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Integrability≡ internal symmetry, existence of invariants, computing general solution
etc.
Question!Is there any invariant Kn ≡ K(xn, xn−1) (conservation law,
i.e....Kn−1 = Kn = Kn+1 = ...) of the above equation? If yes can it be computed
algorithmically? Main difficulty: the discrete character because the equation is on the
lattice (not local) and generic initial conditions may lead after some iterations to
singularities. In our example we look for possible sources of singularities, namely roots
of denominator. Suppose that starting from an initial condition xn−1 = f we get
xn = ǫ → 0.
Iterating:
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xn+2 = −xn+1 − xn + z/xn+1 + c = −∞− ǫ− z
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Singularity pattern (f , 0,∞,∞, 0,−f ). So after a finite number of steps the

singularities are confined and initial information is recovered- singularity confinement

criterion
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Our example can be written as:

φ :

{
xn+1 = yn
yn+1 = −xn − yn + a

yn

. (1)

seen as a chain of birational mappings ... → (x , y) → (x , y) → (x̄ , ȳ) → ... where
x = xn−1, x = xn, x̄ = xn+1 and so on.
Each step is an automorphism of the field of rational functions C(x , y)
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Our example can be written as:

φ :

{
xn+1 = yn
yn+1 = −xn − yn + a

yn

. (1)

seen as a chain of birational mappings ... → (x , y) → (x , y) → (x̄ , ȳ) → ... where
x = xn−1, x = xn, x̄ = xn+1 and so on.
Each step is an automorphism of the field of rational functions C(x , y)
Singularity confinement:

(f , 0)
︸ ︷︷ ︸
(x0,y0)

→ (0,∞)
︸ ︷︷ ︸
(x1,y1)

→ (∞,∞)
︸ ︷︷ ︸
(x2,y2)

→ (∞, 0)
︸ ︷︷ ︸
(x3,y3)

→ (0, f )
︸ ︷︷ ︸
(x4,y4)

and the secret is the follwing:
If (x0, y0) = (f , ǫ) then the foolowing products are finite

x1y1 = a+ O(ǫ),
x2

y2
= −1 + O(ǫ), x3y3 = −a+ O(ǫ)
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So lets construct a surface by glueing

C
2 ∪ C

2 =

(
x1,

1

x1y1

)
∪

(
x1y1,

1

y1

)
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But this is nothing but blow up of the affine space SpecC[x ,Y ] with the center
(x ,Y ) = (0, 0) which gives the surface (Y = 1/y):

X1 = {(x ,Y , [z0 : z1]) ∈ SpecC[x ,Y ]× P
1|xz0 = Yz1} =

= SpecC[x , 1/xy ] ∪ SpecC[xy , 1/y ]
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So lets construct a surface by glueing

C
2 ∪ C

2 =

(
x1,

1

x1y1

)
∪

(
x1y1,

1

y1

)

But this is nothing but blow up of the affine space SpecC[x ,Y ] with the center
(x ,Y ) = (0, 0) which gives the surface (Y = 1/y):

X1 = {(x ,Y , [z0 : z1]) ∈ SpecC[x ,Y ]× P
1|xz0 = Yz1} =

= SpecC[x , 1/xy ] ∪ SpecC[xy , 1/y ]

So by blowing up C2 in the points
(x1, y1) = (0,∞), (x2, y2) = (∞,∞), (x3, y3) = (∞, 0) the equation then make sense
on this new surface.
Accordingly we do analize any discrete order two nonlinear equation by identifying the
singularities and blow them up.
From now on we shall replace C2 with P1 × P1 and any nonlinear equation will be a
birational mapping ϕ : P1 × P1 → P1 × P1 After blowing up the singular points we get
a surface X and our mapping is lifted to a regular mapping:

ϕ : X → P
1 × P

1

Adrian-Stefan Carstea, Tomoyuki Takenawa
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Algorithm for analysing mappings

check if ϕ : X → X is free from singularities. If no, then do another series of
blow ups and so on, until we get finally a new final surface S and the final
mapping ϕ : S → S without any singularity
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Algorithm for analysing mappings

check if ϕ : X → X is free from singularities. If no, then do another series of
blow ups and so on, until we get finally a new final surface S and the final
mapping ϕ : S → S without any singularity

from the nonlinear mapping we go to the induced bundle mapping
ϕ∗ : Pic(S) → Pic(S) whose action on the Picard group is linear.

in the Pic(S) where the dynamics is linear one can find invariants, type of
surface, and Weyl group (as the orthogonal complement of the surface Dynkin
diagram)

back to the nonlinear world, by computing the real invariants as proper
transforms of the those found above

integrability = Weyl group of affine type (and S is a rational elliptic surface)

linearisability = infinite number of blow ups, analytical stability, ruled surface S
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Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.
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Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.

Halphen surface of index m: A rational surface X is called a Halphen surface of index

m if the anticanonical divisor class −KX is decomposed into prime divisors as
[−KX ] = D =

∑
miDi (mi ≥ 1) such that Di · KX = 0 Halphen surfaces can be

obtained from P1 × P1 by succesive 8 blow-ups. In addition the dimension of the linear
system | − kKX | is zero for k = 1, . . . ,m− 1 and 1 for k = m. Here, the linear system
| −mKX | is the set of curves on P1 × P1 of degree (2m, 2m) passing through each
point of blow-up with multiplicity m.
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Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.

Halphen surface of index m: A rational surface X is called a Halphen surface of index

m if the anticanonical divisor class −KX is decomposed into prime divisors as
[−KX ] = D =

∑
miDi (mi ≥ 1) such that Di · KX = 0 Halphen surfaces can be

obtained from P1 × P1 by succesive 8 blow-ups. In addition the dimension of the linear
system | − kKX | is zero for k = 1, . . . ,m− 1 and 1 for k = m. Here, the linear system
| −mKX | is the set of curves on P1 × P1 of degree (2m, 2m) passing through each
point of blow-up with multiplicity m.

