) — End(HO( SL)) are unitary with respect to the [2—scalar product ;‘(51 , So) from above Theorem.

Using the quotients resulting in a subgroup of respective d—group,

Auf n (Y, ) = Aut(Y, L, R)/U(1) C Aut(Y, t19)

we select those holomorphic N—adapted isometries ~q of the almost Kahler — Cartan manifold (Y, | #) which admit a N-adapted

g
19, ).

lift vy : L — L such that the pair (g, 1) is an automorphism of (Y, L, b

Putting together such considerations, we prove

v
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quantum line bundles

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

Theorem: There is an N-adapted sequence of d—groups

T U() - Au(Y,L, [0,R) = Auf n(Y, [6) — 1

with h- and v—splitting 1 —  U®1) — hAut(Y,L, h ‘he, hR) — hAut (Y, h ‘ne) — 1 and

1 = UQ1) — vAu(Y, L, v‘hG, VR) — vAut p (Y, v‘he) — 1.

The constructions related to above Theorem are standard ones if the de Rham and Dolbeaut operators, respectively, d = 8 + &
and 8, are used in definition of the standard Chern connection |°D for the data (L, R). Using local complex coordinate frames
on anopen set U, := {u € Y|o(u) # 0}, we construct standard relations for the Kahler geometry with local potential of type.

ic

We have |0 := i9dq for g = — log yR(0, o), when D =d +9q, 0 = 'R with ‘th = —90q = —2mi . 0.

i
2rh i
Any section S € Sec( SL) considered above U,, can be written in the form s = fo®$ for a smooth complex-valued function f
on U, . We consider both S and f to be holomorphic and use a measure u(Y \ Uy ) = 0. This provides a proof:

Corollary: There are N-adapted isometries of Sec( SL) and HO( SL) with the spaces of smooth, respectively holomoprhic
functions on U, endowed with scalar product

(ko) :/U due™%Fy, 1.
v o

This identifies SL?(L, R, ) with the space SL?(U, ,e~597 11).
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Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

Almost Hermitian bundle d—metrics & polarized almost Kahler — Cartan forms

Let us fix a polarized complex (Y, L) and denote by L the total space of L and by Eo be the total space with the graph 0 of the
zero section excluded. Consider square norm functions & € C°°(Lg, R;) of type R(T) := R(T, ), for U € L, when these
smooth non—negative functions on Lare strictly positive on Eo and have the property R(cti) = |c|R(T) Vi € LandV ¢ € C, for
ﬁ‘o = 0. This way, the Hermitian metrics X on L are uniquely determined by X, i.e. the set Met{L, R} of Hermitan metrics on L
can be identified with the set of functions {R(&)} which form an infinite—dimensional convex cone in C>° (Lo, R).

Fix a polarized complex (Y, L) and denote by L the total space of L and by EO be the total space with the graph 0 of the zero
section excluded. Consider square norm functions X & C°°(L0, R+) of type N(u) = R(U, u) for U € L, when these smooth
non—negative functions on L are strictly positive on Lo and property N(cu) \clN( ) VU € LandV ¢ € C, for RIO =0.

This way, the Hermitian metrics R on L are uniquely determined by R, i.e. the set Met{L, R} of Hermitan metrics on L can be
identified with the set of functions {X(u)} which form an infinite—dimensional convex cone in C>°(Lg, R). We can parameterize
L—polarized K&hler metrics by rays in this real cone (there are possible different parameterizations).

We use a parametrization for the case when L is very ample (see details and references in Lazaroiu et all which have a
straightforward extension to nonholonomic configurations).
It is used the so—called evaluation functional @ : HO(L) — C constructed as a N—-adapted linear functional

¢(r(@) = BT, ¢ € H(L) Va € L,

1

where 7 : L — Yisthe N-adapted bundle projection. For non-vanishing ¢, cu = ¢~ ' U and the condition of very ampleness

implies T # 0 VU € Lg.
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Y= most Kahler — Cartan forms

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

The N—-adapted Bergman d—metric

An almost Hermitian d—metric determines a N-adapted scalar product ( , ) = h( , )+ Y(, ); on the finite—dimensional
nonholonomic space H%(L) induces a h- and v—scalar product on the dual spaces HO(L)* = Homg (HO(L), (C) .

Theorem-Definition: There is a N-adapted version of the Bergman metric, i.e. a Bergman d—metric on L defined by the - and
v—scalar product (, ) = (', )+ Y(, ) which allows to considder a reference Hermitian d—-metric for any
U e Lo, Rp(@) = T || =2 and Rp) = 0.

