Singularities and integrability of birational dynamical systems on the projective plane

Adrian-Stefan Carstea, Tomoyuki Takenawa

February 6, 2014
Research Group on Geometry and Physics
(http://events.theory.nipne.ro/gap/)
NIPNE, Bucharest, Romania
and
Tokyo University of Marine Science and Technology, Tokyo, Japan
From discrete equations to surface theory
From discrete equations to surface theory
Elliptic surfaces
From discrete equations to surface theory
Elliptic surfaces
Examples
Minimization and invariants

From discrete equations to surface theory
Elliptic surfaces
Examples
Non-minimal surfaces and blowing-down structure
Minimization and invariants

From discrete equations to surface theory
Elliptic surfaces
Examples
Non-minimal surfaces and blowing-down structure
Differential Nahm equations (basics)
From discrete equations to surface theory
Elliptic surfaces
Examples
Non-minimal surfaces and blowing-down structure
Differential Nahm equations (basics)
Hirota-Kimura discretisation
Minimization and invariants

From discrete equations to surface theory
Elliptic surfaces
Examples
Non-minimal surfaces and blowing-down structure
Differential Nahm equations (basics)
Hirota-Kimura discretisation
Discrete Nahm equations
• From discrete equations to surface theory
• Elliptic surfaces
• Examples
• Non-minimal surfaces and blowing-down structure
• Differential Nahm equations (basics)
• Hirota-Kimura discretisation
• Discrete Nahm equations
• Minimization of elliptic surfaces and invariants
Minimization and invariants

From discrete equations to surface theory
Elliptic surfaces
Examples
Non-minimal surfaces and blowing-down structure
Differential Nahm equations (basics)
Hirota-Kimura discretisation
Discrete Nahm equations
Minimization of elliptic surfaces and invariants
Tropical dynamical systems
From nonlinear discrete equations (mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations.
Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability ≡ internal symmetry, existence of invariants, computing general solution etc.
The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability\equiv internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e. \(K_{n-1} = K_n = K_{n+1} = \ldots \)) of the above equation? If yes can it be computed algorithmically?
From nonlinear discrete equations (mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations

Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability ≡ internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e. \(K_{n-1} = K_n = K_{n+1} = \ldots \)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f \) we get \(x_n = \epsilon \to 0 \).
From nonlinear discrete equations (mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability \(\equiv \) internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e. \(K_{n-1} = K_n = K_{n+1} = \ldots \)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to *singularities*. In our example we look for possible *sources* of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f \) we get \(x_n = \epsilon \to 0 \).

Iterating:
From nonlinear discrete equations (mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations

Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability ≡ internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e. \(K_{n-1} = K_n = K_{n+1} = \ldots \)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to *singularities*. In our example we look for possible *sources* of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f \) we get \(x_n = \epsilon \to 0 \).

Iterating:

\[x_{n+1} = -x_n - x_{n-1} + \frac{z}{x_n} + c = -f - \epsilon - \frac{z}{\epsilon} + c = \infty \]
The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations

Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability\(\equiv\) internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e.\(\ldots K_{n-1} = K_n = K_{n+1} = \ldots \)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to *singularities*. In our example we look for possible *sources* of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f \) we get \(x_n = \epsilon \rightarrow 0 \).

Iterating:

- \(x_{n+1} = -x_n - x_{n-1} + \frac{z}{x_n} + c = -f - \epsilon - \frac{z}{\epsilon} + c = \infty \)
- \(x_{n+2} = -x_{n+1} - x_n + \frac{z}{x_{n+1}} + c = -\infty - \epsilon - \frac{z}{\infty} + c = -\infty \)
Minimization and invariants

From nonlinear discrete equations (mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations

Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability \(\equiv\) internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1})\) (conservation law, i.e. \(K_{n-1} = K_n = K_{n+1} = \ldots\)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to **singularities**. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f\) we get \(x_n = \epsilon \to 0\).

Iterating:

- \(x_{n+1} = -x_n - x_{n-1} + z/x_n + c = -f - \epsilon - \frac{z}{\epsilon} + c = \infty\)
- \(x_{n+2} = -x_{n+1} - x_n + z/x_{n+1} + c = -\infty - \epsilon - \frac{z}{\infty} + c = -\infty\)
- \(x_{n+3} = -x_{n+2} - x_{n+1} + z/x_{n+2} + c = \infty - \infty - \frac{z}{\infty} + c|_{\epsilon \to 0} \to 0\)
From nonlinear discrete equations (_mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations

Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability \(\equiv \) internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e.\(K_{n-1} = K_n = K_{n+1} = \ldots \)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to **singularities**. In our example we look for possible **sources** of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f \) we get \(x_n = \epsilon \to 0 \).

Iterating:

- \(x_{n+1} = -x_n - x_{n-1} + z/x_n + c = -f - \epsilon - z/\epsilon + c = \infty \)
- \(x_{n+2} = -x_{n+1} - x_n + z/x_{n+1} + c = -\infty - \epsilon - z/\infty + c = -\infty \)
- \(x_{n+3} = -x_{n+2} - x_{n+1} + z/x_{n+2} + c = \infty - \infty - z/\infty + c|_{\epsilon \to 0} \to 0 \)
- \(x_{n+4} = -x_{n+3} - x_{n+2} + z/x_{n+3} + c = -f \)
From nonlinear discrete equations (mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

\[x_{n+1} + x_n + x_{n-1} = \frac{a}{x_n} \]

Integrability ≡ internal symmetry, existence of invariants, computing general solution etc.

Question! Is there any invariant \(K_n \equiv K(x_n, x_{n-1}) \) (conservation law, i.e. \(K_{n-1} = K_n = K_{n+1} = ... \)) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition \(x_{n-1} = f \) we get \(x_n = \epsilon \rightarrow 0 \).

Iterating:
- \(x_{n+1} = -x_n - x_{n-1} + \frac{z}{x_n} + c = -f - \epsilon - \frac{z}{\epsilon} + c = \infty \)
- \(x_{n+2} = -x_{n+1} - x_n + \frac{z}{x_{n+1}} + c = -\infty - \epsilon - \frac{z}{\infty} + c = -\infty \)
- \(x_{n+3} = -x_{n+2} - x_{n+1} + \frac{z}{x_{n+2}} + c = \infty - \infty - \frac{z}{\infty} + c|_{\epsilon \rightarrow 0} \rightarrow 0 \)
- \(x_{n+4} = -x_{n+3} - x_{n+2} + \frac{z}{x_{n+3}} + c = -f \)

Singularity pattern \((f, 0, \infty, \infty, 0, -f)\). So after a **finite** number of steps the singularities are confined and initial information is recovered — singularity confinement.
Our example can be written as:

\[\phi : \begin{cases}
 x_{n+1} = y_n \\
 y_{n+1} = -x_n - y_n + a/y_n
\end{cases} \quad (1) \]

seen as a chain of birational mappings \(\ldots \rightarrow (x, y) \rightarrow (x, y) \rightarrow (\bar{x}, \bar{y}) \rightarrow \ldots \) where \(x = x_{n-1}, \bar{x} = x_n, \bar{x} = x_{n+1} \) and so on.

Each step is an automorphism of the field of rational functions \(\mathbb{C}(x, y) \).
Our example can be written as:

\[
\phi : \begin{cases}
 x_{n+1} = y_n \\
 y_{n+1} = -x_n - y_n + \frac{a}{y_n}
\end{cases}
\]

(1)

seen as a chain of birational mappings ... \((x, y) \rightarrow (x, y) \rightarrow (\tilde{x}, \tilde{y}) \rightarrow ... \) where
\(x = x_{n-1}, \tilde{x} = x_n, \bar{x} = x_{n+1} \) and so on.

