Stratified geometry of representation varieties

Stefan Papadima

Simion Stoilow Institute of Mathematics of the Romanian Academy

GAP Seminar, IFIN Măgurele, March 28, 2014

S. Papadima (IMAR Bucharest)

Geometry of representation varieties

March 28, 2014 1 / 21

モトィモト

Representation varieties and jump loci

2 Flat connections and Aomoto complexes

3 Abelian covers

- 4 Applications to (quasi)projective groups
- 5 An application to Milnor fibers

4 A N

-

Representation varieties

- X reasonable space (connected CW-complex/algebraic variety)
- $\pi = \pi_1 X$ finitely generated group
- G linear Lie group (over \mathbb{C} , \mathbb{R}), \mathfrak{g} Lie algebra

representation variety $1 \in Hom_{gr}(\pi, G)$ affine variety

- topology (local systems on X of type G)
- differential geometry (g-valued flat connections on X)
- algebraic geometry (locally constant sheaves)
- differential equations (completely integrable systems)

rank 1 case $\mathbb{T}(\pi) = \operatorname{Hom}_{gr}(\pi, \mathbb{C}^{\times}) \supseteq \mathbb{T}^{0}(\pi) = (\mathbb{C}^{\times})^{n}$ character torus

Sac

Artin groups

- Γ finite simple graph, vertices V, edges E
- coloured by $\ell:\mathsf{E}\to\mathbb{Z}_{\geq 2}$
- Artin group $\pi_{\Gamma,\ell}$ generated by $\nu \in V$
- for $\{u, v\} \in E$, relation $uvu \cdots = vuv \cdots$ words of length $\ell(\{u, v\})$
- RAAG (right–angled) π_{Γ} when $\ell \equiv 2$
- Γ complete: $\pi_{\Gamma} = \mathbb{Z}^n$ free abelian
- Γ discrete: $\pi_{\Gamma} = F_n$ free

Sac

Universality Theorem

Theorem (Kapovich–Millson, IHES 1998)

For any point $x \in \mathcal{X}$ on an affine variety defined over \mathbb{Q} , there is a coloured graph (Γ, ℓ) and $1 \neq \rho \in \operatorname{Hom}_{gr}(\pi_{\Gamma, \ell}, PSL_2(\mathbb{C}))$ such that $\operatorname{Hom}_{gr}(\pi_{\Gamma, \ell}, PSL_2(\mathbb{C}))_{(\rho)} = \mathcal{X}_{(x)} \times \mathbb{C}^3_{(0)}$, as analytic germs.

Theorem (with A. Măcinic, R. Popescu, A. Suciu, arXiv 2013)

For an arbitrary coloured graph (Γ, ℓ) , $\operatorname{Hom}_{gr}(\pi_{\Gamma, \ell}, PSL_2(\mathbb{C}))_{(1)}$ is very special and admits explicit combinatorial description.

Theorem (with A. Dimca, to appear Commun. Contemp. Math.) In general, $\text{Hom}_{gr}(\pi, G)_{(1)}$ depends only on the Malcev–Lie algebra of π [Quillen, Annals 1969] and g.

Moduli space of smooth projective curves ($g \ge 2$)

• mapping class group *M*_g: orientation–preserving homeo's of genus *g* closed Riemann surface, up to isotopy

•
$$M_g = \text{Out}^+(\pi_g)$$
, by Dehn–Nielsen

• Fuchsian (i.e., discrete) subgroups $\operatorname{Hom}_{gr}^{0}(\pi_{g}, G), G = PSL_{2}(\mathbb{R})$

Theorem (Goldman, BAMS 1982) Hom⁰_{gr}(π_g , G) = { $\rho \in \text{Hom}_{gr}(\pi_g, G) \mid e(\rho) = 2g - 2$ } (connected component).

• uniformization: $PSL_2(\mathbb{R}) = Aut(\mathbb{H})$ and \mathbb{H}/ρ is a smooth curve

Theorem (A. Weil, Annals 1960's)

The biquotient $M_g \setminus \text{Hom}_{gr}^0(\pi_g, G)/G$ gives moduli space of genus g smooth projective curves, of dim_{\mathbb{C}} = 3g - 3 (Riemann).