If the fibers contain exceptional curves of first kind the elliptic surface is called
relatively non-minimal. To make it minimal one has to blow down that curves.
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Analytical stability and blowing-down structure
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Analytical stability and blowing-down structure

Let φ : C2 → C2 be a birational automorphism with iterates growing quadratically
with n.
For any such automorphism we can blow up P1 × P1 and construct a rational surface
X such that: φ̃ : X → X and φ̃ is analytically stable which means:
(φ̃∗)n = (φ̃n)∗ : Pic(X ) → Pic(X )
Analitical stability is equivalent with the following: There is no divisor D such that
exist k > 0 and φ̃(D) =point, φ̃k (D) = indeterminate

D → • → • → ...• → D′

X

µ

��

φ̃
// X

µ

��

P1 × P1
φ

// P1 × P1

Adrian-Stefan Carstea, Tomoyuki Takenawa
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compute the surface X where φ̃ : X → X is analitically stable
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compute the surface X where φ̃ : X → X is analitically stable

there is a singularity pattern • → D1 → D2 → ... → Dk → • having (−1) curves
in the components of some Di and this set of (−1) curves is preserved by the
action of φ̃ : X → X .
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there is a singularity pattern • → D1 → D2 → ... → Dk → • having (−1) curves
in the components of some Di and this set of (−1) curves is preserved by the
action of φ̃ : X → X .

Blow down the (−1) curves in the following way: Let C be the (−1) divisor
class and F1, F2 two divisor classes such that

F1 · F1 = F2 · F2 = 0, F1 · F2 = 1, C · F1 = C · F2 = 0
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compute the surface X where φ̃ : X → X is analitically stable

there is a singularity pattern • → D1 → D2 → ... → Dk → • having (−1) curves
in the components of some Di and this set of (−1) curves is preserved by the
action of φ̃ : X → X .

Blow down the (−1) curves in the following way: Let C be the (−1) divisor
class and F1, F2 two divisor classes such that

F1 · F1 = F2 · F2 = 0, F1 · F2 = 1, C · F1 = C · F2 = 0

all the above procedure is allowed by the Castelnuovo theorem, and if
dim|F1| =dim|F2| = 1 we can put |F1| = α1x

′ + β1y
′, |F2| = α2x

′′ + β2y
′′
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compute the surface X where φ̃ : X → X is analitically stable

there is a singularity pattern • → D1 → D2 → ... → Dk → • having (−1) curves
in the components of some Di and this set of (−1) curves is preserved by the
action of φ̃ : X → X .

Blow down the (−1) curves in the following way: Let C be the (−1) divisor
class and F1, F2 two divisor classes such that

F1 · F1 = F2 · F2 = 0, F1 · F2 = 1, C · F1 = C · F2 = 0

all the above procedure is allowed by the Castelnuovo theorem, and if
dim|F1| =dim|F2| = 1 we can put |F1| = α1x

′ + β1y
′, |F2| = α2x

′′ + β2y
′′

the genus formula is helping here g(C) = 1 + 1
2
(C2 + C · KX ) which must be

zero
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compute the surface X where φ̃ : X → X is analitically stable

there is a singularity pattern • → D1 → D2 → ... → Dk → • having (−1) curves
in the components of some Di and this set of (−1) curves is preserved by the
action of φ̃ : X → X .

Blow down the (−1) curves in the following way: Let C be the (−1) divisor
class and F1, F2 two divisor classes such that

F1 · F1 = F2 · F2 = 0, F1 · F2 = 1, C · F1 = C · F2 = 0

all the above procedure is allowed by the Castelnuovo theorem, and if
dim|F1| =dim|F2| = 1 we can put |F1| = α1x

′ + β1y
′, |F2| = α2x

′′ + β2y
′′

the genus formula is helping here g(C) = 1 + 1
2
(C2 + C · KX ) which must be

zero

then we have a new coordinate system where X is minimal given by the
following transformation:

C
2 ∋ (x , y) −→

(
y ′

x ′
,
y ′′

x ′′

)
∈ P

1 × P
1

Adrian-Stefan Carstea, Tomoyuki Takenawa
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Singularities and surfaces

Basic example

xn+1 = −xn−1
(xn − a)(xn − 1/a)

(xn + a)(xn + 1/a)
(2)

x = y

y = −x
(y − a)(y − 1/a)

(y + a)(y + 1/a)
(3)

Adrian-Stefan Carstea, Tomoyuki Takenawa
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Singularities and surfaces

Basic example

xn+1 = −xn−1
(xn − a)(xn − 1/a)

(xn + a)(xn + 1/a)
(2)

x = y

y = −x
(y − a)(y − 1/a)

(y + a)(y + 1/a)
(3)

Indeterminate points for φ and φ−1:

P1 : (x , y) = (0,−a), P2 : (x , y) = (0,−1/a),

P3 : (X , y) = (0, a), P4 : (X , y) = (0, 1/a),

P5 : (x , y) = (a, 0), P6 : (x , y) = (1/a, 0),

P7 : (x ,Y ) = (−a, 0), P8 : (x ,Y ) = (−1/a, 0).

Adrian-Stefan Carstea, Tomoyuki Takenawa
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Figure: Space of initial conditions and orthogonal complement
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The Picard group of X is a Z-module

Pic(X ) = ZHx ⊕ ZHy ⊕
8⊕

i=1

ZEi ,

Hx , Hy are the total transforms of the lines x = const., y = const.
Ei are the total transforms of the eight blowing up points.
The intersection form:

Hz · Hw = 1− δzw , Ei · Ej = −δij , Hz · Ek = 0

for z,w = x , y . Anti-canonical divisor of X:

−KX = 2Hx + 2Hy −
8∑

i=1

Ei .
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Minimization and invariants

If A = h0Hx + h1Hy +
∑8

i=1 eiEi is an element of the Picard lattice (hi , ej ∈ Z) the
induced bundle mapping is acting on it as
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Minimization and invariants

If A = h0Hx + h1Hy +
∑8

i=1 eiEi is an element of the Picard lattice (hi , ej ∈ Z) the
induced bundle mapping is acting on it as

φ∗(h0, h1, e1, ..., e8)

=(h0, h1, e1, ..., e8)




2 1 0 0 0 0 −1 −1 −1 −1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0




.
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Minimization and invariants

If A = h0Hx + h1Hy +
∑8

i=1 eiEi is an element of the Picard lattice (hi , ej ∈ Z) the
induced bundle mapping is acting on it as

φ∗(h0, h1, e1, ..., e8)

=(h0, h1, e1, ..., e8)




2 1 0 0 0 0 −1 −1 −1 −1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0




.