Each step is an automorphism of the field of rational functions \(\mathbb{C}(x, y) \)

Singularity confinement:

\[
(f, 0) \rightarrow (0, \infty) \rightarrow (\infty, \infty) \rightarrow (\infty, 0) \rightarrow (0, f)
\]

and the secret is the following:

If \((x_0, y_0) = (f, \varepsilon) \) then the following products are finite

\[
x_1 y_1 = a + O(\varepsilon), \quad \frac{x_2}{y_2} = -1 + O(\varepsilon), \quad x_3 y_3 = -a + O(\varepsilon)
\]
So let's construct a surface by glueing

\[\mathbb{C}^2 \cup \mathbb{C}^2 = \left(x_1, \frac{1}{x_1 y_1} \right) \cup \left(x_1 y_1, \frac{1}{y_1} \right) \]
So let's construct a surface by glueing

\[\mathbb{C}^2 \cup \mathbb{C}^2 = \left(x_1, \frac{1}{x_1y_1} \right) \cup \left(x_1y_1, \frac{1}{y_1} \right) \]

But this is nothing but blow up of the affine space \(\text{Spec} \mathbb{C}[x, Y] \) with the center \((x, Y) = (0, 0)\) which gives the surface \((Y = 1/y)\):

\[
X_1 = \{(x, Y, [z_0 : z_1]) \in \text{Spec} \mathbb{C}[x, Y] \times \mathbb{P}^1 | xz_0 = Yz_1 \} = \\
= \text{Spec} \mathbb{C}[x, 1/xy] \cup \text{Spec} \mathbb{C}[xy, 1/y]
\]
So let's construct a surface by glueing

\[\mathbb{C}^2 \cup \mathbb{C}^2 = \left(x_1, \frac{1}{x_1 y_1} \right) \cup \left(x_1 y_1, \frac{1}{y_1} \right) \]

But this is nothing but blow up of the affine space \(\text{Spec} \mathbb{C}[x, Y] \) with the center \((x, Y) = (0, 0)\) which gives the surface \((Y = 1/y)\):

\[X_1 = \{(x, Y, [z_0 : z_1]) \in \text{Spec} \mathbb{C}[x, Y] \times \mathbb{P}^1 | xz_0 = Yz_1\} = \]

\[= \text{Spec} \mathbb{C}[x, 1/xy] \cup \text{Spec} \mathbb{C}[xy, 1/y] \]

So by blowing up \(\mathbb{C}^2 \) in the points \((x_1, y_1) = (0, \infty), (x_2, y_2) = (\infty, \infty), (x_3, y_3) = (\infty, 0)\) the equation then make sense on this new surface.

Accordingly we do analyze any discrete order two nonlinear equation by identifying the singularities and blow them up.

From now on we shall replace \(\mathbb{C}^2 \) with \(\mathbb{P}^1 \times \mathbb{P}^1 \) and any nonlinear equation will be a birational mapping \(\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1 \times \mathbb{P}^1 \) After blowing up the singular points we get a surface \(X \) and our mapping is lifted to a regular mapping:

\[\varphi : X \rightarrow \mathbb{P}^1 \times \mathbb{P}^1 \]
Algorithm for analysing mappings

- check if $\varphi : X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi : S \rightarrow S$ without any singularity.
Algorithm for analysing mappings

- check if $\varphi : X \to X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi : S \to S$ without any singularity.

- from the nonlinear mapping we go to the induced bundle mapping $\varphi_* : \text{Pic}(S) \to \text{Pic}(S)$ whose action on the Picard group is linear.
Algorithm for analysing mappings

- check if $\varphi : X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi : S \rightarrow S$ without any singularity.

- from the nonlinear mapping we go to the induced bundle mapping $\varphi_* : \text{Pic}(S) \rightarrow \text{Pic}(S)$ whose action on the Picard group is linear.

- in the $\text{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
Algorithm for analysing mappings

- check if $\varphi : X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi : S \rightarrow S$ without any singularity.

- from the nonlinear mapping we go to the induced bundle mapping $\varphi_* : \text{Pic}(S) \rightarrow \text{Pic}(S)$ whose action on the Picard group is linear.

- in the $\text{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram).

- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above.
Algorithm for analysing mappings

- check if $\varphi : X \to X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi : S \to S$ without any singularity.

- from the nonlinear mapping we go to the induced bundle mapping $\varphi_* : \text{Pic}(S) \to \text{Pic}(S)$ whose action on the Picard group is linear.

- in the $\text{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram).

- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above.

- integrability = Weyl group of affine type (and S is a rational elliptic surface).
Algorithm for analysing mappings

- check if \(\varphi : X \to X \) is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface \(S \) and the final mapping \(\varphi : S \to S \) without any singularity.

- from the nonlinear mapping we go to the induced bundle mapping \(\varphi_* : \text{Pic}(S) \to \text{Pic}(S) \) whose action on the Picard group is linear.

- in the \(\text{Pic}(S) \) where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram).

- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above.

- integrability \(\equiv \) Weyl group of affine type (and \(S \) is a rational elliptic surface).

- linearisability \(\equiv \) infinite number of blow ups, analytical stability, ruled surface \(S \).
Rational elliptic surface:
A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi : X \to \mathbb{P}^1$ such that:

- for all but finitely many points $k \in \mathbb{P}^1$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection: $E \times \mathbb{P}^1 \to \mathbb{P}^1$ for any curve E
- no fibers contains exceptional curves of first kind.
A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi : X \to \mathbb{P}^1$ such that:

- for all but finitely many points $k \in \mathbb{P}^1$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection: $E \times \mathbb{P}^1 \to \mathbb{P}^1$ for any curve E
- no fibers contains exceptional curves of first kind.

Halphen surface of index m: A rational surface X is called a *Halphen surface of index m* if the anticanonical divisor class $-K_X$ is decomposed into prime divisors as $[-K_X] = D = \sum m_i D_i (m_i \geq 1)$ such that $D_i \cdot K_X = 0$ Halphen surfaces can be obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by successive 8 blow-ups. In addition the dimension of the linear system $|-kK_X|$ is zero for $k = 1, \ldots, m - 1$ and 1 for $k = m$. Here, the linear system $|-mK_X|$ is the set of curves on $\mathbb{P}^1 \times \mathbb{P}^1$ of degree $(2m, 2m)$ passing through each point of blow-up with multiplicity m.

Adrian-Stefan Carstea, Tomoyuki Takenawa
A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi : X \to \mathbb{P}^1$ such that:

- for all but finitely many points $k \in \mathbb{P}^1$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection: $E \times \mathbb{P}^1 \to \mathbb{P}^1$ for any curve E
- no fibers contains exceptional curves of first kind.

Halphen surface of index m: A rational surface X is called a Halphen surface of index m if the anticanonical divisor class $-K_X$ is decomposed into prime divisors as $[-K_X] = D = \sum m_i D_i (m_i \geq 1)$ such that $D_i \cdot K_X = 0$ Halphen surfaces can be obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by successive 8 blow-ups. In addition the dimension of the linear system $| -kK_X|$ is zero for $k = 1, \ldots, m - 1$ and 1 for $k = m$. Here, the linear system $| -mK_X|$ is the set of curves on $\mathbb{P}^1 \times \mathbb{P}^1$ of degree $(2m, 2m)$ passing through each point of blow-up with multiplicity m.

If the fibers contain exceptional curves of first kind the elliptic surface is called relatively non-minimal. To make it minimal one has to blow down that curves.

Adrian-Stefan Carstea, Tomoyuki Takenawa
Analytical stability and blowing-down structure
Let $\phi : \mathbb{C}^2 \to \mathbb{C}^2$ be a birational automorphism with iterates growing quadratically with n. For any such automorphism we can blow up $\mathbb{P}^1 \times \mathbb{P}^1$ and construct a rational surface X such that: $\tilde{\phi} : X \to X$ and $\tilde{\phi}$ is \textit{analytically stable} which means:

$$(\tilde{\phi}^*)^n = (\tilde{\phi}^n)^* : \text{Pic}(X) \to \text{Pic}(X)$$

Analytical stability is equivalent with the following: There is no divisor D such that exist $k > 0$ and $\tilde{\phi}(D) =$point, $\tilde{\phi}^k(D) =$ indeterminate

$$D \to \bullet \to \bullet \to \ldots \bullet \to D'$$

$$\begin{array}{ccc}
\mathbb{P}^1 \times \mathbb{P}^1 & \xrightarrow{\phi} & \mathbb{P}^1 \times \mathbb{P}^1 \\
\mu \downarrow & & \mu \downarrow \\
X & \xrightarrow{\tilde{\phi}} & X
\end{array}$$
compute the surface X where $\tilde{\phi} : X \to X$ is analytically stable
compute the surface X where $\tilde{\phi} : X \to X$ is analytically stable

there is a singularity pattern $\bullet \to D_1 \to D_2 \to \ldots \to D_k \to \bullet$ having (-1) curves in the components of some D_i and this set of (-1) curves is preserved by the action of $\tilde{\phi} : X \to X$.
compute the surface X where $\tilde{\phi} : X \to X$ is analytically stable

there is a singularity pattern $\bullet \to D_1 \to D_2 \to \ldots \to D_k \to \bullet$ having (-1) curves in the components of some D_i and this set of (-1) curves is preserved by the action of $\tilde{\phi} : X \to X$.

Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_1, F_2 two divisor classes such that

\[F_1 \cdot F_1 = F_2 \cdot F_2 = 0, \quad F_1 \cdot F_2 = 1, \quad C \cdot F_1 = C \cdot F_2 = 0 \]
compute the surface X where $\tilde{\phi} : X \to X$ is analytically stable

there is a singularity pattern $\bullet \to D_1 \to D_2 \to \ldots \to D_k \to \bullet$ having (-1) curves in the components of some D_i and this set of (-1) curves is preserved by the action of $\tilde{\phi} : X \to X$.

Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_1, F_2 two divisor classes such that

$$F_1 \cdot F_1 = F_2 \cdot F_2 = 0, \quad F_1 \cdot F_2 = 1, \quad C \cdot F_1 = C \cdot F_2 = 0$$

all the above procedure is allowed by the Castelnuovo theorem, and if $\dim |F_1| = \dim |F_2| = 1$ we can put $|F_1| = \alpha_1 x' + \beta_1 y', |F_2| = \alpha_2 x'' + \beta_2 y''$
compute the surface X where $\tilde{\phi} : X \to X$ is analytically stable

there is a singularity pattern $\bullet \to D_1 \to D_2 \to \ldots \to D_k \to \bullet$ having (-1) curves in the components of some D_i and this set of (-1) curves is preserved by the action of $\tilde{\phi} : X \to X$.

Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_1, F_2 two divisor classes such that

$$F_1 \cdot F_1 = F_2 \cdot F_2 = 0, \quad F_1 \cdot F_2 = 1, \quad C \cdot F_1 = C \cdot F_2 = 0$$

all the above procedure is allowed by the Castelnuovo theorem, and if $\dim |F_1| = \dim |F_2| = 1$ we can put $|F_1| = \alpha_1 x' + \beta_1 y', |F_2| = \alpha_2 x'' + \beta_2 y''$

the genus formula is helping here $g(C) = 1 + \frac{1}{2} (C^2 + C \cdot K_X)$ which must be zero
compute the surface X where $\tilde{\phi} : X \to X$ is analytically stable.

there is a singularity pattern $\bullet \to D_1 \to D_2 \to \ldots \to D_k \to \bullet$ having (-1) curves in the components of some D_i and this set of (-1) curves is preserved by the action of $\tilde{\phi} : X \to X$.

Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_1, F_2 two divisor classes such that

$$F_1 \cdot F_1 = F_2 \cdot F_2 = 0, \quad F_1 \cdot F_2 = 1, \quad C \cdot F_1 = C \cdot F_2 = 0$$

all the above procedure is allowed by the Castelnuovo theorem, and if $\text{dim}|F_1| = \text{dim}|F_2| = 1$ we can put $|F_1| = \alpha_1 x' + \beta_1 y', |F_2| = \alpha_2 x'' + \beta_2 y''$

the genus formula is helping here $g(C) = 1 + \frac{1}{2}(C^2 + C \cdot K_X)$ which must be zero

then we have a new coordinate system where X is minimal given by the following transformation:

$$\mathbb{C}^2 \ni (x, y) \longrightarrow \left(\frac{y'}{x'}, \frac{y''}{x''}\right) \in \mathbb{P}^1 \times \mathbb{P}^1$$
Singularities and surfaces

Basic example

\[x_{n+1} = -x_n \frac{(x_n - a)(x_n - 1/a)}{(x_n + a)(x_n + 1/a)} \] (2)

\[\bar{x} = y \]

\[\bar{y} = -x \frac{(y - a)(y - 1/a)}{(y + a)(y + 1/a)} \] (3)
Singularities and surfaces

Basic example

\[x_{n+1} = -x_n - 1 \frac{(x_n - a)(x_n - 1/a)}{(x_n + a)(x_n + 1/a)} \] (2)

\[\bar{x} = y \]

\[\bar{y} = -x \frac{(y - a)(y - 1/a)}{(y + a)(y + 1/a)} \] (3)

Indeterminate points for \(\phi \) and \(\phi^{-1} \):

\[P_1 : (x, y) = (0, -a), \quad P_2 : (x, y) = (0, -1/a), \]
\[P_3 : (X, y) = (0, a), \quad P_4 : (X, y) = (0, 1/a), \]
\[P_5 : (x, y) = (a, 0), \quad P_6 : (x, y) = (1/a, 0), \]
\[P_7 : (x, Y) = (-a, 0), \quad P_8 : (x, Y) = (-1/a, 0). \]
Figure: Space of initial conditions and orthogonal complement.
The Picard group of X is a \mathbb{Z}-module

$$\text{Pic}(X) = \mathbb{Z}H_x \oplus \mathbb{Z}H_y \oplus \bigoplus_{i=1}^{8} \mathbb{Z}E_i,$$

H_x, H_y are the total transforms of the lines $x = \text{const.}, y = \text{const}$. E_i are the total transforms of the eight blowing up points. The intersection form:

$$H_z \cdot H_w = 1 - \delta_{zw}, \quad E_i \cdot E_j = -\delta_{ij}, \quad H_z \cdot E_k = 0$$

for $z, w = x, y$. Anti-canonical divisor of X:

$$-K_X = 2H_x + 2H_y - \sum_{i=1}^{8} E_i.$$
If $A = h_0 H_x + h_1 H_y + \sum_{i=1}^{8} e_i E_i$ is an element of the Picard lattice $(h_i, e_j \in \mathbb{Z})$ the induced bundle mapping is acting on it as
If $A = h_0 H_x + h_1 H_y + \sum_{i=1}^{8} e_i E_i$ is an element of the Picard lattice $(h_i, e_j \in \mathbb{Z})$ the induced bundle mapping is acting on it as

$$\phi^* (h_0, h_1, e_1, ..., e_8) = (h_0, h_1, e_1, ..., e_8) \begin{pmatrix} 2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$
If $A = h_0 H_x + h_1 H_y + \sum_{i=1}^{8} e_i E_i$ is an element of the Picard lattice ($h_i, e_j \in \mathbb{Z}$) the induced bundle mapping is acting on it as

$$\phi_*(h_0, h_1, e_1, ..., e_8)$$

$$=(h_0, h_1, e_1, ..., e_8)\begin{pmatrix}
2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}.$$.

It preserves the decomposition of $-K_X = \sum_{i=0}^{3} D_i$:

$$D_0 = H_x - E_1 - E_2, \quad D_1 = H_y - E_5 - E_6,$$

$$D_2 = H_x - E_3 - E_4, \quad D_3 = H_y - E_7 - E_8.$$
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_i for any k).

\[
F \equiv \alpha xy - \beta((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0 \\
\Leftrightarrow kxy - ((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0.
\]
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_i for any k).

$$F \equiv \alpha xy - \beta ((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0$$

$$\iff kxy - ((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0.$$

this family of curves defines a rational elliptic surface.
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_i for any k).

$$F \equiv \alpha xy - \beta((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0 \iff kxy - ((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0.$$

- this family of curves defines a rational elliptic surface.
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchange fibers of the elliptic fibration)
there are many elliptic curves corresponding to the this anti-canonical class (these
curves pass through all E_i for any k).

$$F \equiv \alpha xy - \beta((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0$$

$$\Leftrightarrow kxy - ((x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)) = 0.$$

- this family of curves defines a rational elliptic surface.
- anti-canonical class is preserved by the mapping, the linear system is not. More
 precisely the action changes k in $-k$ (the mapping exchange fibers of the elliptic
 fibration)

So the conservation law will be:

$$I = \left(\frac{(x^2 + 1)(y^2 + 1) + (a + 1/a)(y - x)(xy + 1)}{xy}\right)^2$$
Symmetries
Related to orthogonal complement of the space of initial condition $A_3^{(1)}$

$$\text{rankPic}(X) = \text{rank} \langle H_0, H_1, E_1, ... E_8 \rangle_{\mathbb{Z}} = 10$$

Define:

$$\langle D \rangle = \sum_{i=0}^{3} \mathbb{Z} D_i$$

$$\langle D \rangle^\perp = \{ \alpha \in \text{Pic}(X) | \alpha \cdot D_i = 0, i = 0, 3 \}$$
Symmetries

Related to orthogonal complement of the space of initial condition $A_3^{(1)}$

$$\text{rank}\text{Pic}(X) = \text{rank} < H_0, H_1, E_1, ... E_8 > \mathbb{Z} = 10$$

Define:

$$< D > = \sum_{i=0}^{3} \mathbb{Z}D_i$$

$$< D > \perp = \{ \alpha \in \text{Pic}(X) | \alpha \cdot D_i = 0, i = 0, 3 \}$$

which have 6-generators:

$$< D > \perp = < \alpha_0, \alpha_1, ..., \alpha_5 > \mathbb{Z}$$

$$\alpha_0 = E_4 - E_3, \alpha_1 = E_1 - E_2, \alpha_2 = H_1 - E_1 - E_5$$

$$\alpha_3 = H_0 - E_3 - E_7, \alpha_4 = E_5 - E_6, \alpha_5 = E_8 - E_7$$
Symmetries
Related to orthogonal complement of the space of initial condition $A_3^{(1)}$

$$\text{rankPic}(X) = \text{rank} < H_0, H_1, E_1, \ldots E_8 > \mathbb{Z} = 10$$