Jump loci

- $\iota : G \to GL(V)$ rational representation, $\theta : \mathfrak{g} \to \mathfrak{gl}(V)$ tangent map
- fix $q \ge 1$ (computational complexity)
- assume from now on X q-finite (finite q-skeleton)
- characteristic varieties give natural stratification for $i \leq q$

$$\mathcal{V}_{r}^{i}(\boldsymbol{X},\iota) = \{\rho \in \operatorname{Hom}_{\operatorname{gr}}(\pi, \boldsymbol{G}) \mid \dim H^{i}(\boldsymbol{X},\iota_{\rho}\boldsymbol{V}) \geq r\}$$

• for
$$r = 0$$
, $\mathcal{V}_0^i(X, \iota) = \text{Hom}_{\text{gr}}(\pi, G)$

Question

Compute at 1 and extract topological/geometric information on X

Pencils

- topological Green–Lazarsfeld sets $\mathcal{V}_r^i(X, \mathrm{id}_{\mathbb{C}^{\times}}) =: \mathcal{V}_r^i(X)$
- for a projective manifold X, see Green–Lazarsfeld, Invent. 1987
- pencil on a quasi–projective manifold *f* : *X* → *S* regular onto a curve, with connected generic fiber
- pencil of general type iff $\chi_S < 0$

Theorem (Arapura, JAG 1997)

Positive–dimensional components through 1 of $\mathcal{V}_1^1(X)$ are in bijection with pencils of general type on *X*.

3

• □ ▶ • @ ▶ • E ▶ • E ▶ · ·

Commutative Differential Graded Algebras

- aim: extend computation for germs of representation varieties to jump loci
- strategy: replace X by CDGA model A[•]
- assume from now on A^{\bullet} is q-finite ($A^0 = \mathbb{C} \cdot 1$, dim $A^{\leq q} < \infty$)
- $A^{\bullet} \otimes \mathfrak{g}$ becomes DGLA: $d(a \otimes g) = da \otimes g$, $[a \otimes g, a' \otimes g'] = aa' \otimes [g, g']$
- variety of flat connections 0 ∈ F(A, g) ⊆ A¹ ⊗ g, defined by the Maurer–Cartan equation

$$d\omega + \frac{1}{2}[\omega, \omega] = 0$$

• rank 1 case: $\mathcal{F}(A, \mathbb{C}) := \mathcal{F}(A) = H^1 A$

Covariant derivative

- semidirect Lie product $V \rtimes_{\theta} \mathfrak{g}$
- covariant derivative $d_{\omega} := d + ad_{\omega} : A^{\bullet} \otimes V \rightarrow A^{\bullet+1} \otimes V$
- Aomoto complex $(A^{\bullet} \otimes V, d_{\omega})$ for $\omega \in \mathcal{F}(A, \mathfrak{g})$

Definition

The resonance varieties

$$\mathcal{R}^i_r(A, heta) = \{\omega \in \mathcal{F}(A,\mathfrak{g}) \mid \dim H^i(A^{ullet} \otimes V, d_\omega) \geq r\};$$

natural stratification by subvarieties for $i \leq q$, and $\mathcal{R}_0^i(A, \theta) = \mathcal{F}(A, \mathfrak{g})$.

Example

When $\theta = id_{\mathbb{C}}$ and d = 0, usual Aomoto complex $(A^{\bullet}, \omega \cdot)$, for $\omega \in A^1$.

э.

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶

From topology to algebra

- via D. Sullivan's De Rham CDGA of a space $\Omega^{\bullet}(X)$ (IHES 1977)
- A ≃_q B (same q-homotopy type in CDGA) iff same Sullivan q-minimal model
- Iocalization of CDGA w.r. to weak *q*–equivalences, i.e., maps inducing homology iso's in degrees ≤ *q* and homology mono in degree *q* + 1

Theorem (with A. Dimca, to appear CCM)

If $\Omega^{\bullet}(X) \simeq_q A^{\bullet}$, there is a stratified reduced local analytic iso, for $i \leq q$,

$$e: \mathcal{R}^i_r(A, \theta)_{(0)} \stackrel{\sim}{\longrightarrow} \mathcal{V}^i_r(X, \iota)_{(1)}$$

• extended away from 1 by Budur–Wang/arXiv 2013, for X compact Kahler, $\iota = id_{GL_n}$ and ρ semisimple

• extension fails for n = 1 and $\rho = 1$, if X not compact Kahler [CCM] $\log \rho$

Examples

- when X is q-formal (i.e., $\Omega^{\bullet}(X) \simeq_q (H^{\bullet}X, d=0)$), $A^{\bullet} = (H^{\bullet}X, d=0)$
- X compact Kahler, X = K(π_Γ, 1), X = M(A) complement of complex hyperplane arrangement: ∞-formal
- X quasi-projective manifold with $W_1 H^1 X = 0$: 1-formal
- X quasi–projective manifold has good compactifications \overline{X}
- \overline{X} gives *Gysin model* $A^{\bullet}(\overline{X})$, cf. Morgan, IHES 1978
- may use $A^{\bullet} = A^{\bullet}(\overline{X})$, for $q = \infty$

Remark

In both examples, $\Omega^{\bullet}(X) \simeq_q A^{\bullet}$ is defined over \mathbb{Q} .

э.

Positive weight

Definition

 A^{\bullet} is a CDGA with positive weights if $A^{\bullet} = \bigoplus_{j \in \mathbb{Z}} A_j^{\bullet}$, $d(A_j^{\bullet}) \subseteq A_j^{\bullet}$, $A_j^{\bullet} \cdot A_k^{\bullet} \subseteq A_{j+k}^{\bullet}$, and $A_j^{1} = 0$ for $j \leq 0$.

Theorem (with A. Dimca, to appear CCM)

If $\Omega^{\bullet}(X) \simeq_q A^{\bullet}$ is defined over \mathbb{Q} and A^{\bullet} has positive weights, then, for all $i \leq q$ and $r \geq 0$

- (1) $\mathcal{R}_r^i(A, id_\mathbb{C})$ is a finite union of linear subspaces in H^1A , that are defined over \mathbb{Q} .
- (2) All irreducible components through 1 of $\mathcal{V}_r^i(X)$ are subtori in $\mathbb{T}(\pi)$.
- obstructions to q-formality/quasi-projectivity

• used and extended by Budur–Wang/arXiv 2012 away from 1, when X is a quasi–projective manifold

S. Papadima (IMAR Bucharest)

Universality, again

• The preceding obstructions are in marked contrast with the general case

Theorem (Simpson, Proc. Symp. Pure Math. 1997)

Given any $i \ge 1$ and an arbitrary subvariety W in $(\mathbb{C}^{\times})^n$ defined over \mathbb{Z} , there is an ∞ -finite space X such that $\mathbb{T}(\pi) = (\mathbb{C}^{\times})^n$ and $W \cup \{1\} = \mathcal{V}_1^i(X) \cup \{1\}.$

Remark

Rationality obstruction (1) used in Duke 2009 (with A. Dimca and A. Suciu) to construct a finite-dimensional CGA defined over \mathbb{Q} that cannot be the cohomology ring of a formal space. By Quillen and Sullivan [loc. cit.], this cannot happen in the 1-connected case.

э.

(日)

Finiteness properties of abelian covers

- group epimorphism $\nu : \pi \twoheadrightarrow Q$
- Galois cover $X^{\nu} o X$ with group Q

Theorem (with A. Suciu, J. Topol. 2012)

If *Q* is abelian, the following are equivalent. (1) dim $H_{\leq q}X^{\nu} < \infty$ (2) $\nu^*\mathbb{T}(Q) \cap \left(\bigcup_{i \leq q} \mathcal{V}_1^i(X)\right)$ is finite

• i.e., rank 1 jump loci control homological finiteness properties of abelian covers

Moduli spaces for Riemann surfaces

- mapping class group *M*_g: orientation–preserving homeo's of genus *g* closed Riemann surface, up to isotopy
- closely related to the moduli space of genus *g* projective curves
- Torelli group T_g : $h \in M_g$ inducing identity on H_1
- Torelli space $T_g = K(T_g, 1)$: moduli space of genus *g* projective curves with symplectic marking on H_1
- Johnson subgroup $K_g \subseteq T_g$: generated by Dehn twists about simple separating curves on the Riemann surface

Theorem (D. Johnson, Annals 1983)

For $g \ge 3$, T_g is finitely generated.

Theorem (D. Johnson, Topology 1985)

Universal torsion–free abelian cover of \mathcal{T}_g is given by K_g .

