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Representation varieties and jump loci

Representation varieties

X reasonable space (connected CW-complex/algebraic variety)
π = π1X finitely generated group
G linear Lie group (over C, R), g Lie algebra

representation variety 1 ∈ Homgr(π,G) affine variety

topology (local systems on X of type G)
differential geometry (g–valued flat connections on X )
algebraic geometry (locally constant sheaves)
differential equations (completely integrable systems)

rank 1 case T(π) = Homgr(π,C×) ⊇ T0(π) = (C×)n character torus
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Representation varieties and jump loci

Artin groups

Γ finite simple graph, vertices V, edges E
coloured by ` : E→ Z≥2

Artin group πΓ,` generated by v ∈ V
for {u, v} ∈ E, relation uvu · · · = vuv · · · words of length `({u, v})
RAAG (right–angled) πΓ when ` ≡ 2

Γ complete: πΓ = Zn free abelian
Γ discrete: πΓ = Fn free
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Representation varieties and jump loci

Universality Theorem
Theorem (Kapovich–Millson, IHES 1998)
For any point x ∈ X on an affine variety defined over Q, there is a
coloured graph (Γ, `) and 1 6= ρ ∈ Homgr(πΓ,`,PSL2(C)) such that
Homgr(πΓ,`,PSL2(C))(ρ) = X(x) × C3

(0), as analytic germs.

Theorem (with A. Măcinic, R. Popescu, A. Suciu, arXiv 2013)

For an arbitrary coloured graph (Γ, `), Homgr(πΓ,`,PSL2(C))(1) is very
special and admits explicit combinatorial description.

Theorem (with A. Dimca, to appear Commun. Contemp. Math.)

In general, Homgr(π,G)(1) depends only on the Malcev–Lie algebra of
π [Quillen, Annals 1969] and g.
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Representation varieties and jump loci

Moduli space of smooth projective curves (g ≥ 2)
mapping class group Mg : orientation–preserving homeo’s of
genus g closed Riemann surface, up to isotopy
Mg = Out+(πg), by Dehn–Nielsen
Fuchsian (i.e., discrete) subgroups Hom0

gr(πg ,G), G = PSL2(R)

Theorem (Goldman, BAMS 1982)

Hom0
gr(πg ,G) = {ρ ∈ Homgr(πg ,G) | e(ρ) = 2g − 2} (connected

component).

uniformization: PSL2(R) = Aut(H) and H/ρ is a smooth curve

Theorem (A. Weil, Annals 1960’s)

The biquotient Mg\Hom0
gr(πg ,G)/G gives moduli space of genus g

smooth projective curves, of dimC = 3g − 3 (Riemann).
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Representation varieties and jump loci

Jump loci

ι : G→ GL(V ) rational representation, θ : g→ gl(V ) tangent map
fix q ≥ 1 (computational complexity)
assume from now on X q–finite (finite q–skeleton)

characteristic varieties give natural stratification for i ≤ q

V i
r (X , ι) = {ρ ∈ Homgr(π,G) | dim H i(X , ιρV ) ≥ r}

for r = 0, V i
0(X , ι) = Homgr(π,G)

Question
Compute at 1 and extract topological/geometric information on X
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Representation varieties and jump loci

Pencils

topological Green–Lazarsfeld sets V i
r (X , idC×) =: V i

r (X )

for a projective manifold X , see Green–Lazarsfeld, Invent. 1987
pencil on a quasi–projective manifold f : X → S regular onto a
curve, with connected generic fiber
pencil of general type iff χS < 0

Theorem (Arapura, JAG 1997)

Positive–dimensional components through 1 of V1
1 (X ) are in bijection

with pencils of general type on X.
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Flat connections and Aomoto complexes

Commutative Differential Graded Algebras
aim: extend computation for germs of representation varieties to
jump loci
strategy: replace X by CDGA model A•

assume from now on A• is q–finite (A0 = C · 1, dim A≤q <∞)