This Theorem-Definition generalizes for nonholonomic configurations the results related to Bergman metrics. Because this is a
d-metric, we have h- and v—components hRg(X) =|| X || =2 and vRg(¥) =|| J || 2, when u = (x, y).

Corollary: Having a reference d—metric §B, we can describe any other almost Hermitian d—metric X via the postive epsilon

function of R, € := 5(:%)) € C(Y,RY) relative to (, ) = "(, )+ V(, ), when R(T, T) = ((¥))Rp(T, ).
B
- e i . _ ] h_._ hRE) v_._ VR(y)
The function e splits into h- and v—components, respectively, "¢ := g €= ()

Definition: The L-polarized almost Kéhler — Cartan metric on Y determined by R is called the Bergman d-metric on Y induced
by a distinguished scalar product (, ) = "( , )+ Y(, ). Its almost K&hler — Cartan form is denoted Ih 0p.

Remark: The almost Kéhler — Cartan form determined by the Hermitian nonholonomic bundle d—metric is
b0 = 408 — 5-ddlogeand ;0 = 408 — o ye eloge.

The Bergman d—metric provides a framework for geometric quantization.
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Y= most Kahler — Cartan forms

Nonholonomic Quantum Line Bundles and Generalized Bergman Metrics

Nonholonomically induced scalar products and Bergman d—metric

For a N-anholonomic Y, dim¢ Y = n, we associate n + 1 := dim¢ H°(L) when (o € HO( ) define a basis.

Parameterize the square norm Vi € Lg as|| T ||?= Egéﬁ(gg)ﬁ(cﬁ), where =28 is the inverse matrix to = Zap = (Cas Cp)-
This is a d-metric with splitting in N-adapted frames as =, 5 = {Ei, Zij» :Lb} when (o = ((g, i (2)

The respective Bergman d—-metric takes such a form

Rp(U, 1) = [Z*28(Ca)u(¢p)] -

]
‘r

R@) (¢a@¢s@)-
e(0)Rg(u, U).

We can compute the epsilon function of arbitrary Hermitian d—-metric X on L following formula () =

Inversely, we can express an almost Hermitian d—metric  in terms of its relative epsilon function X (T, )
The L?—scalar distinguished product on HO(L) is defined by N and the volume form of ‘tHB when

‘(‘9)”
(o200 = [ 5 ng('¢, %)

n!

for 1¢, 2¢ € HO(L). Ingeneral, ( , ) and do not coincide with the distinguished scalar product (, ) = (, )+ Y(,
We note that algebraically we can work in a similar fashion both with holonomic and nonholonomic structures even in the last
case there is a specific h- and v-dubbing.

Further developments are possible by considering projective spaces with Kodaira embedding like in section 2.3 of Lazaroiu et all,

see also corresponding references therein. We omit such considerations with N—splitting in this work.
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Deformation Quantization of Ricci Solitons Fedosov operators and nonholonomic Ricci solitons

Ricci Solitons & the Karabegov—Schlichenmaier DQ

Aim: Perform DQ using N—adapted frames (for Fedosov operators), the Cartan
d—connection and distortions with Neijenhuis tensor, — star product.

(G, =808, 8 TG, +8%e,(87), I'=r+2
&, =8/ (u)e, & =& (u)e’, new sets N = {N } when T9., = (1/4)$1°%.,.

"Formal power" series and Wick product

C=°(V)[[4]] of "formal series" on ¢ with coefficients from C>°(V) on a Poisson
(V,{-,-}), where the bracket {-, -}. Operator

Fx 2f=>"C('f, 2 L,
r=0

C,r > 0, are bilinear operators with (C( 'f, 2f) = 'f 2f and
1C('f, 2f) — 1C( 3, 'f) = i{ 'f, 2f}; # = —1; an associative algebra structure on
C*>°(V)[[€]] with a ¢—linear and ¢—addical continuous star product.
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Deformation Quantization of Ricci Solitons Fedosov operators and nonholonomic Ricci solitons

Local coordinates (u, z) = (u®, z%), on TV; elements as series

a(v,z)= Y. aay(u)z' ¢, is a multi-index{a}
r>0,|[{a}|>0

On T,V, a formal Wick product with A®# := g% — j g°#,
82

o7F
el

aob(z) :=exp (l AP > a(2)b(zp1) |z=zy

The d—connection extended on space W ® A to operator
B(a®é) = (8a(a) - U’ I, 6a(a)) ® (&% A ) + a0 0,

where “é&,, is a similar to &, but depend on z—variables. This operator is a N-adapted
deg_,—graded derivation of the d—algebra (W N, o).
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Deformation Quantization of Ricci Solitons Fedosov operators and nonholonomic Ricci solitons