It preserves the decomposition of −KX =
∑3

i=0 Di :

D0 = Hx − E1 − E2, D1 = Hy − E5 − E6

D2 = Hx − E3 − E4, D3 = Hy − E7 − E8
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Minimization and invariants

there are many elliptic curves corresponding to the this anti-canonical class (these
curves pass through all Ei for any k).

F ≡αxy − β((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0

⇔ kxy − ((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0.
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Minimization and invariants

there are many elliptic curves corresponding to the this anti-canonical class (these
curves pass through all Ei for any k).

F ≡αxy − β((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0

⇔ kxy − ((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0.

this family of curves defines a rational elliptic surface.

Adrian-Stefan Carstea, Tomoyuki Takenawa



Minimization and invariants

there are many elliptic curves corresponding to the this anti-canonical class (these
curves pass through all Ei for any k).

F ≡αxy − β((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0

⇔ kxy − ((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0.

this family of curves defines a rational elliptic surface.

anti-canonical class is preserved by the mapping, the linear system is not. More
precisely the action changes k in −k (the mapping exchange fibers of the elliptic
fibration)
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Minimization and invariants

there are many elliptic curves corresponding to the this anti-canonical class (these
curves pass through all Ei for any k).

F ≡αxy − β((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0

⇔ kxy − ((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0.

this family of curves defines a rational elliptic surface.

anti-canonical class is preserved by the mapping, the linear system is not. More
precisely the action changes k in −k (the mapping exchange fibers of the elliptic
fibration)

So the conservation law will be:

I =

(
(x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)

xy

)2
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Minimization and invariants

Symmetries

Related to orthogonal complement of the space of initial condition A
(1)
3

rankPic(X ) = rank < H0,H1,E1, ...E8 >Z= 10

Define:

< D >=
3∑

i=0

ZDi

< D >⊥= {α ∈ Pic(X )|α · Di = 0, i = 0, 3}
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Minimization and invariants

Symmetries

Related to orthogonal complement of the space of initial condition A
(1)
3

rankPic(X ) = rank < H0,H1,E1, ...E8 >Z= 10

Define:

< D >=
3∑

i=0

ZDi

< D >⊥= {α ∈ Pic(X )|α · Di = 0, i = 0, 3}

which have 6-generators:

< D >⊥=< α0, α1, ..., α5 >Z

α0 = E4 − E3, α1 = E1 − E2, α2 = H1 − E1 − E5

α3 = H0 − E3 − E7, α4 = E5 − E6, α5 = E8 − E7
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Minimization and invariants

Symmetries

Related to orthogonal complement of the space of initial condition A
(1)
3

rankPic(X ) = rank < H0,H1,E1, ...E8 >Z= 10

Define:

< D >=
3∑

i=0

ZDi

< D >⊥= {α ∈ Pic(X )|α · Di = 0, i = 0, 3}

which have 6-generators:

< D >⊥=< α0, α1, ..., α5 >Z

α0 = E4 − E3, α1 = E1 − E2, α2 = H1 − E1 − E5

α3 = H0 − E3 − E7, α4 = E5 − E6, α5 = E8 − E7

Elementary reflections:

wi : Pic(x) → Pic(X ),wi (αj ) = αj − cijαi

where cji = 2(αj · αi )/(αi · αi ) looks precisely as an affine Cartan matrix of D
(1)
5 -type
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Minimization and invariants

Symmetries

Related to orthogonal complement of the space of initial condition A
(1)
3

rankPic(X ) = rank < H0,H1,E1, ...E8 >Z= 10

Define:

< D >=
3∑

i=0

ZDi

< D >⊥= {α ∈ Pic(X )|α · Di = 0, i = 0, 3}

which have 6-generators:

< D >⊥=< α0, α1, ..., α5 >Z

α0 = E4 − E3, α1 = E1 − E2, α2 = H1 − E1 − E5

α3 = H0 − E3 − E7, α4 = E5 − E6, α5 = E8 − E7

Elementary reflections:

wi : Pic(x) → Pic(X ),wi (αj ) = αj − cijαi

where cji = 2(αj · αi )/(αi · αi ) looks precisely as an affine Cartan matrix of D
(1)
5 -type

Permutation of roots:

σ10(α0, α1, α2, α3, α4, α5) = (α1, α0, α2, α3, α4, α5)

σtot(α0, α1, α2, α3, α4, α5) = (α5, α4, α3, α2, α1, α0)

Hence the group generated by reflections and permutations becomes an extended
Weyl group

W̃ (D
(1)
5 ) =< w0,w1, ...,w5, σ10, σtot >
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Minimization and invariants

This extended Weyl group becomes the group of Cremona isometries for the space of
initial conditions X since:

preserves the intersection form
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Minimization and invariants

This extended Weyl group becomes the group of Cremona isometries for the space of
initial conditions X since:

preserves the intersection form

canonical divisor KX (which is nothing but the null vector δ of the Cartan
matrix)
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Minimization and invariants

This extended Weyl group becomes the group of Cremona isometries for the space of
initial conditions X since:

preserves the intersection form

canonical divisor KX (which is nothing but the null vector δ of the Cartan
matrix)

semigroup of effective classes of divisors

Adrian-Stefan Carstea, Tomoyuki Takenawa



Minimization and invariants

This extended Weyl group becomes the group of Cremona isometries for the space of
initial conditions X since:

preserves the intersection form

canonical divisor KX (which is nothing but the null vector δ of the Cartan
matrix)

semigroup of effective classes of divisors
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Minimization and invariants

This extended Weyl group becomes the group of Cremona isometries for the space of
initial conditions X since:

preserves the intersection form

canonical divisor KX (which is nothing but the null vector δ of the Cartan
matrix)

semigroup of effective classes of divisors

Accordingly our mapping lives in a Weyl group and has the following decomposition in
elementary reflections:

φ∗ = σtot ◦ w3 ◦ w5 ◦ w4 ◦ w3

All elements ω ∈ W̃ (D
(1)
5 ) which commutes with φ∗, namely (ω ◦ φ∗ = φ∗ ◦ ω) form

the symmetries of the mapping.
The equation is related to the translations in this affine Weyl group. In general for an
affine Weyl group with null vector δ the traslation of an element D with respect to the
root αi is given by

tαi
: D → D − (D, δ)αi + (D, αi + δ)δ

and our mapping is ”the fourth root” of a translation:

φ4
∗ ≡ tα3 ◦ tα3 ◦ tα4 ◦ tα5 = t2α3+α4+α5
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Minimization and invariants

Differential Nahm equations are nonlinear ODE order two describing symmetric
monopoles associted to some rotational symmetry groups. The solutions are expressed
through rational expressions of Weierstrass elliptic functions and their derivatives
(Hitchin, Manton, Murray -’95)
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Minimization and invariants

Differential Nahm equations are nonlinear ODE order two describing symmetric
monopoles associted to some rotational symmetry groups. The solutions are expressed
through rational expressions of Weierstrass elliptic functions and their derivatives
(Hitchin, Manton, Murray -’95) Three types of Nahm systems:
Tetrahedral symmetry can be simplified to:

ẋ = x2 − y2

ẏ = −2xy

with the invariant, K = 3x2y − y3
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Minimization and invariants

Differential Nahm equations are nonlinear ODE order two describing symmetric
monopoles associted to some rotational symmetry groups. The solutions are expressed
through rational expressions of Weierstrass elliptic functions and their derivatives
(Hitchin, Manton, Murray -’95) Three types of Nahm systems:
Tetrahedral symmetry can be simplified to:

ẋ = x2 − y2

ẏ = −2xy

with the invariant, K = 3x2y − y3

Octahedral symmetry:

ẋ = 2x2 − 12y2

ẏ = −6xy − 4y2

with the invariant: K = y(2x + 3y)(x − y)2
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Minimization and invariants

Differential Nahm equations are nonlinear ODE order two describing symmetric
monopoles associted to some rotational symmetry groups. The solutions are expressed
through rational expressions of Weierstrass elliptic functions and their derivatives
(Hitchin, Manton, Murray -’95) Three types of Nahm systems:
Tetrahedral symmetry can be simplified to:

ẋ = x2 − y2

ẏ = −2xy

with the invariant, K = 3x2y − y3

Octahedral symmetry:

ẋ = 2x2 − 12y2

ẏ = −6xy − 4y2

with the invariant: K = y(2x + 3y)(x − y)2

Icosahedral symmetry:

ẋ = 2x2 − y2

ẏ = −10xy + y2

with the invariant: K = y(3x − y)2(4x + y)3
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Minimization and invariants

Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear
method. More precisely start with:

ẋi =
N∑

j=1

aijx
2
j +

∑

j<k

bijkxjxk + ci
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Minimization and invariants

Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear
method. More precisely start with:

ẋi =
N∑

j=1

aijx
2
j +

∑

j<k

bijkxjxk + ci

In order to find the time discretisation first we bilinearize it by using projective
substitution xi = Gi/F and we get:

DtGi · F =
N∑

j=1

aijG
2
j +

∑

j<k

bijkGjGk + ciF
2

Discretize the bilinear operator and impose gauge-invariance in the right hand side

DtGi · F → (ḠiF − Gi F̄ )/ǫ
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Minimization and invariants

Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear
method. More precisely start with:

ẋi =
N∑

j=1

aijx
2
j +

∑

j<k

bijkxjxk + ci

In order to find the time discretisation first we bilinearize it by using projective
substitution xi = Gi/F and we get:

DtGi · F =
N∑

j=1

aijG
2
j +

∑

j<k

bijkGjGk + ciF
2

Discretize the bilinear operator and impose gauge-invariance in the right hand side

DtGi · F → (ḠiF − Gi F̄ )/ǫ

ḠiF − Gi F̄ = ǫ(
N∑

j=1

aijGj Ḡj +
∑

j<k

bijk (αḠjGk + (1− α)Gj Ḡk ) + ciFF̄ )

or in the nonlinear form (Kahan ’93, Hirota-Kimura, ’00)

x̄i − xi = ǫ(
N∑

j=1

aijxj x̄j +
∑

j<k

bijk (αx̄jxk + (1− α)xj x̄k ) + ci )
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Minimization and invariants

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above
mentioned Nahm equations (Petrera, Pfadler, Suris ’12)
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Minimization and invariants

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above
mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

Tetrahedral symmetry:
x̄ − x = ǫ(xx̄ − y ȳ)

ȳ − y = −ǫ(y x̄ + xȳ)

with the integral of motion:

K(ǫ) =
3x2y − y3

1− ǫ2(x2 + y2)
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Minimization and invariants

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above
mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

Tetrahedral symmetry:
x̄ − x = ǫ(xx̄ − y ȳ)

ȳ − y = −ǫ(y x̄ + xȳ)

with the integral of motion:

K(ǫ) =
3x2y − y3

1− ǫ2(x2 + y2)

Octahedral symmetry
x̄ − x = ǫ(2xx̄ − 12y ȳ)

ȳ − y = −ǫ(3y x̄ + 3xȳ + 4y ȳ)

with the integral of motion:

K(ǫ) =
y(2x + 3y)(x − y)2

1− 10ǫ2(x2 + 4y2) + ǫ4(9x4 + 272x3y − 352xy3 + 696y4)
,

Adrian-Stefan Carstea, Tomoyuki Takenawa



Minimization and invariants

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above
mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

Tetrahedral symmetry:
x̄ − x = ǫ(xx̄ − y ȳ)

ȳ − y = −ǫ(y x̄ + xȳ)

with the integral of motion:

K(ǫ) =
3x2y − y3

1− ǫ2(x2 + y2)

Octahedral symmetry
x̄ − x = ǫ(2xx̄ − 12y ȳ)

ȳ − y = −ǫ(3y x̄ + 3xȳ + 4y ȳ)

with the integral of motion:

K(ǫ) =
y(2x + 3y)(x − y)2

1− 10ǫ2(x2 + 4y2) + ǫ4(9x4 + 272x3y − 352xy3 + 696y4)
,
Icosahedral symmetry

x̄ − x = ǫ(2xx̄ − y ȳ)

ȳ − y = −ǫ(5y x̄ + 5xȳ − y ȳ)
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Minimization and invariants

with the integral of motion:

K(ǫ) =
y(3x − y)2(4x + y)3

1 + ǫ2c2 + ǫ4c4 + ǫ6c6

with
c2 = −35x2 + 7y2

c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4)

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4
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Minimization and invariants

with the integral of motion:

K(ǫ) =
y(3x − y)2(4x + y)3

1 + ǫ2c2 + ǫ4c4 + ǫ6c6

with
c2 = −35x2 + 7y2

c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4)

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4

Question: Can one found these complicated integrals starting from singularity
structure associated to the equations?
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Minimization and invariants

with the integral of motion:

K(ǫ) =
y(3x − y)2(4x + y)3

1 + ǫ2c2 + ǫ4c4 + ǫ6c6

with
c2 = −35x2 + 7y2

c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4)

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4

Question: Can one found these complicated integrals starting from singularity
structure associated to the equations?

YES
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Minimization and invariants

with the integral of motion:

K(ǫ) =
y(3x − y)2(4x + y)3

1 + ǫ2c2 + ǫ4c4 + ǫ6c6

with
c2 = −35x2 + 7y2

c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4)

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4

Question: Can one found these complicated integrals starting from singularity
structure associated to the equations?

YES

The tetrahedral symmetry (simple can be brought to QRT):

x̄ − x = ǫ(xx̄ − y ȳ)

ȳ − y = −ǫ(y x̄ + xȳ)

use the substitution u = (1− ǫx)/y , v = (1 + ǫx)/y and we get QRT-mapping
(ū = v) and

3ūu − u(ū + u)− u2 + 4ǫ2 = 0
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Minimization and invariants

with the invariant

K =
−3(u − ū)2 + 4ǫ2

2ǫ2(u + ū)(uū − ǫ2)
≡

3x2y − y3

1− ǫ2(x2 + y2)

What we learn:
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Minimization and invariants

with the invariant

K =
−3(u − ū)2 + 4ǫ2

2ǫ2(u + ū)(uū − ǫ2)
≡

3x2y − y3

1− ǫ2(x2 + y2)

What we learn:
The red substitution looks like curves corresponding to divisor classes of some
blow-down structure.
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Minimization and invariants

with the invariant

K =
−3(u − ū)2 + 4ǫ2

2ǫ2(u + ū)(uū − ǫ2)
≡

3x2y − y3

1− ǫ2(x2 + y2)

What we learn:
The red substitution looks like curves corresponding to divisor classes of some
blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT
forms by these type of substitutions.
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Minimization and invariants

with the invariant

K =
−3(u − ū)2 + 4ǫ2

2ǫ2(u + ū)(uū − ǫ2)
≡

3x2y − y3

1− ǫ2(x2 + y2)

What we learn:
The red substitution looks like curves corresponding to divisor classes of some
blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT
forms by these type of substitutions.
So we need to analyse carefully the singularity structure. What is seen is that we have
more singularities and apparently some of them are useless making the corresponding
rational elliptic surface to be more complicated.
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Minimization and invariants

The case of octahedral symmetry:

x̄ − x = ǫ(2xx̄ − 12y ȳ)

ȳ − y = −ǫ(3y x̄ + 3xȳ + 4y ȳ)
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Minimization and invariants

The case of octahedral symmetry:

x̄ − x = ǫ(2xx̄ − 12y ȳ)

ȳ − y = −ǫ(3y x̄ + 3xȳ + 4y ȳ)

We simplify by the following:
x = 1

3
(χ− 2y), x̄ = 1

3
(χ̄− 2ȳ), u = (1− ǫχ)/y , v = (1 + ǫχ)/y to the non-QRT

type system:
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Minimization and invariants

The case of octahedral symmetry:

x̄ − x = ǫ(2xx̄ − 12y ȳ)

ȳ − y = −ǫ(3y x̄ + 3xȳ + 4y ȳ)

We simplify by the following:
x = 1

3
(χ− 2y), x̄ = 1

3
(χ̄− 2ȳ), u = (1− ǫχ)/y , v = (1 + ǫχ)/y to the non-QRT

type system:





ū = v

v̄ =
(u + 2v − 20ǫ)(v + 10ǫ)

4u − v + 10ǫ

. (4)
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Minimization and invariants

The case of octahedral symmetry:

x̄ − x = ǫ(2xx̄ − 12y ȳ)

ȳ − y = −ǫ(3y x̄ + 3xȳ + 4y ȳ)

We simplify by the following:
x = 1

3
(χ− 2y), x̄ = 1

3
(χ̄− 2ȳ), u = (1− ǫχ)/y , v = (1 + ǫχ)/y to the non-QRT

type system:





ū = v

v̄ =
(u + 2v − 20ǫ)(v + 10ǫ)

4u − v + 10ǫ

. (4)

The space of initial conditions is given by the P1 × P1 blown up at the following nine
points:

E1 : (u, v) = (−10ǫ, 0), E2(0, 10ǫ), E3(10ǫ, 5ǫ),

E4(5ǫ, 0), E5(0,−5ǫ), E6(−5ǫ,−10ǫ)

E7(∞,∞), E8 : (1/u, u/v) = (0,−1/2), E9 : (1/u, u/v) = (0,−2).
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Minimization and invariants

The action on the Picard group:

H̄u = 2Hu + Hv − E1 − E3 − E7 − E8, H̄v = Hu

Ē1 = E2, Ē2 = Hu − E3, Ē3 = E4, Ē4 = E5, Ē5 = E6,

Ē6 = Hu − E1, Ē7 = Hu − E8, Ē8 = E9, Ē9 = Hu − E7.
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Minimization and invariants

The action on the Picard group:

H̄u = 2Hu + Hv − E1 − E3 − E7 − E8, H̄v = Hu

Ē1 = E2, Ē2 = Hu − E3, Ē3 = E4, Ē4 = E5, Ē5 = E6,

Ē6 = Hu − E1, Ē7 = Hu − E8, Ē8 = E9, Ē9 = Hu − E7.

Three invariant divisor classes:

α0 = Hu + Hv − E1 − E2 − E7, α1 = Hu + Hv − E1 − E2 − E8 − E9,

α2 = E7 − E8 − E9, α3 = Hu + Hv − E3 − E4 − E5 − E6 − E7.
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Minimization and invariants

The action on the Picard group:

H̄u = 2Hu + Hv − E1 − E3 − E7 − E8, H̄v = Hu

Ē1 = E2, Ē2 = Hu − E3, Ē3 = E4, Ē4 = E5, Ē5 = E6,

Ē6 = Hu − E1, Ē7 = Hu − E8, Ē8 = E9, Ē9 = Hu − E7.

Three invariant divisor classes:

α0 = Hu + Hv − E1 − E2 − E7, α1 = Hu + Hv − E1 − E2 − E8 − E9,

α2 = E7 − E8 − E9, α3 = Hu + Hv − E3 − E4 − E5 − E6 − E7.

The curve corresponding to α0 is a (-1) curve which must be blown down.
E1 → Ha = Hu + Hv − E2 − E7 and E2 → Hb = Hu + Hv − E1 − E7, 0-curves
intersecting each other: The corresponding curves are given by:

a1u + a2(v − 10ǫ) = 0, b1(u + 10ǫ) + b2v = 0
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The action on the Picard group:

H̄u = 2Hu + Hv − E1 − E3 − E7 − E8, H̄v = Hu

Ē1 = E2, Ē2 = Hu − E3, Ē3 = E4, Ē4 = E5, Ē5 = E6,

Ē6 = Hu − E1, Ē7 = Hu − E8, Ē8 = E9, Ē9 = Hu − E7.

Three invariant divisor classes:

α0 = Hu + Hv − E1 − E2 − E7, α1 = Hu + Hv − E1 − E2 − E8 − E9,

α2 = E7 − E8 − E9, α3 = Hu + Hv − E3 − E4 − E5 − E6 − E7.

The curve corresponding to α0 is a (-1) curve which must be blown down.
E1 → Ha = Hu + Hv − E2 − E7 and E2 → Hb = Hu + Hv − E1 − E7, 0-curves
intersecting each other: The corresponding curves are given by:

a1u + a2(v − 10ǫ) = 0, b1(u + 10ǫ) + b2v = 0

So if we set a = (v − 10ǫ)/u b = (u + 10ǫ)/v our dynamical system becomes





ā =
3ab − 2a+ 2

a− 4

b̄ =
4− a

2a+ 1

. (5)
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Minimization and invariants

This system has the following space of initial conditions which define a minimal
rational elliptic surface:

F1 : (a, b) = (0,∞), F2 : (a, b) = (∞, 0),

F3 : (a, b) = (−1/2, 4), F4 : (a, b) = (−2,∞)

F5 : (a, b) = (∞,−2), F6 : (a, b) = (4,−1/2),

F7 : (a, b) = (−2,−1/2), F8 : (a, b) = (−1/2,−2).
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Minimization and invariants

This system has the following space of initial conditions which define a minimal
rational elliptic surface:

F1 : (a, b) = (0,∞), F2 : (a, b) = (∞, 0),

F3 : (a, b) = (−1/2, 4), F4 : (a, b) = (−2,∞)

F5 : (a, b) = (∞,−2), F6 : (a, b) = (4,−1/2),

F7 : (a, b) = (−2,−1/2), F8 : (a, b) = (−1/2,−2).

The invariant is nothing but the proper transform of the anti-canonical divisor:

KX = 2Ha + 2Hb −⊕8
i=1Fi

namely

K =
(ab − 1)(ab + 2a+ 2b − 5)

4ab + 2a+ 2b + 1
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Minimization and invariants

This system has the following space of initial conditions which define a minimal
rational elliptic surface:

F1 : (a, b) = (0,∞), F2 : (a, b) = (∞, 0),

F3 : (a, b) = (−1/2, 4), F4 : (a, b) = (−2,∞)

F5 : (a, b) = (∞,−2), F6 : (a, b) = (4,−1/2),

F7 : (a, b) = (−2,−1/2), F8 : (a, b) = (−1/2,−2).

The invariant is nothing but the proper transform of the anti-canonical divisor:

KX = 2Ha + 2Hb −⊕8
i=1Fi

namely

K =
(ab − 1)(ab + 2a+ 2b − 5)

4ab + 2a+ 2b + 1

which is the same as the one given at the beginning [Suris et al. 2012]

K(ǫ) =
y(2x + 3y)(x − y)2

1− 10ǫ2(x2 + 4y2) + ǫ4(9x4 + 272x3y − 352xy3 + 696y4)
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Minimization and invariants

The case of icosahedral symmetry:

x̄ − x = ǫ(2xx̄ − y ȳ)

ȳ − y = −ǫ(5y x̄ + 5xȳ − y ȳ)
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Minimization and invariants

The case of icosahedral symmetry:

x̄ − x = ǫ(2xx̄ − y ȳ)

ȳ − y = −ǫ(5y x̄ + 5xȳ − y ȳ)

The space of initial condition is given by the P1 × P1 blown up at the following 12
points:

E1 : (x , y) = (∞,∞), E2(−1/7ǫ,−3/7ǫ), E3(−1/7ǫ, 4/7ǫ),

E4(1/7ǫ, 3/7ǫ), E5(1/7ǫ,−4/7ǫ)E6(1/5ǫ, 0),

E7(1/3ǫ, 0), E8(1/ǫ, 0), E9(−1/ǫ, 0),

E10(−1/3ǫ, 0), E11(−1/5ǫ, 0).E12 : (1/x , x/y) = (0, 1/3)
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The case of icosahedral symmetry:

x̄ − x = ǫ(2xx̄ − y ȳ)

ȳ − y = −ǫ(5y x̄ + 5xȳ − y ȳ)

The space of initial condition is given by the P1 × P1 blown up at the following 12
points:

E1 : (x , y) = (∞,∞), E2(−1/7ǫ,−3/7ǫ), E3(−1/7ǫ, 4/7ǫ),

E4(1/7ǫ, 3/7ǫ), E5(1/7ǫ,−4/7ǫ)E6(1/5ǫ, 0),

E7(1/3ǫ, 0), E8(1/ǫ, 0), E9(−1/ǫ, 0),

E10(−1/3ǫ, 0), E11(−1/5ǫ, 0).E12 : (1/x , x/y) = (0, 1/3)

Singularity confinement gives the following pattern:

Hy − E1 (y = ∞) → point → · · · (4 points) · · · → point → Hy − E1

· · · → point → point → Hx − E1 (x = ∞) → point → point → · · · .
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The case of icosahedral symmetry:

x̄ − x = ǫ(2xx̄ − y ȳ)

ȳ − y = −ǫ(5y x̄ + 5xȳ − y ȳ)

The space of initial condition is given by the P1 × P1 blown up at the following 12
points:

E1 : (x , y) = (∞,∞), E2(−1/7ǫ,−3/7ǫ), E3(−1/7ǫ, 4/7ǫ),

E4(1/7ǫ, 3/7ǫ), E5(1/7ǫ,−4/7ǫ)E6(1/5ǫ, 0),

E7(1/3ǫ, 0), E8(1/ǫ, 0), E9(−1/ǫ, 0),

E10(−1/3ǫ, 0), E11(−1/5ǫ, 0).E12 : (1/x , x/y) = (0, 1/3)

Singularity confinement gives the following pattern:

Hy − E1 (y = ∞) → point → · · · (4 points) · · · → point → Hy − E1

· · · → point → point → Hx − E1 (x = ∞) → point → point → · · · .

The curve 4x + y = 0 : Hx + Hy − E1 − E3 − E5 is invariant and we blow it down
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So E3 → Hv = Hx + Hy − E1 − E5 and E5 → Hu = Hx + Hy − E1 − E3 with

Hu · Hu = Hv · Hv = 0,Hu · Hv = 1

where the linear systems of Hu and Hv are given by

|Hu | :u0(1 + 7ǫx) + u1(4x + y)

|Hv | :v0(1− 7ǫx) + v1(4x + y).
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Minimization and invariants

So E3 → Hv = Hx + Hy − E1 − E5 and E5 → Hu = Hx + Hy − E1 − E3 with

Hu · Hu = Hv · Hv = 0,Hu · Hv = 1

where the linear systems of Hu and Hv are given by

|Hu | :u0(1 + 7ǫx) + u1(4x + y)

|Hv | :v0(1− 7ǫx) + v1(4x + y).

If we take the new variables u and v as

u =
2(1 + 7ǫx)

ǫ(4x + y)
, v =

2(1− 7ǫx)

ǫ(4x + y)
,
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Minimization and invariants

So E3 → Hv = Hx + Hy − E1 − E5 and E5 → Hu = Hx + Hy − E1 − E3 with

Hu · Hu = Hv · Hv = 0,Hu · Hv = 1

where the linear systems of Hu and Hv are given by

|Hu | :u0(1 + 7ǫx) + u1(4x + y)

|Hv | :v0(1− 7ǫx) + v1(4x + y).

If we take the new variables u and v as

u =
2(1 + 7ǫx)

ǫ(4x + y)
, v =

2(1− 7ǫx)

ǫ(4x + y)
,

then we have a new space for initial conditions given by nine blow up points:

F1 : (u, v) = (2,−2),F2 : (0,−4),F3 : (4, 0),F4 : (6,−1),F5 : (5,−2),

F6 : (4,−3),F7 : (3,−4),F8 : (2,−5),F9 : (1,−6).
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Minimization and invariants

The dynamical system becomes an automorphism having the following topological
singularity patterns

Hv − F9 → F2 → F1 → F3 → Hu − F4

Hv − F3 → F4 → F5 → F6 → F7 → F8 → F9 → Hu − F2

and Hu → Hu + Hv − F2 − F4.
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Minimization and invariants

The dynamical system becomes an automorphism having the following topological
singularity patterns

Hv − F9 → F2 → F1 → F3 → Hu − F4

Hv − F3 → F4 → F5 → F6 → F7 → F8 → F9 → Hu − F2

and Hu → Hu + Hv − F2 − F4.
The invariant (−1) curve Hu + Hv − F1 − F2 − F3, which should be blown down.

F3 → Hs = Hu + Hv − F1 − F2, F2 → Ht = Hu + Hv − F1 − F3

where the linear systems of Hs and Ht are given by

|Hs | :s0u(v + 2) + s1(u − v − 4)

|Ht | :t0v(u − 2) + t1(u − v − 4)
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Minimization and invariants

The dynamical system becomes an automorphism having the following topological
singularity patterns

Hv − F9 → F2 → F1 → F3 → Hu − F4

Hv − F3 → F4 → F5 → F6 → F7 → F8 → F9 → Hu − F2

and Hu → Hu + Hv − F2 − F4.
The invariant (−1) curve Hu + Hv − F1 − F2 − F3, which should be blown down.

F3 → Hs = Hu + Hv − F1 − F2, F2 → Ht = Hu + Hv − F1 − F3

where the linear systems of Hs and Ht are given by

|Hs | :s0u(v + 2) + s1(u − v − 4)

|Ht | :t0v(u − 2) + t1(u − v − 4)

and hence we take the new variables s and t as

s = −
3u(v + 2)

2(u − v − 4)
, t = −

3v(u − 2)

2(u − v − 4)
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Minimization and invariants





s̄ =
2st − 3s − 3t + 9

s + t − 3

t̄ =
2(s − 3)(t + 3)

3s − t − 9

.

with the blow-up points
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



s̄ =
2st − 3s − 3t + 9

s + t − 3

t̄ =
2(s − 3)(t + 3)

3s − t − 9

.

with the blow-up points

F ′

1 : (s, t) = (3, 0), F ′

2(0, 3), F ′

3(−3, 2), F ′

4 : (
s

t − 3
, t − 3) = (5, 0),

F ′

5(2, 3), F ′

6(3, 2), F ′

7 : (s − 3,
t

s − 3
) = (0, 5), F ′

8(2,−3)
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Minimization and invariants





s̄ =
2st − 3s − 3t + 9

s + t − 3

t̄ =
2(s − 3)(t + 3)

3s − t − 9

.

