Singularities and integrability of birational dynamical systems on the projective plane

Adrian-Stefan Carstea, Tomoyuki Takenawa

February 6, 2014

Research Group on Geometry and Physics
(http://events.theory.nipne.ro/gap/)
NIPNE, Bucharest, Romania and
Tokyo University of Marine Science and Technology, Tokyo, Japan

- From discrete equations to surface theory
- From discrete equations to surface theory
- Elliptic surfaces
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- Non-minimal surfaces and blowing-down structure
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- Non-minimal surfaces and blowing-down structure
- Differential Nahm equations (basics)
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- Non-minimal surfaces and blowing-down structure
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- Non-minimal surfaces and blowing-down structure
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- Discrete Nahm equations
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- Non-minimal surfaces and blowing-down structure
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- Discrete Nahm equations
- Minimization of elliptic surfaces and invariants
- From discrete equations to surface theory
- Elliptic surfaces
- Examples
- Non-minimal surfaces and blowing-down structure
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- Discrete Nahm equations
- Minimization of elliptic surfaces and invariants
- Tropical dynamical systems

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically?

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+z / x_{n}+c=-f-\epsilon-\frac{z}{\epsilon}+c=\infty$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+z / x_{n}+c=-f-\epsilon-\frac{z}{\epsilon}+c=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+z / x_{n+1}+c=-\infty-\epsilon-\frac{z}{\infty}+c=-\infty$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+z / x_{n}+c=-f-\epsilon-\frac{z}{\epsilon}+c=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+z / x_{n+1}+c=-\infty-\epsilon-\frac{z}{\infty}+c=-\infty$
- $x_{n+3}=-x_{n+2}-x_{n+1}+z / x_{n+2}+c=\infty-\infty-\frac{z}{\infty}+\left.c\right|_{\epsilon \rightarrow 0} \rightarrow 0$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+z / x_{n}+c=-f-\epsilon-\frac{z}{\epsilon}+c=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+z / x_{n+1}+c=-\infty-\epsilon-\frac{z}{\infty}+c=-\infty$
- $x_{n+3}=-x_{n+2}-x_{n+1}+z / x_{n+2}+c=\infty-\infty-\frac{z}{\infty}+\left.c\right|_{\epsilon \rightarrow 0} \rightarrow 0$
- $x_{n+4}=-x_{n+3}-x_{n+2}+z / x_{n+3}+c=-f$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Finding an INTEGRABILITY DETECTORS for discrete equations
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability \equiv internal symmetry, existence of invariants, computing general solution etc.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (conservation law, i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$) of the above equation? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. In our example we look for possible sources of singularities, namely roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+z / x_{n}+c=-f-\epsilon-\frac{z}{\epsilon}+c=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+z / x_{n+1}+c=-\infty-\epsilon-\frac{z}{\infty}+c=-\infty$
- $x_{n+3}=-x_{n+2}-x_{n+1}+z / x_{n+2}+c=\infty-\infty-\frac{z}{\infty}+\left.c\right|_{\epsilon \rightarrow 0} \rightarrow 0$
- $x_{n+4}=-x_{n+3}-x_{n+2}+z / x_{n+3}+c=-f$

Singularity pattern ($f, 0, \infty, \infty, 0,-f$). So after a finite number of steps the singularities are confined and initial information is recovered- singularity confinemeñt

Our example can be written as:

$$
\phi:\left\{\begin{array}{ll}
x_{n+1} & =y_{n} \tag{1}\\
y_{n+1} & =
\end{array}-x_{n}-y_{n}+\frac{a}{y_{n}}\right.
$$

seen as a chain of birational mappings $\ldots \rightarrow(\underline{x}, \underline{y}) \rightarrow(x, y) \rightarrow(\bar{x}, \bar{y}) \rightarrow \ldots$ where $\underline{x}=x_{n-1}, x=x_{n}, \bar{x}=x_{n+1}$ and so on.
Each step is an automorphism of the field of rational functions $\mathbb{C}(x, y)$

Our example can be written as:

$$
\phi:\left\{\begin{array}{lll}
x_{n+1} & =y_{n} \tag{1}\\
y_{n+1} & = & -x_{n}-y_{n}+\frac{a}{y_{n}}
\end{array} .\right.
$$

seen as a chain of birational mappings $\ldots \rightarrow(\underline{x}, \underline{y}) \rightarrow(x, y) \rightarrow(\bar{x}, \bar{y}) \rightarrow \ldots$ where $\underline{x}=x_{n-1}, x=x_{n}, \bar{x}=x_{n+1}$ and so on.
Each step is an automorphism of the field of rational functions $\mathbb{C}(x, y)$ Singularity confinement:

$$
\underbrace{(f, 0)}_{\left(x_{0}, y_{0}\right)} \rightarrow \underbrace{(0, \infty)}_{\left(x_{1}, y_{1}\right)} \rightarrow \underbrace{(\infty, \infty)}_{\left(x_{2}, y_{2}\right)} \rightarrow \underbrace{(\infty, 0)}_{\left(x_{3}, y_{3}\right)} \rightarrow \underbrace{(0, f)}_{\left(x_{4}, y_{4}\right)}
$$

and the secret is the follwing:
If $\left(x_{0}, y_{0}\right)=(f, \epsilon)$ then the foolowing products are finite

$$
x_{1} y_{1}=a+O(\epsilon), \quad \frac{x_{2}}{y_{2}}=-1+O(\epsilon), \quad x_{3} y_{3}=-a+O(\epsilon)
$$

So lets construct a surface by glueing

$$
\mathbb{C}^{2} \cup \mathbb{C}^{2}=\left(x_{1}, \frac{1}{x_{1} y_{1}}\right) \cup\left(x_{1} y_{1}, \frac{1}{y_{1}}\right)
$$

So lets construct a surface by glueing

$$
\mathbb{C}^{2} \cup \mathbb{C}^{2}=\left(x_{1}, \frac{1}{x_{1} y_{1}}\right) \cup\left(x_{1} y_{1}, \frac{1}{y_{1}}\right)
$$

But this is nothing but blow up of the affine space $\operatorname{Spec} \mathbb{C}[x, Y]$ with the center $(x, Y)=(0,0)$ which gives the surface $(Y=1 / y)$:

$$
\begin{gathered}
X_{1}=\left\{\left(x, Y,\left[z_{0}: z_{1}\right]\right) \in \operatorname{Spec} \mathbb{C}[x, Y] \times \mathbb{P}^{1} \mid x z_{0}=Y z_{1}\right\}= \\
=\operatorname{Spec} \mathbb{C}[x, 1 / x y] \cup \operatorname{Spec} \mathbb{C}[x y, 1 / y]
\end{gathered}
$$

So lets construct a surface by glueing

$$
\mathbb{C}^{2} \cup \mathbb{C}^{2}=\left(x_{1}, \frac{1}{x_{1} y_{1}}\right) \cup\left(x_{1} y_{1}, \frac{1}{y_{1}}\right)
$$

But this is nothing but blow up of the affine space $\operatorname{Spec} \mathbb{C}[x, Y]$ with the center $(x, Y)=(0,0)$ which gives the surface $(Y=1 / y)$:

$$
\begin{gathered}
X_{1}=\left\{\left(x, Y,\left[z_{0}: z_{1}\right]\right) \in \operatorname{Spec} \mathbb{C}[x, Y] \times \mathbb{P}^{1} \mid x z_{0}=Y z_{1}\right\}= \\
=\operatorname{Spec} \mathbb{C}[x, 1 / x y] \cup \operatorname{Spec} \mathbb{C}[x y, 1 / y]
\end{gathered}
$$

So by blowing up \mathbb{C}^{2} in the points
$\left(x_{1}, y_{1}\right)=(0, \infty),\left(x_{2}, y_{2}\right)=(\infty, \infty),\left(x_{3}, y_{3}\right)=(\infty, 0)$ the equation then make sense on this new surface.
Accordingly we do analize any discrete order two nonlinear equation by identifying the singularities and blow them up.
From now on we shall replace \mathbb{C}^{2} with $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and any nonlinear equation will be a birational mapping $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ After blowing up the singular points we get a surface X and our mapping is lifted to a regular mapping:

$$
\varphi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above
- integrability $=$ Weyl group of affine type (and S is a rational elliptic surface)

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above
- integrability = Weyl group of affine type (and S is a rational elliptic surface)
- linearisability $=$ infinite number of blow ups, analytical stability, ruled surface S

Rational elliptic surface:

Adrian-Stefan Carstea, Tomoyuki Takenawa

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves of first kind.

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves of first kind.

Halphen surface of index m: A rational surface X is called a Halphen surface of index m if the anticanonical divisor class $-K_{X}$ is decomposed into prime divisors as $\left[-K_{X}\right]=D=\sum m_{i} D_{i}\left(m_{i} \geq 1\right)$ such that $D_{i} \cdot K_{X}=0$ Halphen surfaces can be obtained from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by succesive 8 blow-ups. In addition the dimension of the linear system $\left|-k K_{X}\right|$ is zero for $k=1, \ldots, m-1$ and 1 for $k=m$. Here, the linear system $\left|-m K_{X}\right|$ is the set of curves on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of degree $(2 m, 2 m)$ passing through each point of blow-up with multiplicity m.

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves of first kind.

Halphen surface of index m: A rational surface X is called a Halphen surface of index m if the anticanonical divisor class $-K_{X}$ is decomposed into prime divisors as $\left[-K_{X}\right]=D=\sum m_{i} D_{i}\left(m_{i} \geq 1\right)$ such that $D_{i} \cdot K_{X}=0$ Halphen surfaces can be obtained from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by succesive 8 blow-ups. In addition the dimension of the linear system $\left|-k K_{X}\right|$ is zero for $k=1, \ldots, m-1$ and 1 for $k=m$. Here, the linear system $\left|-m K_{X}\right|$ is the set of curves on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of degree $(2 m, 2 m)$ passing through each point of blow-up with multiplicity m.

If the fibers contain exceptional curves of first kind the elliptic surface is called relatively non-minimal. To make it minimal one has to blow down that curves.

Analytical stability and blowing-down structure

Adrian-Stefan Carstea, Tomoyuki Takenawa

Analytical stability and blowing-down structure

Let $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a birational automorphism with iterates growing quadratically with n.
For any such automorphism we can blow up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and construct a rational surface X such that: $\tilde{\phi}: X \rightarrow X$ and $\tilde{\phi}$ is analytically stable which means:
$\left(\tilde{\phi}^{*}\right)^{n}=\left(\tilde{\phi}^{n}\right)^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)$
Analitical stability is equivalent with the following: There is no divisor D such that exist $k>0$ and $\tilde{\phi}(D)=$ point, $\tilde{\phi}^{k}(D)=$ indeterminate

$$
D \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \bullet \rightarrow D^{\prime}
$$

- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem, and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem, and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- the genus formula is helping here $g(C)=1+\frac{1}{2}\left(C^{2}+C \cdot K_{X}\right)$ which must be zero
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem, and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- the genus formula is helping here $g(C)=1+\frac{1}{2}\left(C^{2}+C \cdot K_{X}\right)$ which must be zero
- then we have a new coordinate system where X is minimal given by the following transformation:

$$
\mathbb{C}^{2} \ni(x, y) \longrightarrow\left(\frac{y^{\prime}}{x^{\prime}}, \frac{y^{\prime \prime}}{x^{\prime \prime}}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Singularities and surfaces

Basic example

$$
\begin{equation*}
x_{n+1}=-x_{n-1} \frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)}{\left(x_{n}+a\right)\left(x_{n}+1 / a\right)} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=y \\
& \bar{y}=-x \frac{(y-a)(y-1 / a)}{(y+a)(y+1 / a)} \tag{3}
\end{align*}
$$

Singularities and surfaces

Basic example

$$
\begin{equation*}
x_{n+1}=-x_{n-1} \frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)}{\left(x_{n}+a\right)\left(x_{n}+1 / a\right)} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=y \\
& \bar{y}=-x \frac{(y-a)(y-1 / a)}{(y+a)(y+1 / a)} \tag{3}
\end{align*}
$$

Indeterminate points for ϕ and ϕ^{-1} :

$$
\begin{array}{rc}
P_{1}:(x, y)=(0,-a), & P_{2}:(x, y)=(0,-1 / a) \\
P_{3}:(X, y)=(0, a), & P_{4}:(X, y)=(0,1 / a), \\
P_{5}:(x, y)=(a, 0), & P_{6}:(x, y)=(1 / a, 0), \\
P_{7}:(x, Y)=(-a, 0), & P_{8}:(x, Y)=(-1 / a, 0)
\end{array}
$$

Figure: Space of initial conditions and orthogonal complement

The Picard group of X is a Z-module

$$
\operatorname{Pic}(X)=\mathbb{Z} H_{x} \oplus \mathbb{Z} H_{y} \oplus \bigoplus_{i=1}^{8} \mathbb{Z} E_{i}
$$

H_{x}, H_{y} are the total transforms of the lines $x=$ const., $y=$ const. E_{i} are the total transforms of the eight blowing up points. The intersection form:

$$
H_{z} \cdot H_{w}=1-\delta_{z w}, \quad E_{i} \cdot E_{j}=-\delta_{i j}, \quad H_{z} \cdot E_{k}=0
$$

for $z, w=x, y$. Anti-canonical divisor of X :

$$
-K_{X}=2 H_{x}+2 H_{y}-\sum_{i=1}^{8} E_{i}
$$

If $A=h_{0} H_{x}+h_{1} H_{y}+\sum_{i=1}^{8} e_{i} E_{i}$ is an element of the Picard lattice $\left(h_{i}, e_{j} \in \mathbf{Z}\right)$ the induced bundle mapping is acting on it as

If $A=h_{0} H_{x}+h_{1} H_{y}+\sum_{i=1}^{8} e_{i} E_{i}$ is an element of the Picard lattice ($h_{i}, e_{j} \in \mathbf{Z}$) the induced bundle mapping is acting on it as

$$
\begin{aligned}
& \phi_{*}\left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right) \\
= & \\
& \left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right)\left(\begin{array}{cccccccccc}
2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

If $A=h_{0} H_{x}+h_{1} H_{y}+\sum_{i=1}^{8} e_{i} E_{i}$ is an element of the Picard lattice ($h_{i}, e_{j} \in \mathbf{Z}$) the induced bundle mapping is acting on it as

$$
\begin{aligned}
& \phi_{*}\left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right) \\
&= \\
&\left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right)\left(\begin{array}{cccccccccc}
2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

It preserves the decomposition of $-K_{X}=\sum_{i=0}^{3} D_{i}$:

$$
\begin{aligned}
& D_{0}=H_{x}-E_{1}-E_{2}, D_{1}=H_{y}-E_{5}-E_{6} \\
& D_{2}=H_{x}-E_{3}-E_{4}, D_{3}=H_{y}-E_{7}-E_{8}
\end{aligned}
$$

there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

- this family of curves defines a rational elliptic surface.
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

- this family of curves defines a rational elliptic surface.
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchange fibers of the elliptic fibration)
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

- this family of curves defines a rational elliptic surface.
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchange fibers of the elliptic fibration)
So the conservation law will be:

$$
I=\left(\frac{\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)}{x y}\right)^{2}
$$

Symmetries

Related to orthogonal complement of the space of initial condition $A_{3}^{(1)}$

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
\begin{gathered}
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i} \\
<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
\end{gathered}
$$

Symmetries

Related to orthogonal complement of the space of initial condition $A_{3}^{(1)}$

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
\begin{gathered}
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i} \\
<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
\end{gathered}
$$

which have 6-generators:

$$
\begin{gathered}
<D>^{\perp}=<\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}>_{\mathbb{Z}} \\
\alpha_{0}=E_{4}-E_{3}, \alpha_{1}=E_{1}-E_{2}, \alpha_{2}=H_{1}-E_{1}-E_{5} \\
\alpha_{3}=H_{0}-E_{3}-E_{7}, \alpha_{4}=E_{5}-E_{6}, \alpha_{5}=E_{8}-E_{7}
\end{gathered}
$$

Symmetries

Related to orthogonal complement of the space of initial condition $A_{3}^{(1)}$

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
\begin{gathered}
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i} \\
<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
\end{gathered}
$$

which have 6-generators:

$$
\begin{gathered}
<D>^{\perp}=<\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}>_{\mathbb{Z}} \\
\alpha_{0}=E_{4}-E_{3}, \alpha_{1}=E_{1}-E_{2}, \alpha_{2}=H_{1}-E_{1}-E_{5} \\
\alpha_{3}=H_{0}-E_{3}-E_{7}, \alpha_{4}=E_{5}-E_{6}, \alpha_{5}=E_{8}-E_{7}
\end{gathered}
$$

Elementary reflections:

$$
w_{i}: \operatorname{Pic}(x) \rightarrow \operatorname{Pic}(X), w_{i}\left(\alpha_{j}\right)=\alpha_{j}-c_{i j} \alpha_{i}
$$

where $c_{j i}=2\left(\alpha_{j} \cdot \alpha_{i}\right) /\left(\alpha_{i} \cdot \alpha_{i}\right)$ looks precisely as an affine Cartan matrix of $D_{5}^{(1)}$-type

Symmetries

Related to orthogonal complement of the space of initial condition $A_{3}^{(1)}$

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
\begin{gathered}
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i} \\
<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
\end{gathered}
$$

which have 6-generators:

$$
\begin{gathered}
<D>^{\perp}=<\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}>_{\mathbb{Z}} \\
\alpha_{0}=E_{4}-E_{3}, \alpha_{1}=E_{1}-E_{2}, \alpha_{2}=H_{1}-E_{1}-E_{5} \\
\alpha_{3}=H_{0}-E_{3}-E_{7}, \alpha_{4}=E_{5}-E_{6}, \alpha_{5}=E_{8}-E_{7}
\end{gathered}
$$

Elementary reflections:

$$
w_{i}: \operatorname{Pic}(x) \rightarrow \operatorname{Pic}(X), w_{i}\left(\alpha_{j}\right)=\alpha_{j}-c_{i j} \alpha_{i}
$$

where $c_{j i}=2\left(\alpha_{j} \cdot \alpha_{i}\right) /\left(\alpha_{i} \cdot \alpha_{i}\right)$ looks precisely as an affine Cartan matrix of $D_{5}^{(1)}$-type Permutation of roots:

$$
\begin{aligned}
& \sigma_{10}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=\left(\alpha_{1}, \alpha_{0}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \\
& \sigma_{\text {tot }}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=\left(\alpha_{5}, \alpha_{4}, \alpha_{3}, \alpha_{2}, \alpha_{1}, \alpha_{0}\right)
\end{aligned}
$$

Hence the group generated by reflections and permutations becomes an extended Wevl_group

This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form

This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)

This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

This extended Weyl group becomes the group of Cremona isometries for the space of initial conditions X since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

Accordingly our mapping lives in a Weyl group and has the following decomposition in elementary reflections:

$$
\phi_{*}=\sigma_{t o t} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}
$$

All elements $\omega \in \widetilde{W}\left(D_{5}^{(1)}\right)$ which commutes with ϕ_{*}, namely ($\omega \circ \phi_{*}=\phi_{*} \circ \omega$) form the symmetries of the mapping.
The equation is related to the translations in this affine Weyl group. In general for an affine Weyl group with null vector δ the traslation of an element D with respect to the root α_{i} is given by

$$
t_{\alpha_{i}}: D \rightarrow D-(D, \delta) \alpha_{i}+\left(D, \alpha_{i}+\delta\right) \delta
$$

and our mapping is "the fourth root" of a translation:

$$
\phi_{*}^{4} \equiv t_{\alpha_{3}} \circ t_{\alpha_{3}} \circ t_{\alpha_{4}} \circ t_{\alpha_{5}}=t_{2 \alpha_{3}+\alpha_{4}+\alpha_{5}}
$$

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95)

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems: Tetrahedral symmetry can be simplified to:

$$
\begin{gathered}
\dot{x}=x^{2}-y^{2} \\
\dot{y}=-2 x y
\end{gathered}
$$

with the invariant, $K=3 x^{2} y-y^{3}$

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems: Tetrahedral symmetry can be simplified to:

$$
\begin{gathered}
\dot{x}=x^{2}-y^{2} \\
\dot{y}=-2 x y
\end{gathered}
$$

with the invariant, $K=3 x^{2} y-y^{3}$
Octahedral symmetry:

$$
\begin{aligned}
& \dot{x}=2 x^{2}-12 y^{2} \\
& \dot{y}=-6 x y-4 y^{2}
\end{aligned}
$$

with the invariant: $K=y(2 x+3 y)(x-y)^{2}$

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems: Tetrahedral symmetry can be simplified to:

$$
\begin{gathered}
\dot{x}=x^{2}-y^{2} \\
\dot{y}=-2 x y
\end{gathered}
$$

with the invariant, $K=3 x^{2} y-y^{3}$
Octahedral symmetry:

$$
\begin{aligned}
& \dot{x}=2 x^{2}-12 y^{2} \\
& \dot{y}=-6 x y-4 y^{2}
\end{aligned}
$$

with the invariant: $K=y(2 x+3 y)(x-y)^{2}$
Icosahedral symmetry:

$$
\begin{gathered}
\dot{x}=2 x^{2}-y^{2} \\
\dot{y}=-10 x y+y^{2}
\end{gathered}
$$

with the invariant: $K=y(3 x-y)^{2}(4 x+y)^{3}$

Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$
\dot{x}_{i}=\sum_{j=1}^{N} a_{i j} x_{j}^{2}+\sum_{j<k} b_{i j k} x_{j} x_{k}+c_{i}
$$

Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$
\dot{x}_{i}=\sum_{j=1}^{N} a_{i j} x_{j}^{2}+\sum_{j<k} b_{i j k} x_{j} x_{k}+c_{i}
$$

In order to find the time discretisation first we bilinearize it by using projective substitution $x_{i}=G_{i} / F$ and we get:

$$
D_{t} G_{i} \cdot F=\sum_{j=1}^{N} a_{i j} G_{j}^{2}+\sum_{j<k} b_{i j k} G_{j} G_{k}+c_{i} F^{2}
$$

Discretize the bilinear operator and impose gauge-invariance in the right hand side

$$
D_{t} G_{i} \cdot F \rightarrow\left(\bar{G}_{i} F-G_{i} \bar{F}\right) / \epsilon
$$

Hirota-Kimura discretisation

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$
\dot{x}_{i}=\sum_{j=1}^{N} a_{i j} x_{j}^{2}+\sum_{j<k} b_{i j k} x_{j} x_{k}+c_{i}
$$

In order to find the time discretisation first we bilinearize it by using projective substitution $x_{i}=G_{i} / F$ and we get:

$$
D_{t} G_{i} \cdot F=\sum_{j=1}^{N} a_{i j} G_{j}^{2}+\sum_{j<k} b_{i j k} G_{j} G_{k}+c_{i} F^{2}
$$

Discretize the bilinear operator and impose gauge-invariance in the right hand side

$$
\begin{gathered}
D_{t} G_{i} \cdot F \rightarrow\left(\bar{G}_{i} F-G_{i} \bar{F}\right) / \epsilon \\
\bar{G}_{i} F-G_{i} \bar{F}=\epsilon\left(\sum_{j=1}^{N} a_{i j} G_{j} \bar{G}_{j}+\sum_{j<k} b_{i j k}\left(\alpha \bar{G}_{j} G_{k}+(1-\alpha) G_{j} \bar{G}_{k}\right)+c_{i} F \bar{F}\right)
\end{gathered}
$$

or in the nonlinear form (Kahan '93, Hirota-Kimura, '00)

$$
\bar{x}_{i}-x_{i}=\epsilon\left(\sum_{j=1}^{N} a_{i j} x_{j} \bar{x}_{j}+\sum_{j<k} b_{i j k}\left(\alpha \bar{x}_{j} x_{k}+(1-\alpha) x_{j} \bar{x}_{k}\right)+c_{i}\right)
$$

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

- Octahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

Discrete Nahm equations

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

- Octahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

- Icosahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?
with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES
with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES

The tetrahedral symmetry (simple can be brought to QRT):

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

use the substitution $u=(1-\epsilon x) / y, v=(1+\epsilon x) / y$ and we get QRT-mapping ($\bar{u}=v$) and

$$
3 \bar{u} \underline{u}-u(\bar{u}+\underline{u})-u^{2}+4 \epsilon^{2}=0
$$

with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
So we need to analyse carefully the singularity structure. What is seen is that we have more singularities and apparently some of them are useless making the corresponding rational elliptic surface to be more complicated.

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following: $x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the non-QRT type system:

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following: $x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the non-QRT type system:

$$
\left\{\begin{array}{l}
\bar{u}=v \tag{4}\\
\bar{v}=\frac{(u+2 v-20 \epsilon)(v+10 \epsilon)}{4 u-v+10 \epsilon}
\end{array}\right.
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following:
$x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the non-QRT type system:

$$
\left\{\begin{array}{l}
\bar{u}=v \tag{4}\\
\bar{v}=\frac{(u+2 v-20 \epsilon)(v+10 \epsilon)}{4 u-v+10 \epsilon}
\end{array}\right.
$$

The space of initial conditions is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following nine points:

$$
\begin{aligned}
& E_{1}:(u, v)=(-10 \epsilon, 0), E_{2}(0,10 \epsilon), E_{3}(10 \epsilon, 5 \epsilon) \\
& E_{4}(5 \epsilon, 0), E_{5}(0,-5 \epsilon), E_{6}(-5 \epsilon,-10 \epsilon) \\
& E_{7}(\infty, \infty), E_{8}:(1 / u, u / v)=(0,-1 / 2), E_{9}:(1 / u, u / v)=(0,-2)
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6}, \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9} \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7}
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \quad \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7}
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9} \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7}
\end{aligned}
$$

The curve corresponding to α_{0} is a (-1) curve which must be blown down. $E_{1} \rightarrow H_{a}=H_{u}+H_{v}-E_{2}-E_{7}$ and $E_{2} \rightarrow H_{b}=H_{u}+H_{v}-E_{1}-E_{7}$, 0-curves intersecting each other: The corresponding curves are given by:

$$
a_{1} u+a_{2}(v-10 \epsilon)=0, \quad b_{1}(u+10 \epsilon)+b_{2} v=0
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \quad \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7}
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9} \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7}
\end{aligned}
$$

The curve corresponding to α_{0} is a (-1) curve which must be blown down. $E_{1} \rightarrow H_{a}=H_{u}+H_{v}-E_{2}-E_{7}$ and $E_{2} \rightarrow H_{b}=H_{u}+H_{v}-E_{1}-E_{7}$, 0-curves intersecting each other: The corresponding curves are given by:

$$
a_{1} u+a_{2}(v-10 \epsilon)=0, \quad b_{1}(u+10 \epsilon)+b_{2} v=0
$$

So if we set $a=(v-10 \epsilon) / u \quad b=(u+10 \epsilon) / v$ our dynamical system becomes

$$
\left\{\begin{array}{l}
\bar{a}=\frac{3 a b-2 a+2}{a-4} \tag{5}\\
\bar{b}=\frac{4-a}{2 a+1}
\end{array}\right.
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), \quad F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), \quad F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2)
\end{aligned}
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), F_{2}:(a, b)=(\infty, 0) \\
& F_{3}:(a, b)=(-1 / 2,4), F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), F_{6}:(a, b)=(4,-1 / 2) \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2)
\end{aligned}
$$

The invariant is nothing but the proper transform of the anti-canonical divisor:

$$
K_{X}=2 H_{a}+2 H_{b}-\oplus_{i=1}^{8} F_{i}
$$

namely

$$
K=\frac{(a b-1)(a b+2 a+2 b-5)}{4 a b+2 a+2 b+1}
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), F_{2}:(a, b)=(\infty, 0) \\
& F_{3}:(a, b)=(-1 / 2,4), F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), F_{6}:(a, b)=(4,-1 / 2) \\
& F_{7}:(a, b)=(-2,-1 / 2), F_{8}:(a, b)=(-1 / 2,-2)
\end{aligned}
$$

The invariant is nothing but the proper transform of the anti-canonical divisor:

$$
K_{X}=2 H_{a}+2 H_{b}-\oplus_{i=1}^{8} F_{i}
$$

namely

$$
K=\frac{(a b-1)(a b+2 a+2 b-5)}{4 a b+2 a+2 b+1}
$$

which is the same as the one given at the beginning [Suris et al. 2012]

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The space of initial condition is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following 12 points:

$$
\begin{aligned}
& E_{1}:(x, y)=(\infty, \infty), E_{2}(-1 / 7 \epsilon,-3 / 7 \epsilon), E_{3}(-1 / 7 \epsilon, 4 / 7 \epsilon) \\
& E_{4}(1 / 7 \epsilon, 3 / 7 \epsilon), E_{5}(1 / 7 \epsilon,-4 / 7 \epsilon) E_{6}(1 / 5 \epsilon, 0) \\
& E_{7}(1 / 3 \epsilon, 0), E_{8}(1 / \epsilon, 0), E_{9}(-1 / \epsilon, 0) \\
& E_{10}(-1 / 3 \epsilon, 0), E_{11}(-1 / 5 \epsilon, 0) \cdot E_{12}:(1 / x, x / y)=(0,1 / 3)
\end{aligned}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The space of initial condition is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following 12 points:

$$
\begin{aligned}
& E_{1}:(x, y)=(\infty, \infty), \quad E_{2}(-1 / 7 \epsilon,-3 / 7 \epsilon), \quad E_{3}(-1 / 7 \epsilon, 4 / 7 \epsilon), \\
& E_{4}(1 / 7 \epsilon, 3 / 7 \epsilon), \quad E_{5}(1 / 7 \epsilon,-4 / 7 \epsilon) E_{6}(1 / 5 \epsilon, 0), \\
& E_{7}(1 / 3 \epsilon, 0), E_{8}(1 / \epsilon, 0), E_{9}(-1 / \epsilon, 0), \\
& E_{10}(-1 / 3 \epsilon, 0), E_{11}(-1 / 5 \epsilon, 0) \cdot E_{12}:(1 / x, x / y)=(0,1 / 3)
\end{aligned}
$$

Singularity confinement gives the following pattern:

$$
\begin{aligned}
& H_{y}-E_{1}(y=\infty) \rightarrow \text { point } \rightarrow \cdots(4 \text { points }) \cdots \rightarrow \text { point } \rightarrow H_{y}-E_{1} \\
& \cdots \rightarrow \text { point } \rightarrow \text { point } \rightarrow H_{x}-E_{1}(x=\infty) \rightarrow \text { point } \rightarrow \text { point } \rightarrow \cdots .
\end{aligned}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The space of initial condition is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following 12 points:

$$
\begin{aligned}
& E_{1}:(x, y)=(\infty, \infty), \quad E_{2}(-1 / 7 \epsilon,-3 / 7 \epsilon), \quad E_{3}(-1 / 7 \epsilon, 4 / 7 \epsilon), \\
& E_{4}(1 / 7 \epsilon, 3 / 7 \epsilon), \quad E_{5}(1 / 7 \epsilon,-4 / 7 \epsilon) E_{6}(1 / 5 \epsilon, 0), \\
& E_{7}(1 / 3 \epsilon, 0), E_{8}(1 / \epsilon, 0), E_{9}(-1 / \epsilon, 0), \\
& E_{10}(-1 / 3 \epsilon, 0), E_{11}(-1 / 5 \epsilon, 0) \cdot E_{12}:(1 / x, x / y)=(0,1 / 3)
\end{aligned}
$$

Singularity confinement gives the following pattern:

$$
\begin{aligned}
& H_{y}-E_{1}(y=\infty) \rightarrow \text { point } \rightarrow \cdots(4 \text { points }) \cdots \rightarrow \text { point } \rightarrow H_{y}-E_{1} \\
& \cdots \rightarrow \text { point } \rightarrow \text { point } \rightarrow H_{x}-E_{1}(x=\infty) \rightarrow \text { point } \rightarrow \text { point } \rightarrow \cdots .
\end{aligned}
$$

The curve $4 x+y=0: H_{x}+H_{y}-E_{1}-E_{3}-E_{5}$ is invariant and we blow it down

So $E_{3} \rightarrow H_{v}=H_{x}+H_{y}-E_{1}-E_{5}$ and $E_{5} \rightarrow H_{u}=H_{x}+H_{y}-E_{1}-E_{3}$ with

$$
H_{u} \cdot H_{u}=H_{v} \cdot H_{v}=0, H_{u} \cdot H_{v}=1
$$

where the linear systems of H_{u} and H_{v} are given by

$$
\begin{aligned}
& \left|H_{u}\right|: u_{0}(1+7 \epsilon x)+u_{1}(4 x+y) \\
& \left|H_{v}\right|: v_{0}(1-7 \epsilon x)+v_{1}(4 x+y) .
\end{aligned}
$$

So $E_{3} \rightarrow H_{v}=H_{x}+H_{y}-E_{1}-E_{5}$ and $E_{5} \rightarrow H_{u}=H_{x}+H_{y}-E_{1}-E_{3}$ with

$$
H_{u} \cdot H_{u}=H_{v} \cdot H_{v}=0, H_{u} \cdot H_{v}=1
$$

where the linear systems of H_{u} and H_{v} are given by

$$
\begin{aligned}
& \left|H_{u}\right|: u_{0}(1+7 \epsilon x)+u_{1}(4 x+y) \\
& \left|H_{v}\right|: v_{0}(1-7 \epsilon x)+v_{1}(4 x+y) .
\end{aligned}
$$

If we take the new variables u and v as

$$
u=\frac{2(1+7 \epsilon x)}{\epsilon(4 x+y)}, v=\frac{2(1-7 \epsilon x)}{\epsilon(4 x+y)},
$$

So $E_{3} \rightarrow H_{v}=H_{x}+H_{y}-E_{1}-E_{5}$ and $E_{5} \rightarrow H_{u}=H_{x}+H_{y}-E_{1}-E_{3}$ with

$$
H_{u} \cdot H_{u}=H_{v} \cdot H_{v}=0, H_{u} \cdot H_{v}=1
$$

where the linear systems of H_{u} and H_{v} are given by

$$
\begin{aligned}
& \left|H_{u}\right|: u_{0}(1+7 \epsilon x)+u_{1}(4 x+y) \\
& \left|H_{v}\right|: v_{0}(1-7 \epsilon x)+v_{1}(4 x+y) .
\end{aligned}
$$

If we take the new variables u and v as

$$
u=\frac{2(1+7 \epsilon x)}{\epsilon(4 x+y)}, v=\frac{2(1-7 \epsilon x)}{\epsilon(4 x+y)},
$$

then we have a new space for initial conditions given by nine blow up points:

$$
\begin{aligned}
& F_{1}:(u, v)=(2,-2), F_{2}:(0,-4), F_{3}:(4,0), F_{4}:(6,-1), F_{5}:(5,-2), \\
& F_{6}:(4,-3), F_{7}:(3,-4), F_{8}:(2,-5), F_{9}:(1,-6) .
\end{aligned}
$$

The dynamical system becomes an automorphism having the following topological singularity patterns

$$
\begin{aligned}
& H_{v}-F_{9} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{3} \rightarrow H_{u}-F_{4} \\
& H_{v}-F_{3} \rightarrow F_{4} \rightarrow F_{5} \rightarrow F_{6} \rightarrow F_{7} \rightarrow F_{8} \rightarrow F_{9} \rightarrow H_{u}-F_{2}
\end{aligned}
$$

and $H_{u} \rightarrow H_{u}+H_{v}-F_{2}-F_{4}$.

The dynamical system becomes an automorphism having the following topological singularity patterns

$$
\begin{aligned}
& H_{v}-F_{9} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{3} \rightarrow H_{u}-F_{4} \\
& H_{v}-F_{3} \rightarrow F_{4} \rightarrow F_{5} \rightarrow F_{6} \rightarrow F_{7} \rightarrow F_{8} \rightarrow F_{9} \rightarrow H_{u}-F_{2}
\end{aligned}
$$

and $H_{u} \rightarrow H_{u}+H_{v}-F_{2}-F_{4}$.
The invariant (-1) curve $H_{u}+H_{v}-F_{1}-F_{2}-F_{3}$, which should be blown down.

$$
F_{3} \rightarrow H_{s}=H_{u}+H_{v}-F_{1}-F_{2}, \quad F_{2} \rightarrow H_{t}=H_{u}+H_{v}-F_{1}-F_{3}
$$

where the linear systems of H_{s} and H_{t} are given by

$$
\begin{aligned}
& \left|H_{s}\right|: s_{0} u(v+2)+s_{1}(u-v-4) \\
& \left|H_{t}\right|: t_{0} v(u-2)+t_{1}(u-v-4)
\end{aligned}
$$

The dynamical system becomes an automorphism having the following topological singularity patterns

$$
\begin{aligned}
& H_{v}-F_{9} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{3} \rightarrow H_{u}-F_{4} \\
& H_{v}-F_{3} \rightarrow F_{4} \rightarrow F_{5} \rightarrow F_{6} \rightarrow F_{7} \rightarrow F_{8} \rightarrow F_{9} \rightarrow H_{u}-F_{2}
\end{aligned}
$$

and $H_{u} \rightarrow H_{u}+H_{v}-F_{2}-F_{4}$.
The invariant (-1) curve $H_{u}+H_{v}-F_{1}-F_{2}-F_{3}$, which should be blown down.

$$
F_{3} \rightarrow H_{s}=H_{u}+H_{v}-F_{1}-F_{2}, \quad F_{2} \rightarrow H_{t}=H_{u}+H_{v}-F_{1}-F_{3}
$$

where the linear systems of H_{s} and H_{t} are given by

$$
\begin{aligned}
& \left|H_{s}\right|: s_{0} u(v+2)+s_{1}(u-v-4) \\
& \left|H_{t}\right|: t_{0} v(u-2)+t_{1}(u-v-4)
\end{aligned}
$$

and hence we take the new variables s and t as

$$
s=-\frac{3 u(v+2)}{2(u-v-4)}, t=-\frac{3 v(u-2)}{2(u-v-4)}
$$

$$
\left\{\begin{array}{l}
\bar{s}=\frac{2 s t-3 s-3 t+9}{s+t-3} \\
\bar{t}=\frac{2(s-3)(t+3)}{3 s-t-9}
\end{array}\right.
$$

with the blow-up points

$$
\left\{\begin{aligned}
\bar{s} & =\frac{2 s t-3 s-3 t+9}{s+t-3} \\
\bar{t} & =\frac{2(s-3)(t+3)}{3 s-t-9}
\end{aligned}\right.
$$

with the blow-up points

$$
\begin{aligned}
& F_{1}^{\prime}:(s, t)=(3,0), F_{2}^{\prime}(0,3), F_{3}^{\prime}(-3,2), F_{4}^{\prime}:\left(\frac{s}{t-3}, t-3\right)=(5,0), \\
& F_{5}^{\prime}(2,3), F_{6}^{\prime}(3,2), F_{7}^{\prime}:\left(s-3, \frac{t}{s-3}\right)=(0,5), F_{8}^{\prime}(2,-3)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\bar{s}=\frac{2 s t-3 s-3 t+9}{s+t-3} \\
\bar{t}=\frac{2(s-3)(t+3)}{3 s-t-9}
\end{array}\right.
$$

with the blow-up points

$$
\begin{aligned}
& F_{1}^{\prime}:(s, t)=(3,0), F_{2}^{\prime}(0,3), F_{3}^{\prime}(-3,2), F_{4}^{\prime}:\left(\frac{s}{t-3}, t-3\right)=(5,0) \\
& F_{5}^{\prime}(2,3), F_{6}^{\prime}(3,2), F_{7}^{\prime}:\left(s-3, \frac{t}{s-3}\right)=(0,5), F_{8}^{\prime}(2,-3)
\end{aligned}
$$

The invariants can be computed by using the the anticanonical divisor:

$$
\begin{equation*}
K=\frac{(s-t)^{2}+4(s+t)-21}{(s-2)(t-2)(2 s t-5 s-5 t+15)}=\frac{-56 \epsilon^{6} y(-3 x+y)^{2}(4 x+y)^{3}}{d_{1} d_{2} d_{3}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{1}=-3-12 \epsilon x+15 \epsilon^{2} x^{2}-3 \epsilon y-17 \epsilon^{2} x y+4 \epsilon^{2} y^{2} \\
& d_{2}=-3+12 \epsilon x+15 \epsilon^{2} x^{2}+3 \epsilon y-17 \epsilon^{2} x y+4 \epsilon^{2} y^{2} \\
& d_{3}=-3+27 \epsilon^{2} x^{2}+10 \epsilon^{2} x y+10 \epsilon^{2} y^{2}
\end{aligned}
$$

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is $f(x)=|x|=2 \max (0, x)-x$ and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or tropicalisation.

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is $f(x)=|x|=2 \max (0, x)-x$ and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling $\mathbb{R}_{\max }=\mathbb{R} \cup\{-\infty\}$ we introduce the semiring $\left\{\mathbb{R}_{\max }, \oplus, \otimes, \varepsilon, e\right\}$ through the following definitions:

- $a \oplus b:=\max (a, b), \quad a \otimes b:=a+b$
- $\varepsilon:=-\infty, \quad e:=0$

The main news is that there is no additive inverse and the addition is idempotent, making all calculation extremely hard.

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is $f(x)=|x|=2 \max (0, x)-x$ and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling $\mathbb{R}_{\text {max }}=\mathbb{R} \cup\{-\infty\}$ we introduce the semiring $\left\{\mathbb{R}_{\max }, \oplus, \otimes, \varepsilon, e\right\}$ through the following definitions:

- $a \oplus b:=\max (a, b), \quad a \otimes b:=a+b$
- $\varepsilon:=-\infty, \quad e:=0$

The main news is that there is no additive inverse and the addition is idempotent, making all calculation extremely hard.
A nonlinear discrete equation (ordinary or partial) with positive definite dependent variable x_{n} can be ultradiscretised or tropicalised using the following substitution and formula:

$$
x_{n}=e^{x_{n} / \epsilon} \quad \lim _{\epsilon \rightarrow 0^{+}} \epsilon \ln \left(1+x_{n}\right)=\max \left(0, X_{n}\right)
$$

Tropical dynamical systems

Motivation: How simple can a nonlinearity be? How do behave the discrete equations with the simplest nonlinearity?
Answer: The simplest nonlinear function is $f(x)=|x|=2 \max (0, x)-x$ and the procedure of reducing a nonlinear discrete equation to one having only max-nonlinearities and addition in an algorithmical way is called ultradiscretisation or tropicalisation.
Mathematically the tropicalisation has been introduced as follows: Calling $\mathbb{R}_{\text {max }}=\mathbb{R} \cup\{-\infty\}$ we introduce the semiring $\left\{\mathbb{R}_{\max }, \oplus, \otimes, \varepsilon, e\right\}$ through the following definitions:

- $a \oplus b:=\max (a, b), \quad a \otimes b:=a+b$
- $\varepsilon:=-\infty, \quad e:=0$

The main news is that there is no additive inverse and the addition is idempotent, making all calculation extremely hard.
A nonlinear discrete equation (ordinary or partial) with positive definite dependent variable x_{n} can be ultradiscretised or tropicalised using the following substitution and formula:

$$
x_{n}=e^{x_{n} / \epsilon} \quad \lim _{\epsilon \rightarrow 0^{+}} \epsilon \ln \left(1+x_{n}\right)=\max \left(0, x_{n}\right)
$$

Example:

$$
x_{n+1} x_{n-1}=a \frac{1+x_{n}}{x_{n}^{2}}, \quad I_{n}=\frac{a\left(1+x_{n}+x_{n+1}\right)+x_{n}^{2} x_{n+1}^{2}}{x_{n} x_{n+1}}
$$

If $x_{n}=\exp \left(X_{n} / \epsilon\right), a=\exp A / \epsilon$ then we get the tropical equation and the invariant:

$$
X_{n+1}+X_{n-1}=A+\max \left(0, X_{n}\right)-2 X_{n}, \quad \mathcal{I}=\max \left(2 X_{n}+2 X_{n+1}, A, A+X_{n}, A+X_{n+1}\right)-X_{n+1}-X_{n}
$$

$X_{n+1}+X_{n-1}=A+\max \left(0, X_{n}\right)-2 X_{n}, \quad \mathcal{I}=\max \left(2 X_{n}+2 X_{n+1}, A, A+X_{n}, A+X_{n+1}\right)-X_{n+1}-X_{n}$

Question: What is singularity here? Can one compute the invariant?
$X_{n+1}+X_{n-1}=A+\max \left(0, X_{n}\right)-2 X_{n}, \quad \mathcal{I}=\max \left(2 X_{n}+2 X_{n+1}, A, A+X_{n}, A+X_{n+1}\right)-X_{n+1}-X_{n}$
Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a "singularity confinement" here?
$X_{n+1}+X_{n-1}=A+\max \left(0, X_{n}\right)-2 X_{n}, \quad \mathcal{I}=\max \left(2 X_{n}+2 X_{n+1}, A, A+X_{n}, A+X_{n+1}\right)-X_{n+1}-X_{n}$
Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a "singularity confinement" here?
YES! We shall thus examine the behaviour of a singularity appearing at, say, $n=1$ where $X_{1}=\epsilon$, while X_{0} is regular and look at the propagation of this singularity both forwards and backwards. Introducing the notation $\mu \equiv \max (\epsilon, 0)$, the presence of μ indicates that the value of X is singular. We get (for $X_{0}>A$):
$X_{n+1}+X_{n-1}=A+\max \left(0, X_{n}\right)-2 X_{n}, \quad \mathcal{I}=\max \left(2 X_{n}+2 X_{n+1}, A, A+X_{n}, A+X_{n+1}\right)-X_{n+1}-X_{n}$
Question: What is singularity here? Can one compute the invariant?
The only visible singularity is the discontinuity point. Can we imagine a "singularity confinement" here?
YES! We shall thus examine the behaviour of a singularity appearing at, say, $n=1$ where $X_{1}=\epsilon$, while X_{0} is regular and look at the propagation of this singularity both forwards and backwards. Introducing the notation $\mu \equiv \max (\epsilon, 0)$, the presence of μ indicates that the value of X is singular. We get (for $X_{0}>A$):

```
\(X_{-3}=A-\epsilon\)
\(X_{-2}=X_{0}-A+2 \epsilon\)
\(X_{-1}=-X_{0}+A-\epsilon\)
\(X_{0}=X_{0}\)
\(X_{1}=\epsilon\)
\(X_{2}=A-X_{0}-2 \epsilon+\mu\)
\(X_{3}=2 X_{0}-A+3 \epsilon-2 \mu\)
\(X_{4}=A-X_{0}-\epsilon+\mu\)
\(X_{5}=-\epsilon\)
\(X_{6}=X_{0}+2 \epsilon\)
```


Conclusions

- Singularities are essential in analysing discrete dynamical systems.
- The singularity structure may give a non-minimal elliptic surface. In order to make it minimal one has to blow down some -1 divisor classes (one has to prove the existence of the blow-down structure)
- after minimization the mapping can be "solved"
- we expect to find analogies in the case of tropical dynamical systems using tropical algebraic geometry.

All the results are published here:
1.A. S. Carstea, T. Takenawa, Journal of Nonlinear Mathematical Physics, vol. 20, Supplement 1 (Special Issue on Geometry of the Painlevé equations) 17-33, (2013). Also on arXiv:1211.5393
2. A. S. Carstea, T. Takenawa, Journal of Phyiscs A: Math. Theor. 45, 15, 155206, (2012)
3. A. S. Carstea, On the geometry of Q_{4} mapping, Contemporary Mathematics, vol. 593, 231-239, (2013)
4. B. Grammaticos, A. Ramani, K. M. Tamizhmani, T. Tamizhmani, A.S. Carstea, J. Phys. A: Math. Theor. 40, F725, (2007)