Fedosov N—adapted operators

Definition: The Fedosov N—adapted operators are

<o go a2z s 1o [ 5gztéa(a), fp+q>0,
o(a) = 6% A “én(a)and o (a) { 0.ifp=q=0,

where a € W ® A is homogeneous w.r.t. the grading deg, and deg, with deg,(a) = p
and deg,(a) =

Theorem: Any d metric/ equivalent symplectlc structure, 4(-,-) := g(J-, -), define a
flat canonical Fedosov d—connection D : — § + D — —adW,ck( ); D? = 0;3 a unique
elementr e W® A, deg,(r) =1,5"'r =0, solving §r=7T + R +Dr — Zror. This
element is computed recursively,

o = A= =57, = SR+ Dr® - ér(z) o r?),

L
PR3 5 (br (k+2) Z (I+2) r(/+2 k> 1,
1=0

a®) is the Deg—homogeneous component of degree k of ae W @ A.
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Main theorems for Fedosov—Ricci solitons
Main theorems for Fedosov—Ricci solitons

Analogs of torsion and curvature operators of D on W @ A,

. 7 Y Y P,

T = % 0, Tia(u) 8 A &%, Ro= %9 R
Properties: [D, ] = Zadwiek(T) and D* = —! adwio(R).
The bracket [, -] is the deg,—graded commutator of endomorphisms of W @ A and
adwic is defined via the deg,—graded commutator in (W ® A, o) .

Toap(U) 8 A&

Theorem 1: A star—product on the almost K&hler model of a nonholonomic
Ricci soliton is defined on C=(V)[[¢]] by 'f* 2f = o(7( 'f)) o o(7( 2f)), where the

projection o : Wiy, — C>(V)[[¢]] onto the part of deg,—degree zero is a bijection and

the inverse map 7 : C*°(V)[[¢]] — Wy can be calculated recursively w.r..t the total
degree Deg,(f)© = f,

(f )k+1 51 (V (f )(k) i XK:adeck(r(/+2))(7-(f)(k—/))),for k > 0.
1=0
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Deformation Quantization of Ricci Solitons Main theorems for Fedosov—Ricci solitons

Main theorems for Fedosov—Ricci solitons

f¢ is the Hamiltonian vector field for a function f € C>°(V) on (V, §). Antisymmetric

—C('f, %f) = % (C('f, 2f) — C( 2f, 'f)) of bilinear C( 'f, 2f).

A star—product is normalized if 1C( ', 2f) = J{ 'f, 2f}, {-,-} is the Poisson bracket defined by
d. For a normalized =, the bilinear , Cis a de Rham—Chevalley 2—cocycle 3 a unique closed
2—form 3, oC('f, 2f) = % x(fig, REW S, 2f € C2(V).

Consider the class ¢, of a normalized star—product * as the equivalence class cy(*) = ],
computed as a unique 2—form,

i ol o aB % e N TRV
L L) & —iX forX=dp, ji= 597 Tog &,

The h- and v—projections Al = %(ldh —idp) and v = %(Id., — iJv). The final step is to compute
the closed Chern—Weyl form

—_
<
3

X = T [(hn, v R (hM, vn)T] = —iTr [(hN, V)R] = — 3R, 5 & N &5

The canonical class is & := [¥] — proof of

Theorem 2: The zero—degree cohomology coefficient c,(+) for the almost Ké hler

model of a nonholonomic Ricci soliton is ¢ (*) = —(1/2i) &.
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Noncommutative Ricci Solitons Canonical and Cartan star products

Noncommutative Ricci Solitons: Dirac almost sympl.?

Data for (non) holonomic Ricci solitons and Einstein spaces encoded into almost
Kahler data (4,d, 4D), (6,J,D), when D¢ = 0 and DJ = 0.

The almost symplectic structure § — non—degenerate Poisson structure —
N—adapted and covariant product for noncommutative geometry (NC).