A• ⊗ g becomes DGLA: d(a⊗ g) = da⊗ g,
[a⊗ g,a′ ⊗ g′] = aa′ ⊗ [g,g′]

variety of flat connections 0 ∈ F(A, g) ⊆ A1 ⊗ g, defined by the
Maurer–Cartan equation

dω +
1
2

[ω, ω] = 0

rank 1 case: F(A,C) := F(A) = H1A
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Flat connections and Aomoto complexes

Covariant derivative

semidirect Lie product V oθ g

covariant derivative dω := d + adω : A• ⊗ V → A•+1 ⊗ V
Aomoto complex (A• ⊗ V ,dω) for ω ∈ F(A, g)

Definition
The resonance varieties

Ri
r (A, θ) = {ω ∈ F(A, g) | dim H i(A• ⊗ V ,dω) ≥ r};

natural stratification by subvarieties for i ≤ q, and Ri
0(A, θ) = F(A, g).

Example

When θ = idC and d = 0, usual Aomoto complex (A•, ω·), for ω ∈ A1.
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Flat connections and Aomoto complexes

From topology to algebra
via D. Sullivan’s De Rham CDGA of a space Ω•(X ) (IHES 1977)
A 'q B (same q–homotopy type in CDGA) iff same Sullivan
q–minimal model
localization of CDGA w.r. to weak q–equivalences, i.e., maps
inducing homology iso’s in degrees ≤ q and homology mono in
degree q + 1

Theorem (with A. Dimca, to appear CCM)

If Ω•(X ) 'q A•, there is a stratified reduced local analytic iso, for i ≤ q,

e : Ri
r (A, θ)(0)

∼−→ V i
r (X , ι)(1)

• extended away from 1 by Budur–Wang/arXiv 2013, for X compact
Kahler, ι = idGLn and ρ semisimple
• extension fails for n = 1 and ρ = 1, if X not compact Kahler [CCM]
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Flat connections and Aomoto complexes

Examples

when X is q–formal (i.e., Ω•(X ) 'q (H•X ,d = 0)),
A• = (H•X ,d = 0)

X compact Kahler, X = K (πΓ,1), X = M(A) complement of
complex hyperplane arrangement: ∞–formal
X quasi–projective manifold with W1H1X = 0: 1–formal

X quasi–projective manifold has good compactifications X
X gives Gysin model A•(X ), cf. Morgan, IHES 1978
may use A• = A•(X ), for q =∞

Remark
In both examples, Ω•(X ) 'q A• is defined over Q.
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Flat connections and Aomoto complexes

Positive weight
Definition
A• is a CDGA with positive weights if A• =

⊕
j∈Z A•j , d(A•j ) ⊆ A•j ,

A•j · A•k ⊆ A•j+k , and A1
j = 0 for j ≤ 0.

Theorem (with A. Dimca, to appear CCM)

If Ω•(X ) 'q A• is defined over Q and A• has positive weights, then, for
all i ≤ q and r ≥ 0

(1) Ri
r (A, idC) is a finite union of linear subspaces in H1A, that are

defined over Q.
(2) All irreducible components through 1 of V i

r (X ) are subtori in T(π).

• obstructions to q–formality/quasi–projectivity
• used and extended by Budur–Wang/arXiv 2012 away from 1, when X
is a quasi–projective manifold
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Flat connections and Aomoto complexes

Universality, again
• The preceding obstructions are in marked contrast with the general
case

Theorem (Simpson, Proc. Symp. Pure Math. 1997)
Given any i ≥ 1 and an arbitrary subvariety W in (C×)n defined over Z,
there is an∞–finite space X such that T(π) = (C×)n and
W ∪ {1} = V i

1(X ) ∪ {1}.