Define:

$$< D > = \sum_{i=0}^{3} \mathbb{Z}D_i$$

$$< D >^\perp = \{ \alpha \in \text{Pic}(X)| \alpha \cdot D_i = 0, i = 0, 3 \}$$

which have 6-generators:

$$< D >^\perp = < \alpha_0, \alpha_1, ..., \alpha_5 > \mathbb{Z}$$

$$\alpha_0 = E_4 - E_3, \alpha_1 = E_1 - E_2, \alpha_2 = H_1 - E_1 - E_5$$

$$\alpha_3 = H_0 - E_3 - E_7, \alpha_4 = E_5 - E_6, \alpha_5 = E_8 - E_7$$

Elementary reflections:

$$w_i : \text{Pic}(x) \rightarrow \text{Pic}(X), w_i(\alpha_j) = \alpha_j - c_{ij}\alpha_i$$

where $c_{ji} = 2(\alpha_j \cdot \alpha_i)/(\alpha_i \cdot \alpha_i)$ looks precisely as an affine Cartan matrix of $D_5^{(1)}$-type
Symmetries
Related to orthogonal complement of the space of initial condition $A_3^{(1)}$

$$\text{rankPic}(X) = \text{rank } < H_0, H_1, E_1, ... E_8 > \mathbb{Z} = 10$$

Define:

$$< D > = \sum_{i=0}^{3} \mathbb{Z}D_i$$

$$< D >^\perp = \{ \alpha \in \text{Pic}(X) | \alpha \cdot D_i = 0, i = 0, 3 \}$$

which have 6-generators:

$$< D >^\perp =< \alpha_0, \alpha_1, ..., \alpha_5 > \mathbb{Z}$$

$$\alpha_0 = E_4 - E_3, \alpha_1 = E_1 - E_2, \alpha_2 = H_1 - E_1 - E_5$$

$$\alpha_3 = H_0 - E_3 - E_7, \alpha_4 = E_5 - E_6, \alpha_5 = E_8 - E_7$$

Elementary reflections:

$$w_i : \text{Pic}(x) \rightarrow \text{Pic}(X), w_i(\alpha_j) = \alpha_j - c_{ij} \alpha_i$$

where $c_{ji} = 2(\alpha_j \cdot \alpha_i)/(\alpha_i \cdot \alpha_i)$ looks precisely as an affine Cartan matrix of $D_5^{(1)}$-type

Permutation of roots:

$$\sigma_{10}(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = (\alpha_1, \alpha_0, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$$

$$\sigma_{tot}(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = (\alpha_5, \alpha_4, \alpha_3, \alpha_2, \alpha_1, \alpha_0)$$

Hence the group generated by reflections and permutations becomes an extended Weyl group.
This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_X (which is nothing but the null vector δ of the Cartan matrix)
This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_X (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors
This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_X (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors
This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_X (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

Accordingly our mapping lives in a Weyl group and has the following decomposition in elementary reflections:

$$\phi_\ast = \sigma_{\text{tot}} \circ w_3 \circ w_5 \circ w_4 \circ w_3$$

All elements $\omega \in \widetilde{W}(D_5^{(1)})$ which commutes with ϕ_\ast, namely ($\omega \circ \phi_\ast = \phi_\ast \circ \omega$) form the symmetries of the mapping.

The equation is related to the translations in this affine Weyl group. In general for an affine Weyl group with null vector δ the translation of an element D with respect to the root α_i is given by

$$t_{\alpha_i} : D \rightarrow D - (D, \delta)\alpha_i + (D, \alpha_i + \delta)\delta$$

and our mapping is "the fourth root" of a translation:

$$\phi_\ast^4 \equiv t_{\alpha_3} \circ t_{\alpha_3} \circ t_{\alpha_4} \circ t_{\alpha_5} = t_{2\alpha_3+\alpha_4+\alpha_5}$$
Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associated to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray - ’95)
Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associated to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems: Tetrahedral symmetry can be simplified to:

\[
\dot{x} = x^2 - y^2 \\
\dot{y} = -2xy
\]

with the invariant, \(K = 3x^2y - y^3 \)
Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associated to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems: Tetrahedral symmetry can be simplified to:

\[\dot{x} = x^2 - y^2 \]
\[\dot{y} = -2xy \]

with the invariant, \(K = 3x^2y - y^3 \)

Octahedral symmetry:

\[\dot{x} = 2x^2 - 12y^2 \]
\[\dot{y} = -6xy - 4y^2 \]

with the invariant: \(K = y(2x + 3y)(x - y)^2 \)
Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associated to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems:

- **Tetrahedral symmetry** can be simplified to:
 \[
 \begin{align*}
 \dot{x} &= x^2 - y^2 \\
 \dot{y} &= -2xy
 \end{align*}

 with the invariant, \(K = 3x^2y - y^3 \)

- **Octahedral symmetry**:
 \[
 \begin{align*}
 \dot{x} &= 2x^2 - 12y^2 \\
 \dot{y} &= -6xy - 4y^2
 \end{align*}

 with the invariant: \(K = y(2x + 3y)(x - y)^2 \)

- **Icosahedral symmetry**:
 \[
 \begin{align*}
 \dot{x} &= 2x^2 - y^2 \\
 \dot{y} &= -10xy + y^2
 \end{align*}

 with the invariant: \(K = y(3x - y)^2(4x + y)^3 \)
Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

\[
\dot{x}_i = \sum_{j=1}^{N} a_{ij}x_j^2 + \sum_{j<k} b_{ijk}x_jx_k + c_i
\]
Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

\[\dot{x}_i = \sum_{j=1}^{N} a_{ij} x_j^2 + \sum_{j<k} b_{ijk} x_j x_k + c_i \]

In order to find the time discretisation first we bilinearize it by using projective substitution \(x_i = G_i / F \) and we get:

\[D_t G_i \cdot F = \sum_{j=1}^{N} a_{ij} G_j^2 + \sum_{j<k} b_{ijk} G_j G_k + c_i F^2 \]

Discretize the bilinear operator and impose gauge-invariance in the right hand side

\[D_t G_i \cdot F \rightarrow (\bar{G}_i F - G_i \bar{F}) / \epsilon \]
Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$\dot{x}_i = \sum_{j=1}^{N} a_{ij} x_j^2 + \sum_{j<k} b_{ijk} x_j x_k + c_i$$

In order to find the time discretisation first we bilinearize it by using projective substitution $x_i = G_i / F$ and we get:

$$D_t G_i \cdot F = \sum_{j=1}^{N} a_{ij} G_j^2 + \sum_{j<k} b_{ijk} G_j G_k + c_i F^2$$

Discretize the bilinear operator and impose gauge-invariance in the right hand side

$$D_t G_i \cdot F \rightarrow (\bar{G}_i F - G_i \bar{F}) / \epsilon$$

$$\bar{G}_i F - G_i \bar{F} = \epsilon (\sum_{j=1}^{N} a_{ij} G_j \bar{G}_j + \sum_{j<k} b_{ijk} (\alpha \bar{G}_j G_k + (1 - \alpha) G_j \bar{G}_k) + c_i F \bar{F})$$

or in the nonlinear form (Kahan '93, Hirota-Kimura, '00)

$$\bar{x}_i - x_i = \epsilon (\sum_{j=1}^{N} a_{ij} x_j \bar{x}_j + \sum_{j<k} b_{ijk} (\alpha \bar{x}_j x_k + (1 - \alpha) x_j \bar{x}_k) + c_i)$$
Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris ’12)
Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

- **Tetrahedral symmetry:**
 \[
 \bar{x} - x = \epsilon(x\bar{x} - y\bar{y})
 \]
 \[
 \bar{y} - y = -\epsilon(y\bar{x} + x\bar{y})
 \]

 with the integral of motion:

 \[
 K(\epsilon) = \frac{3x^2y - y^3}{1 - \epsilon^2(x^2 + y^2)}
 \]
Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris ‘12)

- **Tetrahedral symmetry:**
 \[
 \bar{x} - x = \epsilon(x\bar{x} - y\bar{y})
 \]
 \[
 \bar{y} - y = -\epsilon(y\bar{x} + x\bar{y})
 \]
 with the integral of motion:
 \[
 K(\epsilon) = \frac{3x^2y - y^3}{1 - \epsilon^2(x^2 + y^2)}
 \]