Definition: The canonical (Cartan) covariant star product

~ ek v v,
aFf = 0" 0" (D, ... D) - (Dyy D).
— kI

* is adapted to N—connection, maps d—tensors into d—tensors. For D — V, similar NC
generalizations of Riemann geometry if 0 is fixed for a symplectic manifold, * — x, h-
and v-splitting, * = ( "%, Y%) if D, = (D;,, Da,),

. V. o
a(")B=>" w0 0Y(D; ...D;) - (D; ... D)
k
similar for o (Y%)8 written for abstract v—indices.
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Noncommutative Ricci Solitons Canonical and Cartan star products

Properties of canonical and Cartan star products

Theorem: The product a*3 := af + ioj ¢*Cy(a, B) has such properties
k

@ associativity, a%(3%y) = (a%8)%y;

@ Poisson bracket, Cy(a, 8) = {a, 8} = 6D, - D, 3,
antisymmetry, {«, 8} = —{3, a}, and the Jacoby identity,
{a, {8:7}} + {7, {a, B}} + {B,{a,7}} = 0;

© N-adapted stability of type a8 = a - Bif Dao= 0 or D3 = 0;

© the Moyal symmetry, Cx(a, 8) = (—1)*Ck(B, a);

© N-adapted derivation with Leibniz rule,

D(a%B) = (Da)¥B + a*(DB) = ((hD+vD)a) #3 + a*((hD+vD)B).

Hermitian a3 = B¥a; (%, D) similar (x, V). Du@as =0, Gas = 5 (Ea¥eps + Es¥es), is not
very restrictive as for symplectic geometries. B8 = 0 — 6% = 61V . a.
Data (%, 9'5), elaborate an associative star product calculus completely defined by the metric

structure in N—adapted form and keeps the covariant property.
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Noncommutative Ricci Solitons Canonical and Cartan star products

Generating (non) commutative Ricci solitons

Noncommutativity via "generalized uncertainty" relations G0? — GPU> = i0*P(u)
U™ are quantum analogs of coordinates, 62 is an anti-symmetric tensor, 6 ~ h).
Constant valued matrix for u>u? — ufu® = 98 with U™ ~ ue, 68

i 0 hg =0~ h 0 Vg=0~h |
=dagl{ _ng_ _g. _p 0 "\ —ve=—9~—n 0

We begin with conventional 2+2 splitting, €. = €4 (u, 8)J such formal series

a _ La ) jpaiBiag@ Boa & 3
e = el +igvfes o +00P0%2fel L+ 0O(6%),
,e”‘*g = eag + 92151 eaﬂ%,@1 + 9151 9&2[32(.)2@1ﬁ1 o2 + 0(93)

. o B B..
Generate noncommutative g.s = (g, 'g) = %ngé[ eax(er)t + egx(ea)T],

(...)" is the Hermitian conjugation and nap is the flat Minkowski spacetime metric.

D={r%} = D={r1"%.} Do 5XP = 0XB Jou™ + X% T7,.,.
The geometric rule: take the partial N—derivatives as for commutative spaces but twist the
products via * when the product results in series, with

X% A = XA+ 3 ke (X, T).
k
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Noncommutative Ricci Solitons Canonical and Cartan star products

Noncommutative Ricci soliton and Einstein eqs

Using the principle of general commutative covariance,
9as = Gap(U,0) = gaﬁ(U)JrZ@ Cras( €1:9)

Ras = Ras(u,0) = Rag(u)@e Cras( €4 Q)

The Ricci solitonic/field equations \R; = A(X,¥?) .g;
|Rab = \/\(X/,ya) |gab
|Rai = 0, |Ria = O7

. e . A+ Dy DY fg— f/2
noncommutatively modified cosmological constant A = *”17—,:/ Chose

nonholonomic distributions & noncommutative deforms g — g,

gi = gi(u)+ gi(u)e® + O(6*), .hab = han(u) + has(u)6* + O(6%),
N3 wi(u) + wi(u)6? + 06, N = ni(u) + Ai(u)e? + O(6%).
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Decoupling and integrability of Ricci solitonic eqs
Decoupling and integrability of Ricci solitonic eqgs

Gravitational egs ( for D can be integrated in very general off-diagonal forms for

Qas(X,y%,0) = diag{ gi(x",0) = cje U0 = gi(x¥) + Gi(x*)0? + O(6*),
ha(X,y3,0) = ha(x*,y®) + ha(x¥,y®)6% + O(6*)},

NKp2,0) = wixK yB,0) = wi(xK, y®) + Wi(xK, y®)62 + O(6%),
NE(K,p8,0) = imi(x,y3,0) = mi(u) + (u)e? + O(6%)

and A= A(xk, 0); e; = =1 depend on chosen signature of metric for 6 — 0.