S. Papadima (IMAR Bucharest)

Geometry of representation varieties

Question and answers

Question (early 1980s) Is dim $H_1 K_a < \infty$?

Answer uses jump loci criterion (2) above.

Theorem (with A. Dimca and R. Hain, Annals 2013 and JEMS, to appear; R. Hain, arXiv 2013)

If $g \ge 4$, then

• $\mathcal{V}_1^1(T_g) \cap \mathbb{T}^0(T_g) = \{1\}$

 H₁K_g is finite-dimensional, computable by symplectic representation theory.

э

Question (Serre, early 1950s)

Characterize and construct (quasi)projective groups.

Theorem (with A. Dimca and A. Suciu, Duke 2009)

RAAG π_{Γ} is quasi-projective iff $\pi_{\Gamma} = \prod_{i=1}^{m} F_{n_i}$.

Question (Kollár, 1995)

Let π be projective. Up to commensurability (i.e., localizing w.r. to group morphisms with finite kernel and cofinite image), does it have an algebraic $K(\pi, 1)$?

Theorem (with A. Dimca and A. Suciu, Crelle 2009)

NO. More precisely, for any $q \ge 3$, there is a projective π without q-finite $K(\pi, 1)$ (even up to commensurability).

S. Papadima (IMAR Bucharest)

Geometry of representation varieties

March 28, 2014 18 / 21

Milnor fibers of line arrangements

- $\mathcal{A} = \{L_1, \ldots, L_n\}$ line arrangement in \mathbb{CP}^2 , $\cap_{i=1}^n L_i = \emptyset$
- given by P(x, y, z) = 0 that splits into *n* distinct linear factors
- combinatorics given by the multiple points and their position on lines
- Milnor fiber F_A : P(x, y, z) = 1
- monodromy $h: F_{\mathcal{A}} \to F_{\mathcal{A}}$ induced by $\exp(\frac{2\pi\sqrt{-1}}{n})$
- monodromy action: H_●(F_A, Q) becomes Q[t]-module (t acts by H_●h)
- nontrivial part: $H_{\bullet}^{\neq 1}(F_{\mathcal{A}}, \mathbb{Q})$

Question (open)

Compute $H_1^{\neq 1}(F_A, \mathbb{Q})$. Is it determined by combinatorics?

Milnor fibers and modular resonance

Theorem (Cogolludo–Libgober, to appear Crelle; Libgober, Adv. Stud. Pure Math. 2012)

Property $H_1^{\neq 1}(F_A, \mathbb{Q}) \neq 0$ is combinatorial, when A has only double and triple points.

- natural \mathbb{F}_{ρ} -basis for $H^1(M(\mathcal{A}), \mathbb{F}_{\rho})$ indexed by $L \in \mathcal{A}$
- canonical element $\omega := \sum_{L \in \mathcal{A}} L \in H^1(M(\mathcal{A}), \mathbb{F}_p)$
- modular Aomoto complex: $(H^{\bullet}(\mathcal{M}(\mathcal{A}), \mathbb{F}_{p}), \omega \cdot)$
- modular Aomoto–Betti number:

$$\beta_{p}(\mathcal{A}) := \dim_{\mathbb{F}_{p}} H^{1}(H^{\bullet}(M(\mathcal{A}), \mathbb{F}_{p}), \omega)$$

• $\beta_p(A)$ is combinatorial, cf. Orlik–Solomon, Invent. 1980

3

Milnor fibers via sl2-flat connections

Theorem (with A. Suciu, arXiv 2014)

Assume A has only double and triple points.

(1) $\beta_3(\mathcal{A}) \leq 2$ (2) $H_1^{\neq 1}(F_{\mathcal{A}}, \mathbb{Q}) = \left(\frac{\mathbb{Q}[t]}{t^2 + t + 1}\right)^{\beta_3(\mathcal{A})}$

- graphic arrangement A_{Γ} : hyperplanes $z_i = z_j$, for $\{i, j\} \in E$
- generic section of \mathcal{A}_{Γ} has only double and triple points

Theorem (with A. Măcinic, Topology Appl. 2009)

Formula (2) above holds for A_{Γ} .

S. Papadima (IMAR Bucharest)

Sac

・ロト ・四ト ・ヨト ・ヨト