- **Octahedral symmetry**
 \[
 \bar{x} - x = \epsilon(2x\bar{x} - 12y\bar{y})
 \]
 \[
 \bar{y} - y = -\epsilon(3y\bar{x} + 3x\bar{y} + 4y\bar{y})
 \]
 with the integral of motion:
 \[
 K(\epsilon) = \frac{y(2x + 3y)(x - y)^2}{1 - 10\epsilon^2(x^2 + 4y^2) + \epsilon^4(9x^4 + 272x^3y - 352xy^3 + 696y^4)}
 \]
Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

- Tetrahedral symmetry:
 \[\bar{x} - x = \epsilon(x\bar{x} - y\bar{y}) \]
 \[\bar{y} - y = -\epsilon(y\bar{x} + x\bar{y}) \]
 with the integral of motion:
 \[K(\epsilon) = \frac{3x^2y - y^3}{1 - \epsilon^2(x^2 + y^2)} \]

- Octahedral symmetry
 \[\bar{x} - x = \epsilon(2x\bar{x} - 12y\bar{y}) \]
 \[\bar{y} - y = -\epsilon(3y\bar{x} + 3x\bar{y} + 4y\bar{y}) \]
 with the integral of motion:
 \[K(\epsilon) = \frac{y(2x + 3y)(x - y)^2}{1 - 10\epsilon^2(x^2 + 4y^2) + \epsilon^4(9x^4 + 272x^3y - 352xy^3 + 696y^4)} \]

- Icosahedral symmetry
 \[\bar{x} - x = \epsilon(2x\bar{x} - y\bar{y}) \]
 \[\bar{y} - y = -\epsilon(5y\bar{x} + 5x\bar{y} - y\bar{y}) \]
with the integral of motion:

\[
K(\epsilon) = \frac{y(3x - y)^2(4x + y)^3}{1 + \epsilon^2c_2 + \epsilon^4c_4 + \epsilon^6c_6}
\]

with

\[
c_2 = -35x^2 + 7y^2
\]
\[
c_4 = 7(37x^4 + 22x^2y^2 - 2xy^3 + 2y^4)
\]
\[
c_6 = -225x^6 + 3840x^5y + 80xy^5 - 514x^3y^3 - 19x^4y^2 - 206x^2y^4
\]
Minimization and invariants

with the integral of motion:

\[K(\epsilon) = \frac{y(3x - y)^2(4x + y)^3}{1 + \epsilon^2 c_2 + \epsilon^4 c_4 + \epsilon^6 c_6} \]

with

\[c_2 = -35x^2 + 7y^2 \]
\[c_4 = 7(37x^4 + 22x^2y^2 - 2xy^3 + 2y^4) \]
\[c_6 = -225x^6 + 3840x^5y + 80xy^5 - 514x^3y^3 - 19x^4y^2 - 206x^2y^4 \]

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?
with the integral of motion:

\[K(\epsilon) = \frac{y(3x - y)^2(4x + y)^3}{1 + \epsilon^2 c_2 + \epsilon^4 c_4 + \epsilon^6 c_6} \]

with

\[c_2 = -35x^2 + 7y^2 \]
\[c_4 = 7(37x^4 + 22x^2y^2 - 2xy^3 + 2y^4) \]
\[c_6 = -225x^6 + 3840x^5y + 80xy^5 - 514x^3y^3 - 19x^4y^2 - 206x^2y^4 \]

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES
with the integral of motion:

\[K(\epsilon) = \frac{y(3x - y)^2(4x + y)^3}{1 + \epsilon^2 c_2 + \epsilon^4 c_4 + \epsilon^6 c_6} \]

with

\[c_2 = -35x^2 + 7y^2 \]
\[c_4 = 7(37x^4 + 22x^2y^2 - 2xy^3 + 2y^4) \]
\[c_6 = -225x^6 + 3840x^5y + 80xy^5 - 514x^3y^3 - 19x^4y^2 - 206x^2y^4 \]

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES

The tetrahedral symmetry (simple can be brought to QRT):

\[\bar{x} - x = \epsilon(x\bar{x} - y\bar{y}) \]
\[\bar{y} - y = -\epsilon(y\bar{x} + x\bar{y}) \]

use the substitution \(u = (1 - \epsilon x)/y, \nu = (1 + \epsilon x)/y \) and we get QRT-mapping \((\bar{u} = \nu)\) and

\[3\bar{u}u - u(\bar{u} + u) - u^2 + 4\epsilon^2 = 0 \]
with the invariant

\[K = \frac{-3(u - \bar{u})^2 + 4\epsilon^2}{2\epsilon^2 (u + \bar{u})(u\bar{u} - \epsilon^2)} \equiv \frac{3x^2 y - y^3}{1 - \epsilon^2 (x^2 + y^2)} \]

What we learn:
Minimization and invariants

with the invariant

\[
K = \frac{-3(u - \bar{u})^2 + 4\epsilon^2}{2\epsilon^2(u + \bar{u})(u\bar{u} - \epsilon^2)} \equiv \frac{3x^2y - y^3}{1 - \epsilon^2(x^2 + y^2)}
\]

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
with the invariant

\[K = \frac{-3(u - \bar{u})^2 + 4\epsilon^2}{2\epsilon^2(u + \bar{u})(u\bar{u} - \epsilon^2)} \equiv \frac{3x^2y - y^3}{1 - \epsilon^2(x^2 + y^2)} \]

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
with the invariant

\[K = \frac{-3(u - \bar{u})^2 + 4\epsilon^2}{2\epsilon^2(u + \bar{u})(u\bar{u} - \epsilon^2)} \equiv \frac{3x^2y - y^3}{1 - \epsilon^2(x^2 + y^2)} \]

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
So we need to analyse carefully the singularity structure. What is seen is that we have more singularities and apparently some of them are useless making the corresponding rational elliptic surface to be more complicated.
The case of octahedral symmetry:

\[\ddot{x} - x = \epsilon(2x\ddot{x} - 12y\ddot{y}) \]

\[\ddot{y} - y = -\epsilon(3y\ddot{x} + 3x\ddot{y} + 4y\ddot{y}) \]
The case of octahedral symmetry:

\[
\bar{x} - x = \epsilon (2x\bar{x} - 12y\bar{y})
\]

\[
\bar{y} - y = -\epsilon (3y\bar{x} + 3x\bar{y} + 4y\bar{y})
\]

We simplify by the following:

\[
x = \frac{1}{3}(\chi - 2y), \quad \bar{x} = \frac{1}{3}(\bar{\chi} - 2\bar{y}), \quad u = (1 - \epsilon \chi)/y, \quad v = (1 + \epsilon \chi)/y
\]
to the non-QRT type system:
The case of octahedral symmetry:

\[\bar{x} - x = \epsilon (2x\bar{x} - 12y\bar{y}) \]

\[\bar{y} - y = -\epsilon (3y\bar{x} + 3x\bar{y} + 4y\bar{y}) \]

We simplify by the following:

\[x = \frac{1}{3}(\chi - 2y), \quad \bar{x} = \frac{1}{3}(\bar{\chi} - 2\bar{y}), \quad u = (1 - \epsilon\chi) / y, \quad v = (1 + \epsilon\chi) / y \]

to the non-QRT type system:

\[
\begin{align*}
\bar{u} &= v \\
\bar{v} &= \frac{(u + 2v - 20\epsilon)(v + 10\epsilon)}{4u - v + 10\epsilon}
\end{align*}
\]
The case of octahedral symmetry:

\[\bar{x} - x = \epsilon(2x\bar{x} - 12y\bar{y}) \]

\[\bar{y} - y = -\epsilon(3y\bar{x} + 3x\bar{y} + 4y\bar{y}) \]

We simplify by the following:

\[x = \frac{1}{3}(\chi - 2y), \; \bar{x} = \frac{1}{3}(\bar{\chi} - 2\bar{y}), \; u = (1 - \epsilon\chi)/y, \; v = (1 + \epsilon\chi)/y \]

to the non-QRT type system:

\[\begin{cases}
\bar{u} & = v \\
\bar{v} & = \frac{(u + 2v - 20\epsilon)(v + 10\epsilon)}{4u - v + 10\epsilon} \end{cases} \] \hspace{1cm} (4)