Decoupling with respect to N—adapted frames; computation of ﬁa,g(u, 0),

a® = da/ox', @ = da/dx?, a* = da/dy®,

e Y +eo W = A,
@*(n] hal)* = A b,
Bawi+ i = 0 \nf*“’ \7’\”7:07

v =(In| hgl¥2 —In| ha))*, @i = h;0; .6, B = hj ¢*, pisgivenby h3and hy via

& = In 200 /T Fl)*| — In /T F].
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Decoupling and integrability of Ricci solitonic eqs
Constructing integral varieties

Generic off-diagonal metrics with 6 independent coefficients

"New" generating, \®(x*, %, 0) := e '?and \¢[A(x,0)]; integration, °h, =
Cha(x¥,6), "nk(x¥), 2nk(x¥) functions

g = ee?,

hs = Chy[1+ & /2A\/| 0|12,
e = °hyexp[ ®%/8A],

Wi = =09/ 9" =-0i(,9)/(. )",

= '+ 2f7k/dy3.hs/(\/| hy)®

0 * 2
o 2 hs / 3 ® 3¢
= Ny + nk| 0h4|3/2 ay [1 aF oA

S el )

LC—conditions: \w" = eiIn| h4|,0; w; = §; \w;, ,nf =0.
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Noncommutative Ricci Solitons Black ellipsoids and solitonic waves as Ricci solitons

Black ellipsoids and solitonic waves as Ricci solitons

Spherical u* = (x',x2 =9, y% = p,y* =t),when x' =& = [ar/,/|q(r)|
Noncommutative Ricci solitonic black ellipsoids

Generating function for rotoid configuration € ¢ = 8AIn |1 — 62¢(&, 7, ¢)/q(€)!.

~ LD *

g = e¥(&Y) (de 4 diP) + r3(¢) sin? 9(E, D T Gk M
xdg e (d¢ )+ re(€) (&,9) ( 2/\\/W)
1€p ® €y — [9(5)+92<(571§,4P)] er® e

_ 2 (09 Oy ) _ 2
€y de — 6 (73¢¢d5+73¢¢d0 , 8t = dt + 07 [nyd& + nody],

Prescribing ¢ = ¢(¢, %) sin(wo + o), constant parameters wo and o, ¢(&,9) ~ ¢ = const.
The smaller horizon (when the term before e; ® ,e; became  hy = 0) is described by formula
re ~2m/ (1 + 62¢ sin(wop + @0)).
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Noncommutative Ricci Solitons Black ellipsoids and solitonic waves as Ricci solitons

Black ellipsoids and solitonic waves as Ricci solitons

Spherical u® = (x',x2 = 9,y% = ¢, y* = t),when x' = £ = [dr/,/|q(r)|

°g = dé ® dé + r?(€) dv ® d¥ + r?(€) sin? 0 dyp @ dy — g(€) dt ® dt,

an empty de Sitter space if g(r) = 1—- 2=~ ’"(r) é; the total mass—energy within the radius r is
m(r); m(r) = 0 — cosmological horizon at r=re=+/3/\

Noncommutative Ricci solitonic black holes and "non-Ricci" solitonic backgrounds

@ =n(&D,1,0): 0" +(Bm+nn® +en***)* =0,

In the dispersionless limit e — 0 the solutions transforms in those for the Burgers’ equation
om+nn®=0.

. ¢ .
d? = e Ve 4 di?] - q(1 + —2° 21t — 212 ge _ 9919 g2
T 2A/Ig(9)l od " oo

r2(¢) sin? ﬂexp[—][d«p +(

e A g

+('np + 2,72/(#73)0@]27 xX'=ex2 =8,y =1yt =,
(+v/|hal)3
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Conclusions

Conclusions

@ Nonholonomic (pseudo) Riemannian manifolds — an unified almost
symplectic formalism for (supersymmetric/ noncommutative) Ricci
solitons.

@ We can develop nonholonomic versions of Berezin and
Bergman—Toeplitz geometric quantization.

@ DQ of commutative almost Kahler structures following
Karabegov—Schlichenmaier constructions working with a special Cartan
distinguished connection; the idea taken from Finsler-Lagrange
geometry but defined on (pseudo) Riemannian manifolds.

@ NC extensions of constructions are possible due to D. Vassilevich
proposal to define associative star products as for Fedosov quantization
but working with almost symplectic structures uniquely determined by
metrics and nonlinear connections.

@ The anholonomic deformation method — construct generic off-diagonal
exact solutions for noncommutative Ricci solitons & (modified) gravity.
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