Remark
Rationality obstruction (1) used in Duke 2009 (with A. Dimca and A.
Suciu) to construct a finite–dimensional CGA defined over Q that
cannot be the cohomology ring of a formal space. By Quillen and
Sullivan [loc. cit.], this cannot happen in the 1–connected case.
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Abelian covers

Finiteness properties of abelian covers

group epimorphism ν : π � Q
Galois cover X ν → X with group Q

Theorem (with A. Suciu, J. Topol. 2012)

If Q is abelian, the following are equivalent.
(1) dim H≤qX ν <∞
(2) ν∗T(Q) ∩

(⋃
i≤q V i

1(X )
)

is finite

• i.e., rank 1 jump loci control homological finiteness properties of
abelian covers
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Abelian covers

Moduli spaces for Riemann surfaces
mapping class group Mg : orientation–preserving homeo’s of
genus g closed Riemann surface, up to isotopy
closely related to the moduli space of genus g projective curves
Torelli group Tg : h ∈ Mg inducing identity on H1
Torelli space Tg = K (Tg ,1): moduli space of genus g projective
curves with symplectic marking on H1
Johnson subgroup Kg ⊆ Tg : generated by Dehn twists about
simple separating curves on the Riemann surface

Theorem (D. Johnson, Annals 1983)
For g ≥ 3, Tg is finitely generated.

Theorem (D. Johnson, Topology 1985)
Universal torsion–free abelian cover of Tg is given by Kg .
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Abelian covers

Question and answers

Question (early 1980s)
Is dim H1Kg <∞?

Answer uses jump loci criterion (2) above.

Theorem (with A. Dimca and R. Hain, Annals 2013 and JEMS,
to appear; R. Hain, arXiv 2013)

If g ≥ 4, then

V1
1 (Tg) ∩ T0(Tg) = {1}

H1Kg is finite–dimensional, computable by symplectic
representation theory.
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Applications to (quasi)projective groups

Question (Serre, early 1950s)
Characterize and construct (quasi)projective groups.

Theorem (with A. Dimca and A. Suciu, Duke 2009)

RAAG πΓ is quasi–projective iff πΓ =
∏m

i=1 Fni .

Question (Kollár, 1995)
Let π be projective. Up to commensurability (i.e., localizing w.r. to
group morphisms with finite kernel and cofinite image), does it have an
algebraic K (π,1)?

Theorem (with A. Dimca and A. Suciu, Crelle 2009)

NO. More precisely, for any q ≥ 3, there is a projective π without
q–finite K (π,1) (even up to commensurability).
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An application to Milnor fibers

Milnor fibers of line arrangements
A = {L1, . . . ,Ln} line arrangement in CP2, ∩n

i=1Li = ∅
given by P(x , y , z) = 0 that splits into n distinct linear factors
combinatorics given by the multiple points and their position on
lines
Milnor fiber FA: P(x , y , z) = 1

monodromy h : FA → FA induced by exp(2π
√
−1

n )

monodromy action: H•(FA,Q) becomes Q[t ]–module (t acts by
H•h)
nontrivial part: H 6=1

• (FA,Q)

Question (open)

Compute H 6=1
1 (FA,Q). Is it determined by combinatorics?
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An application to Milnor fibers

Milnor fibers and modular resonance

Theorem (Cogolludo–Libgober, to appear Crelle; Libgober, Adv.
Stud. Pure Math. 2012)

Property H 6=1
1 (FA,Q) 6= 0 is combinatorial, when A has only double

and triple points.

natural Fp–basis for H1(M(A),Fp) indexed by L ∈ A
canonical element ω :=

∑
L∈A L ∈ H1(M(A),Fp)

modular Aomoto complex: (H•(M(A),Fp), ω·)
modular Aomoto–Betti number:
βp(A) := dimFp H1(H•(M(A),Fp), ω·)
βp(A) is combinatorial, cf. Orlik–Solomon, Invent. 1980
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An application to Milnor fibers

Milnor fibers via sl2–flat connections

Theorem (with A. Suciu, arXiv 2014)

Assume A has only double and triple points.
(1) β3(A) ≤ 2

(2) H 6=1
1 (FA,Q) =

( Q[t]
t2+t+1

)β3(A)

graphic arrangement AΓ: hyperplanes zi = zj , for {i , j} ∈ E
generic section of AΓ has only double and triple points

Theorem (with A. Măcinic, Topology Appl. 2009)

Formula (2) above holds for AΓ.
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