The space of initial conditions is given by the \(\mathbb{P}^1 \times \mathbb{P}^1 \) blown up at the following nine points:

\[E_1 : (u, v) = (-10\epsilon, 0), \; E_2 (0, 10\epsilon), \; E_3 (10\epsilon, 5\epsilon), \]
\[E_4 (5\epsilon, 0), \; E_5 (0, -5\epsilon), \; E_6 (-5\epsilon, -10\epsilon) \]
\[E_7 (\infty, \infty), \; E_8 : (1/u, u/v) = (0, -1/2), \; E_9 : (1/u, u/v) = (0, -2). \]
The action on the Picard group:

\[
\bar{H}_u = 2H_u + H_v - E_1 - E_3 - E_7 - E_8, \quad \bar{H}_v = H_u \\
\bar{E}_1 = E_2, \quad \bar{E}_2 = H_u - E_3, \quad \bar{E}_3 = E_4, \quad \bar{E}_4 = E_5, \quad \bar{E}_5 = E_6, \\
\bar{E}_6 = H_u - E_1, \quad \bar{E}_7 = H_u - E_8, \quad \bar{E}_8 = E_9, \quad \bar{E}_9 = H_u - E_7.
\]
The action on the Picard group:

\[\tilde{H}_u = 2H_u + H_v - E_1 - E_3 - E_7 - E_8, \quad \tilde{H}_v = H_u \]
\[\tilde{E}_1 = E_2, \quad \tilde{E}_2 = H_u - E_3, \quad \tilde{E}_3 = E_4, \quad \tilde{E}_4 = E_5, \quad \tilde{E}_5 = E_6, \]
\[\tilde{E}_6 = H_u - E_1, \quad \tilde{E}_7 = H_u - E_8, \quad \tilde{E}_8 = E_9, \quad \tilde{E}_9 = H_u - E_7. \]

Three invariant divisor classes:

\[\alpha_0 = H_u + H_v - E_1 - E_2 - E_7, \quad \alpha_1 = H_u + H_v - E_1 - E_2 - E_8 - E_9, \]
\[\alpha_2 = E_7 - E_8 - E_9, \quad \alpha_3 = H_u + H_v - E_3 - E_4 - E_5 - E_6 - E_7. \]
The action on the Picard group:

\[
\bar{H}_u = 2H_u + H_v - E_1 - E_3 - E_7 - E_8, \quad \bar{H}_v = H_u
\]

\[
\bar{E}_1 = E_2, \quad \bar{E}_2 = H_u - E_3, \quad \bar{E}_3 = E_4, \quad \bar{E}_4 = E_5, \quad \bar{E}_5 = E_6,
\]

\[
\bar{E}_6 = H_u - E_1, \quad \bar{E}_7 = H_u - E_8, \quad \bar{E}_8 = E_9, \quad \bar{E}_9 = H_u - E_7.
\]

Three invariant divisor classes:

\[
\alpha_0 = H_u + H_v - E_1 - E_2 - E_7, \quad \alpha_1 = H_u + H_v - E_1 - E_2 - E_8 - E_9,
\]

\[
\alpha_2 = E_7 - E_8 - E_9, \quad \alpha_3 = H_u + H_v - E_3 - E_4 - E_5 - E_6 - E_7.
\]

The curve corresponding to \(\alpha_0\) is a (-1) curve which must be blown down.

\(E_1 \to H_a = H_u + H_v - E_2 - E_7\) and \(E_2 \to H_b = H_u + H_v - E_1 - E_7\), 0-curves intersecting each other: The corresponding curves are given by:

\[
a_1 u + a_2 (\nu - 10 \epsilon) = 0, \quad b_1 (u + 10 \epsilon) + b_2 \nu = 0
\]
The action on the Picard group:

\[
\begin{align*}
\tilde{H}_u &= 2H_u + H_v - E_1 - E_3 - E_7 - E_8, \quad \tilde{H}_v = H_u \\
\tilde{E}_1 &= E_2, \quad \tilde{E}_2 = H_u - E_3, \quad \tilde{E}_3 = E_4, \quad \tilde{E}_4 = E_5, \quad \tilde{E}_5 = E_6, \\
\tilde{E}_6 &= H_u - E_1, \quad \tilde{E}_7 = H_u - E_8, \quad \tilde{E}_8 = E_9, \quad \tilde{E}_9 = H_u - E_7.
\end{align*}
\]

Three invariant divisor classes:

\[
\begin{align*}
\alpha_0 &= H_u + H_v - E_1 - E_2 - E_7, \quad \alpha_1 = H_u + H_v - E_1 - E_2 - E_8 - E_9, \\
\alpha_2 &= E_7 - E_8 - E_9, \quad \alpha_3 = H_u + H_v - E_3 - E_4 - E_5 - E_6 - E_7.
\end{align*}
\]

The curve corresponding to \(\alpha_0 \) is a (-1) curve which must be blown down.
\(E_1 \to H_a = H_u + H_v - E_2 - E_7 \) and \(E_2 \to H_b = H_u + H_v - E_1 - E_7 \), 0-curves intersecting each other: The corresponding curves are given by:

\[
a_1 u + a_2 (v - 10\epsilon) = 0, \quad b_1 (u + 10\epsilon) + b_2 v = 0
\]

So if we set \(a = (v - 10\epsilon)/u \quad b = (u + 10\epsilon)/v \) our dynamical system becomes

\[
\begin{align*}
\bar{a} &= \frac{3ab - 2a + 2}{a - 4} \\
\bar{b} &= \frac{4 - a}{2a + 1}
\end{align*}
\]
This system has the following space of initial conditions which define a minimal rational elliptic surface:

\[F_1 : (a, b) = (0, \infty), \quad F_2 : (a, b) = (\infty, 0), \]
\[F_3 : (a, b) = (-1/2, 4), \quad F_4 : (a, b) = (-2, \infty) \]
\[F_5 : (a, b) = (\infty, -2), \quad F_6 : (a, b) = (4, -1/2), \]
\[F_7 : (a, b) = (-2, -1/2), \quad F_8 : (a, b) = (-1/2, -2). \]
This system has the following space of initial conditions which define a minimal rational elliptic surface:

\[F_1 : (a, b) = (0, \infty), \quad F_2 : (a, b) = (\infty, 0), \]
\[F_3 : (a, b) = (-1/2, 4), \quad F_4 : (a, b) = (-2, \infty) \]
\[F_5 : (a, b) = (\infty, -2), \quad F_6 : (a, b) = (4, -1/2), \]
\[F_7 : (a, b) = (-2, -1/2), \quad F_8 : (a, b) = (-1/2, -2). \]

The invariant is nothing but the proper transform of the anti-canonical divisor:

\[K_X = 2H_a + 2H_b - \bigoplus_{i=1}^{8} F_i \]

namely

\[K = \frac{(ab - 1)(ab + 2a + 2b - 5)}{4ab + 2a + 2b + 1} \]
This system has the following space of initial conditions which define a minimal rational elliptic surface:

\[
F_1 : (a, b) = (0, \infty), \quad F_2 : (a, b) = (\infty, 0), \\
F_3 : (a, b) = (-1/2, 4), \quad F_4 : (a, b) = (-2, \infty) \\
F_5 : (a, b) = (\infty, -2), \quad F_6 : (a, b) = (4, -1/2), \\
F_7 : (a, b) = (-2, -1/2), \quad F_8 : (a, b) = (-1/2, -2).
\]

The invariant is nothing but the proper transform of the anti-canonical divisor:

\[
K_X = 2H_a + 2H_b - \bigoplus_{i=1}^{8} F_i
\]

namely

\[
K = \frac{(ab - 1)(ab + 2a + 2b - 5)}{4ab + 2a + 2b + 1}
\]

which is the same as the one given at the beginning [Suris et al. 2012]

\[
K(\epsilon) = \frac{y(2x + 3y)(x - y)^2}{1 - 10\epsilon^2(x^2 + 4y^2) + \epsilon^4(9x^4 + 272x^3y - 352xy^3 + 696y^4)}
\]
The case of icosahedral symmetry:

\[\bar{x} - x = \epsilon(2x\bar{x} - y\bar{y}) \]

\[\bar{y} - y = -\epsilon(5y\bar{x} + 5x\bar{y} - y\bar{y}) \]
The case of icosahedral symmetry:

\[\bar{x} - x = \epsilon (2x\bar{x} - y\bar{y}) \]

\[\bar{y} - y = -\epsilon (5y\bar{x} + 5x\bar{y} - y\bar{y}) \]

The space of initial condition is given by the \(\mathbb{P}^1 \times \mathbb{P}^1 \) blown up at the following 12 points:

- \(E_1 : (x, y) = (\infty, \infty) \)
- \(E_2(-1/7\epsilon, -3/7\epsilon) \)
- \(E_3(-1/7\epsilon, 4/7\epsilon) \)
- \(E_4(1/7\epsilon, 3/7\epsilon) \)
- \(E_5(1/7\epsilon, -4/7\epsilon) \)
- \(E_6(1/5\epsilon, 0) \)
- \(E_7(1/3\epsilon, 0) \)
- \(E_8(1/\epsilon, 0) \)
- \(E_9(-1/\epsilon, 0) \)
- \(E_{10}(-1/3\epsilon, 0) \)
- \(E_{11}(-1/5\epsilon, 0) \)
- \(E_{12} : (1/x, x/y) = (0, 1/3) \)
The case of icosahedral symmetry:

\[\bar{x} - x = \epsilon (2x\bar{x} - y\bar{y}) \]

\[\bar{y} - y = -\epsilon (5y\bar{x} + 5x\bar{y} - y\bar{y}) \]

The space of initial condition is given by the \(\mathbb{P}^1 \times \mathbb{P}^1 \) blown up at the following 12 points:

\[E_1 : (x, y) = (\infty, \infty), \quad E_2 (-1/7\epsilon, -3/7\epsilon), \quad E_3 (-1/7\epsilon, 4/7\epsilon), \]
\[E_4 (1/7\epsilon, 3/7\epsilon), \quad E_5 (1/7\epsilon, -4/7\epsilon), \quad E_6 (1/5\epsilon, 0), \]
\[E_7 (1/3\epsilon, 0), \quad E_8 (1/\epsilon, 0), \quad E_9 (-1/\epsilon, 0), \]
\[E_{10} (-1/3\epsilon, 0), \quad E_{11} (-1/5\epsilon, 0), \quad E_{12} : (1/x, x/y) = (0, 1/3) \]

Singularity confinement gives the following pattern:

\[H_y - E_1 (y = \infty) \rightarrow \text{point} \rightarrow \cdots \rightarrow \text{point} \rightarrow H_y - E_1 \]
\[\cdots \rightarrow \text{point} \rightarrow \text{point} \rightarrow H_x - E_1 (x = \infty) \rightarrow \text{point} \rightarrow \text{point} \rightarrow \cdots . \]
The case of icosahedral symmetry:

\[\tilde{x} - x = \epsilon(2x\tilde{x} - y\tilde{y}) \]

\[\tilde{y} - y = -\epsilon(5y\tilde{x} + 5x\tilde{y} - y\tilde{y}) \]

The space of initial condition is given by the \(\mathbb{P}^1 \times \mathbb{P}^1 \) blown up at the following 12 points:

\[E_1 : (x, y) = (\infty, \infty), \ E_2(-1/7\epsilon, -3/7\epsilon), \ E_3(-1/7\epsilon, 4/7\epsilon), \]
\[E_4(1/7\epsilon, 3/7\epsilon), \ E_5(1/7\epsilon, -4/7\epsilon) \ E_6(1/5\epsilon, 0), \]
\[E_7(1/3\epsilon, 0), \ E_8(1/\epsilon, 0), \ E_9(-1/\epsilon, 0), \]
\[E_{10}(-1/3\epsilon, 0), \ E_{11}(-1/5\epsilon, 0). E_{12} : (1/x, x/y) = (0, 1/3) \]

Singularity confinement gives the following pattern:

\[H_y - E_1 (y = \infty) \rightarrow \text{point} \rightarrow \cdots (4 \text{ points}) \cdots \rightarrow \text{point} \rightarrow H_y - E_1 \]
\[\cdots \rightarrow \text{point} \rightarrow \text{point} \rightarrow H_x - E_1 (x = \infty) \rightarrow \text{point} \rightarrow \text{point} \rightarrow \cdots . \]

The curve \(4x + y = 0 : H_x + H_y - E_1 - E_3 - E_5 \) is invariant and we blow it down
So $E_3 \rightarrow H_v = H_x + H_y - E_1 - E_5$ and $E_5 \rightarrow H_u = H_x + H_y - E_1 - E_3$ with

$$H_u \cdot H_u = H_v \cdot H_v = 0, H_u \cdot H_v = 1$$

where the linear systems of H_u and H_v are given by

$$|H_u| : u_0(1 + 7\epsilon x) + u_1(4x + y)$$
$$|H_v| : v_0(1 - 7\epsilon x) + v_1(4x + y).$$
So $E_3 \rightarrow H_v = H_x + H_y - E_1 - E_5$ and $E_5 \rightarrow H_u = H_x + H_y - E_1 - E_3$ with

$$H_u \cdot H_u = H_v \cdot H_v = 0, H_u \cdot H_v = 1$$

where the linear systems of H_u and H_v are given by

$$|H_u| : u_0(1 + 7\varepsilon x) + u_1(4x + y)$$
$$|H_v| : v_0(1 - 7\varepsilon x) + v_1(4x + y).$$

If we take the new variables u and v as

$$u = \frac{2(1 + 7\varepsilon x)}{\varepsilon(4x + y)}, \quad v = \frac{2(1 - 7\varepsilon x)}{\varepsilon(4x + y)},$$
So $E_3 \rightarrow H_v = H_x + H_y - E_1 - E_5$ and $E_5 \rightarrow H_u = H_x + H_y - E_1 - E_3$ with

$$H_u \cdot H_u = H_v \cdot H_v = 0, H_u \cdot H_v = 1$$

where the linear systems of H_u and H_v are given by

$$|H_u| : u_0(1 + 7\varepsilon x) + u_1(4x + y)$$
$$|H_v| : v_0(1 - 7\varepsilon x) + v_1(4x + y).$$

If we take the new variables u and v as

$$u = \frac{2(1 + 7\varepsilon x)}{\varepsilon(4x + y)}, \quad v = \frac{2(1 - 7\varepsilon x)}{\varepsilon(4x + y)},$$

then we have a new space for initial conditions given by nine blow up points:

$$F_1 : (u, v) = (2, -2), F_2 : (0, -4), F_3 : (4, 0), F_4 : (6, -1), F_5 : (5, -2),$$
$$F_6 : (4, -3), F_7 : (3, -4), F_8 : (2, -5), F_9 : (1, -6).$$
The dynamical system becomes an automorphism having the following topological singularity patterns

\[H_v - F_9 \rightarrow F_2 \rightarrow F_1 \rightarrow F_3 \rightarrow H_u - F_4 \]
\[H_v - F_3 \rightarrow F_4 \rightarrow F_5 \rightarrow F_6 \rightarrow F_7 \rightarrow F_8 \rightarrow F_9 \rightarrow H_u - F_2 \]

and \(H_u \rightarrow H_u + H_v - F_2 - F_4 \).
The dynamical system becomes an automorphism having the following topological singularity patterns

\[H_v - F_9 \to F_2 \to F_1 \to F_3 \to H_u - F_4 \]
\[H_v - F_3 \to F_4 \to F_5 \to F_6 \to F_7 \to F_8 \to F_9 \to H_u - F_2 \]

and \(H_u \to H_u + H_v - F_2 - F_4 \).

The invariant \((-1)\) curve \(H_u + H_v - F_1 - F_2 - F_3 \), which should be blown down.

\[F_3 \to H_s = H_u + H_v - F_1 - F_2, \quad F_2 \to H_t = H_u + H_v - F_1 - F_3 \]

where the linear systems of \(H_s \) and \(H_t \) are given by

\[|H_s| : s_0 u(v + 2) + s_1 (u - v - 4) \]
\[|H_t| : t_0 v(u - 2) + t_1 (u - v - 4) \]
The dynamical system becomes an automorphism having the following topological singularity patterns

\[H_v - F_9 \to F_2 \to F_1 \to F_3 \to H_u - F_4 \]
\[H_v - F_3 \to F_4 \to F_5 \to F_6 \to F_7 \to F_8 \to F_9 \to H_u - F_2 \]

and \(H_u \to H_u + H_v - F_2 - F_4 \).
The invariant \((-1)\) curve \(H_u + H_v - F_1 - F_2 - F_3 \), which should be blown down.