with the blow-up points

F ′

1 : (s, t) = (3, 0), F ′

2(0, 3), F ′

3(−3, 2), F ′

4 : (
s

t − 3
, t − 3) = (5, 0),

F ′

5(2, 3), F ′

6(3, 2), F ′

7 : (s − 3,
t

s − 3
) = (0, 5), F ′

8(2,−3)

The invariants can be computed by using the the anticanonical divisor:

K =
(s − t)2 + 4(s + t)− 21

(s − 2)(t − 2)(2st − 5s − 5t + 15)
=

−56ǫ6y(−3x + y)2(4x + y)3

d1d2d3
(6)

where

d1 = −3− 12ǫx + 15ǫ2x2 − 3ǫy − 17ǫ2xy + 4ǫ2y2

d2 = −3 + 12ǫx + 15ǫ2x2 + 3ǫy − 17ǫ2xy + 4ǫ2y2

d3 = −3 + 27ǫ2x2 + 10ǫ2xy + 10ǫ2y2.
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Minimization and invariants

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations
with the simplest nonlinearity?
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Minimization and invariants

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations
with the simplest nonlinearity?
Answer: The simplest nonlinear function is f (x) = |x | = 2max(0, x)− x and the
procedure of reducing a nonlinear discrete equation to one having only
max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or
tropicalisation.
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Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations
with the simplest nonlinearity?
Answer: The simplest nonlinear function is f (x) = |x | = 2max(0, x)− x and the
procedure of reducing a nonlinear discrete equation to one having only
max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or
tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling
Rmax = R ∪ {−∞} we introduce the semiring {Rmax,⊕,⊗, ε, e} through the
following definitions:

a⊕ b := max(a, b), a⊗ b := a+ b

ε := −∞, e := 0

The main news is that there is no additive inverse and the addition is idempotent,
making all calculation extremely hard.
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Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations
with the simplest nonlinearity?
Answer: The simplest nonlinear function is f (x) = |x | = 2max(0, x)− x and the
procedure of reducing a nonlinear discrete equation to one having only
max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or
tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling
Rmax = R ∪ {−∞} we introduce the semiring {Rmax,⊕,⊗, ε, e} through the
following definitions:

a⊕ b := max(a, b), a⊗ b := a+ b

ε := −∞, e := 0

The main news is that there is no additive inverse and the addition is idempotent,
making all calculation extremely hard.
A nonlinear discrete equation (ordinary or partial) with positive definite dependent

variable xn can be ultradiscretised or tropicalised using the following substitution and
formula:

xn = eXn/ǫ lim
ǫ→0+

ǫ ln(1 + xn) = max(0,Xn)
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Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations
with the simplest nonlinearity?
Answer: The simplest nonlinear function is f (x) = |x | = 2max(0, x)− x and the
procedure of reducing a nonlinear discrete equation to one having only
max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or
tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling
Rmax = R ∪ {−∞} we introduce the semiring {Rmax,⊕,⊗, ε, e} through the
following definitions:

a⊕ b := max(a, b), a⊗ b := a+ b

ε := −∞, e := 0

The main news is that there is no additive inverse and the addition is idempotent,
making all calculation extremely hard.
A nonlinear discrete equation (ordinary or partial) with positive definite dependent

variable xn can be ultradiscretised or tropicalised using the following substitution and
formula:

xn = eXn/ǫ lim
ǫ→0+

ǫ ln(1 + xn) = max(0,Xn)

Example:

xn+1xn−1 = a
1 + xn

x2n
, In =

a(1 + xn + xn+1) + x2nx
2
n+1

xnxn+1

If xn = exp(Xn/ǫ), a = expA/ǫ then we get the tropical equation and the invariant:
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Xn+1+Xn−1 = A+max(0,Xn)−2Xn, I = max(2Xn+2Xn+1,A,A+Xn,A+Xn+1)−Xn+1−Xn

Adrian-Stefan Carstea, Tomoyuki Takenawa
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Xn+1+Xn−1 = A+max(0,Xn)−2Xn, I = max(2Xn+2Xn+1,A,A+Xn,A+Xn+1)−Xn+1−Xn

Question: What is singularity here? Can one compute the invariant?
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Xn+1+Xn−1 = A+max(0,Xn)−2Xn, I = max(2Xn+2Xn+1,A,A+Xn,A+Xn+1)−Xn+1−Xn

Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a ”singularity
confinement” here?

Adrian-Stefan Carstea, Tomoyuki Takenawa



Minimization and invariants

Xn+1+Xn−1 = A+max(0,Xn)−2Xn, I = max(2Xn+2Xn+1,A,A+Xn,A+Xn+1)−Xn+1−Xn

Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a ”singularity
confinement” here?
YES! We shall thus examine the behaviour of a singularity appearing at, say, n = 1
where X1 = ǫ, while X0 is regular and look at the propagation of this singularity both

forwards and backwards. Introducing the notation µ ≡ max(ǫ, 0), the presence of µ
indicates that the value of X is singular. We get (for X0 > A):
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Xn+1+Xn−1 = A+max(0,Xn)−2Xn, I = max(2Xn+2Xn+1,A,A+Xn,A+Xn+1)−Xn+1−Xn

Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a ”singularity
confinement” here?
YES! We shall thus examine the behaviour of a singularity appearing at, say, n = 1
where X1 = ǫ, while X0 is regular and look at the propagation of this singularity both

forwards and backwards. Introducing the notation µ ≡ max(ǫ, 0), the presence of µ
indicates that the value of X is singular. We get (for X0 > A):
.
.
.
X−3 = A− ǫ
X−2 = X0 − A+ 2ǫ
X−1 = −X0 + A− ǫ
X0 = X0

X1 = ǫ
X2 = A− X0 − 2ǫ+ µ
X3 = 2X0 − A+ 3ǫ− 2µ
X4 = A− X0 − ǫ+ µ
X5 = −ǫ
X6 = X0 + 2ǫ
..
.
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Conclusions

Singularities are essential in analysing discrete dynamical systems.

The singularity structure may give a non-minimal elliptic surface. In order to
make it minimal one has to blow down some -1 divisor classes (one has to prove
the existence of the blow-down structure)

after minimization the mapping can be ”solved”

we expect to find analogies in the case of tropical dynamical systems using
tropical algebraic geometry.
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