\[F_3 \to H_s = H_u + H_v - F_1 - F_2, \quad F_2 \to H_t = H_u + H_v - F_1 - F_3 \]

where the linear systems of \(H_s \) and \(H_t \) are given by

\[|H_s| : s_0 u(v + 2) + s_1 (u - v - 4) \]
\[|H_t| : t_0 v(u - 2) + t_1 (u - v - 4) \]

and hence we take the new variables \(s \) and \(t \) as

\[s = -\frac{3u(v + 2)}{2(u - v - 4)}, \quad t = -\frac{3v(u - 2)}{2(u - v - 4)} \]
Minimization and invariants

\[
\begin{align*}
\bar{s} &= \frac{2st - 3s - 3t + 9}{s + t - 3} \\
\bar{t} &= \frac{2(s - 3)(t + 3)}{3s - t - 9}
\end{align*}
\]

with the blow-up points
\begin{align*}
\bar{s} &= \frac{2st - 3s - 3t + 9}{s + t - 3} \\
\bar{t} &= \frac{2(s - 3)(t + 3)}{3s - t - 9}
\end{align*}

with the blow-up points

\begin{align*}
F_1' : (s, t) &= (3, 0), \quad F_2'(0, 3), \quad F_3'(-3, 2), \quad F_4' : \left(\frac{s}{t - 3}, t - 3\right) = (5, 0), \\
F_5'(2, 3), \quad F_6'(3, 2), \quad F_7' : (s - 3, \frac{t}{s - 3}) = (0, 5), \quad F_8'(2, -3)
\end{align*}
Minimization and invariants

\[
\begin{cases}
\bar{s} = \frac{2st - 3s - 3t + 9}{s + t - 3} \\
\bar{t} = \frac{2(s - 3)(t + 3)}{3s - t - 9}
\end{cases}
\]

with the blow-up points

\[
F_1^\prime: (s, t) = (3, 0), \quad F_2^\prime(0, 3), \quad F_3^\prime(-3, 2), \quad F_4^\prime: \left(\frac{s}{t - 3}, t - 3\right) = (5, 0),
\]

\[
F_5^\prime(2, 3), \quad F_6^\prime(3, 2), \quad F_7^\prime: (s - 3, \frac{t}{s - 3}) = (0, 5), \quad F_8^\prime(2, -3)
\]

The invariants can be computed by using the the anticanonical divisor:

\[
K = \frac{(s - t)^2 + 4(s + t) - 21}{(s - 2)(t - 2)(2st - 5s - 5t + 15)} = \frac{-56\epsilon^6 y(-3x + y)^2(4x + y)^3}{d_1 d_2 d_3}
\] \hspace{1cm} (6)

where

\[
\begin{align*}
d_1 &= -3 - 12\epsilon x + 15\epsilon^2 x^2 - 3\epsilon y - 17\epsilon^2 xy + 4\epsilon^2 y^2 \\
d_2 &= -3 + 12\epsilon x + 15\epsilon^2 x^2 + 3\epsilon y - 17\epsilon^2 xy + 4\epsilon^2 y^2 \\
d_3 &= -3 + 27\epsilon^2 x^2 + 10\epsilon^2 xy + 10\epsilon^2 y^2.
\end{align*}
\]
Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is \(f(x) = |x| = 2 \max(0, x) - x \) and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called *ultradiscretisation* or *tropicalisation*.
Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is \(f(x) = |x| = 2 \max(0, x) - x \) and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called *ultradiscretisation* or *tropicalisation*.
Mathematically the tropicalisation has been introduced as follows: Calling \(\mathbb{R}_{\max} = \mathbb{R} \cup \{ -\infty \} \) we introduce the semiring \(\{ \mathbb{R}_{\max}, \oplus, \otimes, \varepsilon, e \} \) through the following definitions:

- \(a \oplus b := \max(a, b) \), \(a \otimes b := a + b \)
- \(\varepsilon := -\infty \), \(e := 0 \)

The main news is that there is no additive inverse and the addition is idempotent, making all calculation extremely hard.
Minimization and invariants

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?

Answer: The simplest nonlinear function is $f(x) = |x| = 2 \max(0, x) - x$ and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called *ultradiscretisation* or tropicalisation.

Mathematically the tropicalisation has been introduced as follows: Calling $\mathbb{R}_{\text{max}} = \mathbb{R} \cup \{-\infty\}$ we introduce the semiring $\{\mathbb{R}_{\text{max}}, \oplus, \otimes, \varepsilon, e\}$ through the following definitions:

- $a \oplus b := \max(a, b), \quad a \otimes b := a + b$
- $\varepsilon := -\infty, \quad e := 0$

The main news is that there is no additive inverse and the addition is idempotent, making all calculation extremely hard.

A nonlinear discrete equation (ordinary or partial) with *positive definite dependent variable* x_n can be ultradiscretised or tropicalised using the following substitution and formula:

$$x_n = e^{X_n/\varepsilon} \lim_{\varepsilon \to 0^+} \varepsilon \ln(1 + x_n) = \max(0, X_n)$$
Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is \(f(x) = |x| = 2 \max(0, x) - x \) and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling \(\mathbb{R}_{\text{max}} = \mathbb{R} \cup \{ -\infty \} \) we introduce the semiring \(\{ \mathbb{R}_{\text{max}}, \oplus, \otimes, \varepsilon, e \} \) through the following definitions:
- \(a \oplus b := \max(a, b) \), \(a \otimes b := a + b \)
- \(\varepsilon := -\infty \), \(e := 0 \)

The main news is that there is no additive inverse and the addition is idempotent, making all calculation extremely hard.
A nonlinear discrete equation (ordinary or partial) with positive definite dependent variable \(x_n \) can be ultradiscretised or tropicalised using the following substitution and formula:

\[
x_n = e^{X_n/\epsilon} \quad \lim_{\epsilon \to 0^+} \varepsilon \ln(1 + x_n) = \max(0, X_n)
\]

Example:

\[
x_{n+1}x_{n-1} = a \frac{1 + x_n}{x_n^2}, \quad I_n = \frac{a(1 + x_n + x_{n+1}) + x_n^2 x_{n+1}^2}{x_n x_{n+1}}
\]

If \(x_n = \exp(X_n/\epsilon) \), \(a = \exp A/\epsilon \) then we get the tropical equation and the invariant:
\[X_{n+1} + X_{n-1} = A + \max(0, X_n) - 2X_n, \quad \mathcal{I} = \max(2X_n + 2X_{n+1}, A, A + X_n, A + X_{n+1}) - X_{n+1} - X_n \]
\[X_{n+1} + X_{n-1} = A + \max(0, X_n) - 2X_n, \quad I = \max(2X_n + 2X_{n+1}, A, A + X_n, A + X_{n+1}) - X_{n+1} - X_n \]

Question: What is singularity here? Can one compute the invariant?
\[X_{n+1} + X_{n-1} = A + \max(0, X_n) - 2X_n, \quad \mathcal{I} = \max(2X_n + 2X_{n+1}, A, A + X_n, A + X_{n+1}) - X_{n+1} - X_n \]

Question: What is singularity here? Can one compute the invariant? The only \textbf{visible} singularity is the discontinuity point. Can we imagine a "singularity confinement" here?
\[X_{n+1} + X_{n-1} = A + \max(0, X_n) - 2X_n, \quad \mathcal{I} = \max(2X_n + 2X_{n+1}, A, A + X_n, A + X_{n+1}) - X_{n+1} - X_n \]

Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a "singularity confinement" here?
YES! We shall thus examine the behaviour of a singularity appearing at, say, \(n = 1 \) where \(X_1 = \epsilon \), while \(X_0 \) is regular and look at the propagation of this singularity both forwards and backwards. Introducing the notation \(\mu \equiv \max(\epsilon, 0) \), the presence of \(\mu \) indicates that the value of \(X \) is singular. We get (for \(X_0 > A \)):
\[X_{n+1} + X_{n-1} = A + \max(0, X_n) - 2X_n, \quad I = \max(2X_n + 2X_{n+1}, A, A + X_n, A + X_{n+1}) - X_{n+1} - X_n \]

Question: What is singularity here? Can one compute the invariant? The only visible singularity is the discontinuity point. Can we imagine a "singularity confinement" here?

YES! We shall thus examine the behaviour of a singularity appearing at, say, \(n = 1 \) where \(X_1 = \epsilon \), while \(X_0 \) is regular and look at the propagation of this singularity both forwards and backwards. Introducing the notation \(\mu \equiv \max(\epsilon, 0) \), the presence of \(\mu \) indicates that the value of \(X \) is singular. We get (for \(X_0 > A \)):

\[
\begin{align*}
X_{-3} &= A - \epsilon \\
X_{-2} &= X_0 - A + 2\epsilon \\
X_{-1} &= -X_0 + A - \epsilon \\
X_0 &= X_0 \\
X_1 &= \epsilon \\
X_2 &= A - X_0 - 2\epsilon + \mu \\
X_3 &= 2X_0 - A + 3\epsilon - 2\mu \\
X_4 &= A - X_0 - \epsilon + \mu \\
X_5 &= -\epsilon \\
X_6 &= X_0 + 2\epsilon
\end{align*}
\]
Conclusions

- Singularities are essential in analysing discrete dynamical systems.
- The singularity structure may give a non-minimal elliptic surface. In order to make it minimal one has to blow down some -1 divisor classes (one has to prove the existence of the blow-down structure).
- After minimization the mapping can be "solved".
- We expect to find analogies in the case of tropical dynamical systems using tropical algebraic geometry.

All the results are published here: