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Motivation

The purpose of this talk is to present from a dynamical-geometrical
perspective, the class of smooth vector fields (defined on a finite
dimensional smooth Riemannian manifold) that admit a given set
of first integrals, and dissipate an a-priori given set of scalar
quantities, with prescribed dissipation rates.
As application, we provide a method to construct dissipative
perturbations of completely integrable systems in order to control
the stability of periodic orbits.



A coordinate-free formulation of hyperplanes intersection

Next result provides a coordinate free formulation for the
intersection of k linear hyperplanes with prescribed normal
directions.

Proposition

Let (E ,〈·, ·〉) be an n-dimensional inner product space over a field
K of characteristic zero, and let {v1, . . . ,vk} ⊂ E be a set of
linearly independent vectors (k ∈ N, 0 < k < n−1). Then the
solutions u ∈ E of the system

〈u,v1〉= · · ·= 〈u,vk〉= 0,

are the elements of the (n−k)-dimensional vector subspace

E [v1, . . . ,vk ] := spanK

{
?

(
n−k∧

i=1,i 6=a

ωi ∧
k∧

l=1

vl

)
: a ∈ {1, . . . ,n−k}

}
,



A coordinate-free formulation of hyperplanes intersection

where
{ω1, . . . ,ωn−k} ⊂ E

is a set of linearly independent vectors such that
{v1, . . . ,vk ,ω1, . . . ,ωn−k} forms a basis of E .



A coordinate-free formulation of hyperplanes intersection

Remark

For k = n, the Proposition (3.1) becomes trivial since the only
solution of the system 〈u,v1〉= · · ·= 〈u,vn〉= 0 is u = 0.

For k = n−1, the conclusion of Proposition (3.1) becomes as
follows:
The solutions u ∈ E of the system

〈u,v1〉= · · ·= 〈u,vn−1〉= 0,

are the elements of the 1-dimensional vector subspace

E [v1, . . . ,vn−1] := spanK

{
?

(
n−1∧
l=1

vl

)}
.



A coordinate-free formulation of hyperplanes intersection

Let us give now the main result of this section, which provides a
coordinate free formulation of the linear variety described by the
intersection of k linear hyperplanes and respectively p affine
hyperplanes of an n - dimensional inner product space (E ,〈·, ·〉).



A coordinate-free formulation of hyperplanes intersection

Theorem

Let (E ,〈·, ·〉) be an n-dimensional inner product space over a field
K of characteristic zero. Let k,p ∈ N, k > 0, p > 1, k + p < n−1,
λ1, . . . ,λp ∈K\{0} be given, and let {v1, . . . ,vk ,w1, . . . ,wp} ⊂ E
be a set of linearly independent vectors.
Then the solutions u ∈ E of the system{

〈u,v1〉= · · ·= 〈u,vk〉= 0,
〈u,w1〉= λ1, . . . ,〈u,wp〉= λp,

(1)

are given by u = u0 + u⊥, where

u0 =

∥∥∥∥∥
p∧

i=1

wi ∧
k∧

j=1

vj

∥∥∥∥∥
−2

k+p

·
p

∑
i=1

(−1)n−iλiΘi ,



A coordinate-free formulation of hyperplanes intersection

with

Θi = ?

[
p∧

j=1,j 6=i

wj ∧
k∧

l=1

vl ∧?

(
p∧

j=1

wj ∧
k∧

l=1

vl

)]
,

and

u⊥ ∈ spanK

{
?

(
n−(k+p)∧
i=1,i 6=a

ωi ∧
p∧

j=1

wj ∧
k∧

l=1

vl

)
: a ∈ {1, . . . ,n− (k + p)}

}
,

where
{ω1, . . . ,ωn−(k+p)} ⊂ E

is a set of linearly independent vectors such that
{v1, . . . ,vk ,w1, . . . ,wp,ω1, . . . ,ωn−(k+p)} forms a basis of E .



A coordinate-free formulation of hyperplanes intersection

Remark

If one adopt the notation H(vi ;0) := {u ∈ E | 〈u,vi 〉= 0},
i ∈ {1, . . . ,k}, and respectively H(wj ;λj ) := {u ∈ E | 〈u,wj〉= λj},
j ∈ {1, . . . ,p}, then the intersection of the above defined linear and
respectively affine hyperplanes, is the linear variety

k⋂
i=1

H(vi ;0)∩
p⋂

j=1

H(wj ;λj ) = u0 + E [w1, . . . ,wp,v1, . . . ,vk ], (2)

where

u0 =

∥∥∥∥∥
p∧

i=1

wi ∧
k∧

j=1

vj

∥∥∥∥∥
−2

k+p

·
p

∑
i=1

(−1)n−iλiΘi ,



A coordinate-free formulation of hyperplanes intersection

with

Θi = ?

[
p∧

j=1,j 6=i

wj ∧
k∧

l=1

vl ∧?

(
p∧

j=1

wj ∧
k∧

l=1

vl

)]
,

and

E [w1, . . . ,wp,v1, . . . ,vk ] =
k⋂

i=1

H(vi ;0)∩
p⋂

j=1

H(wj ;0)

= spanK

{
?

(
n−(k+p)∧
i=1,i 6=a

ωi ∧
p∧

j=1

wj ∧
k∧

l=1

vl

)
: a ∈ {1, . . . ,n− (k + p)}

}
,

where
{ω1, . . . ,ωn−(k+p)} ⊂ E

is a set of linearly independent vectors such that
{v1, . . . ,vk ,w1, . . . ,wp,ω1, . . . ,ωn−(k+p)} forms a basis of E .



A coordinate-free formulation of hyperplanes intersection

Let us point out that the Theorem (1) remains valid also for the
limit cases p ∈ {0,1}, k = 0, k + p ∈ {n−1,n}, the only difference
from the general case being the inconsistency of the notations,
which in these limit cases may lead to confusions. Hence, for these
limit cases we prefer to state separately the conclusion of the
Theorem (1).



A coordinate-free formulation of hyperplanes intersection

Remark

For p = 0, the Theorem (1) reduces to Proposition (3.1).

For p = 1, the conclusion of the Theorem (1) becomes as
follows:
The solutions u ∈ E of the system{

〈u,v1〉= · · ·= 〈u,vk〉= 0,
〈u,w1〉= λ1,

are given by u = u0 + u⊥, where

u0 =

∥∥∥∥∥w1∧
k∧

j=1

vj

∥∥∥∥∥
−2

k+1

· (−1)n−1λ1Θ1,



A coordinate-free formulation of hyperplanes intersection

with

Θ1 = ?

[
k∧

l=1

vl ∧?

(
w1∧

k∧
l=1

vl

)]
,

and

u⊥ ∈ spanK

{
?

(
n−(k+1)∧
i=1,i 6=a

ωi ∧w1∧
k∧

l=1

vl

)
: a ∈ {1, . . . ,n− (k + 1)}

}
,

where
{ω1, . . . ,ωn−(k+1)} ⊂ E

is a set of linearly independent vectors such that
{v1, . . . ,vk ,w1,ω1, . . . ,ωn−(k+1)} forms a basis of E .



A coordinate-free formulation of hyperplanes intersection

Remark

For k = 0, the conclusion of the Theorem (1) becomes as follows:
The solutions u ∈ E of the system

〈u,w1〉= λ1, . . . ,〈u,wp〉= λp,

are given by u = u0 + u⊥, where

u0 =

∥∥∥∥∥
p∧

i=1

wi

∥∥∥∥∥
−2

p

·
p

∑
i=1

(−1)n−iλiΘi ,



A coordinate-free formulation of hyperplanes intersection

with

Θi = ?

[
p∧

j=1,j 6=i

wj ∧?

(
p∧

j=1

wj

)]
,

and

u⊥ ∈ spanK

{
?

(
n−p∧

i=1,i 6=a

ωi ∧
p∧

j=1

wj

)
: a ∈ {1, . . . ,n−p}

}
,

where
{ω1, . . . ,ωn−p} ⊂ E

is a set of linearly independent vectors such that
{w1, . . . ,wp,ω1, . . . ,ωn−p} forms a basis of E .



A coordinate-free formulation of hyperplanes intersection

Remark

In the case when k + p = n−1, the conclusions of the Theorem (1)
still hold true, the only difference being the fact that the direction
of the linear variety is one-dimensional and can be expressed only
in terms of the vectors v1, . . . ,vk ,w1, . . . ,wp:

u⊥ ∈ spanK

{
?

(
p∧

j=1

wj ∧
k∧

l=1

vl

)}



A coordinate-free formulation of hyperplanes intersection

Remark

For k + p = n, the conclusion of the Theorem (1) becomes as
follows:
The system {

〈u,v1〉= · · ·= 〈u,vk〉= 0,
〈u,w1〉= λ1, . . . ,〈u,wp〉= λp,

has a unique solution which is given by u = u0, where

u0 =

∥∥∥∥∥
p∧

i=1

wi ∧
k∧

j=1

vj

∥∥∥∥∥
−2

n

·
p

∑
i=1

(−1)n−iλiΘi ,

with

Θi = ?

[
p∧

j=1,j 6=i

wj ∧
k∧

l=1

vl ∧?

(
p∧

j=1

wj ∧
k∧

l=1

vl

)]
.



Local generators of affine distributions on Riemannian
manifolds

The purpose of this section is to translate on smooth Riemannian
manifolds the results given in the previous section. This approach
follows naturally, and has direct applications to dynamical systems.
As we will see in the next section, the results presented here will
provide an explicit characterization of conservative and also
dissipative dynamical systems.



Local generators of affine distributions on Riemannian
manifolds

Theorem

Let (M,g) be an n-dimensional smooth Riemannian manifold, and
fix k ,p ∈ N two natural numbers such that k > 0, p > 1,
k + p < n−1. Let h1, . . . ,hp ∈ C ∞(U,R) be a given set of non-zero
smooth functions defined on an open subset U ⊆M, and
respectively let {X1, . . . ,Xk ,Y1, . . . ,Yp} ⊂ X(U) be a set of linearly
independent vector fields on U.
Then the solutions X ∈ X(U) of the system{

g(X ,X1) = · · ·= g(X ,Xk) = 0,
g(X ,Y1) = h1, . . . ,g(X ,Yp) = hp,

(3)

are given by X = X0 + X⊥,



Local generators of affine distributions on Riemannian
manifolds

where

X0 =

∥∥∥∥∥
p∧

i=1

Yi ∧
k∧

j=1

Xj

∥∥∥∥∥
−2

k+p

·
p

∑
i=1

(−1)n−ihiΘi ,

with

Θi = ?

[
p∧

j=1,j 6=i

Yj ∧
k∧

l=1

Xl ∧?

(
p∧

j=1

Yj ∧
k∧

l=1

Xl

)]
,

and X⊥(x) ∈ span
⊥g(x)

R {X1(x), . . . ,Xk(x), . . . ,Y1(x), . . . ,Yp(x)}, for
any x ∈ U.



Local generators of affine distributions on Riemannian
manifolds

Moreover, for each x ∈ U, there exists an open neighborhood
Ux ⊆ U, such that for any x ′ ∈ Ux

X⊥(x ′) ∈ spanR{?x ′
(

n−(k+p)∧
i=1,i 6=a

Zi (x ′)∧
p∧

j=1

Yj(x ′)∧
k∧

l=1

Xl(x ′)

)
:

a ∈ {1, . . . ,n− (k + p)}},

where
{Z1, . . . ,Zn−(k+p)} ⊂ X(Ux)

is an arbitrary set of linearly independent vector fields on Ux , such
that the vector fields

{X1, . . . ,Xk ,Y1, . . . ,Yp,Z1, . . . ,Zn−(k+p)}

are linearly independent on the open subset Ux ⊆ U, i.e., they form
a moving frame on Ux .



Local generators of affine distributions on Riemannian
manifolds

Remark

The set of vector fields

X[X1, . . . ,Xk ,Y1, . . . ,Yp] = {X ∈ X(U) | g(X ,Xi ) = g(X ,Yj) = 0;

1≤ i ≤ k ;1≤ j ≤ p}

forms an [n− (k + p)]-dimensional smooth distribution, locally
generated around each point x ∈ U, in some open neighborhood
Ux ⊆ U, by the set of vector fields{
?

(
n−(k+p)∧
i=1,i 6=a

Zi ∧
p∧

j=1

Yj ∧
k∧

l=1

Xl

)
: a ∈ {1, . . . ,n− (k + p)

}
⊂X(Ux).



Local generators of affine distributions on Riemannian
manifolds

Recall that in contrast with the vector fields X1, . . . ,Xk ,Y1, . . . ,Yp,
which are globally defined on U, the vector fields Z1, . . . ,Zn−(k+p)

are only locally defined since their existence depend on x , and is
guaranteed in general only in some open neighborhood Ux around
x . Moreover, they are arbitrary chosen in order to be linearly
independent and to complete locally the set of vector fields
{X1, . . . ,Xk ,Y1, . . . ,Yp} up to a moving frame in Ux .



Local generators of affine distributions on Riemannian
manifolds

By a similar argument as in the proof of Proposition (3.1), the
above defined set of local generators does not depend on the set of
locally defined linearly independent vector fields Z1, . . . ,Zn−(k+p),
as long as

{X1, . . . ,Xk ,Y1, . . . ,Yp,Z1, . . . ,Zn−(k+p)}

forms a moving frame.



Local generators of affine distributions on Riemannian
manifolds

Let us fix some general notations. Let A ⊂ X(U) be a smooth
r -dimensional affine distribution on the open subset U of a smooth
n−dimensional manifold M. This means that for each x ∈ U, there
exists an open neighborhood Ux ⊆ U, a smooth vector field
X0 ∈ X(Ux), and r linearly independent smooth vector fields
{X1, . . . ,Xr} ⊂ X(Ux) such that

Ax ′ = X0(x ′) + spanR{X1(x ′), . . . ,Xr (x ′)},

for each x ′ ∈ Ux .



Local generators of affine distributions on Riemannian
manifolds

A set of locally defined vector fields

{X0}
⊎
{X1, . . . ,Xr},

fulfilling the above requirements, is called a set of local generators
of the smooth affine distribution A .
Recall that the r−dimensional smooth distribution that assigns to
each x ∈ U the direction of the affine space Ax , is denoted by
L(A ), and is called the linear part of the affine distribution A .
Consequently, L(A ) can be generated locally around x , as

L(A )x ′ = spanR{X1(x ′), . . . ,Xr (x ′)},

for every x ′ ∈ Ux .



Local generators of affine distributions on Riemannian
manifolds

Using the above notation for a set of local generators of a smooth
affine distribution, the conclusion of the Theorem (2) can be
reformulated as follows.

Theorem

In the hypothesis of Theorem (2), the solutions X ∈ X(U) of the
system (3) form the [n− (k + p)]-dimensional smooth affine
distribution

A[X0;X1, . . . ,Xk ,Y1, . . . ,Yp] := X0 +X[X1, . . . ,Xk ,Y1, . . . ,Yp],

locally generated by the following set of [n− (k + p)] + 1 vector
fields

{X0}
⊎{

?

(
n−(k+p)∧
i=1,i 6=a

Zi ∧
p∧

j=1

Yj ∧
k∧

l=1

Xl

)
: a ∈ {1, . . . ,n− (k + p)

}
.



Local generators of affine distributions on Riemannian
manifolds

As in the case of Theorem (1), let us now discuss some special
cases of Theorems (2), (3), namely the Riemannian analogous of
Remarks (3.3), (3.4), (3.5), (3.6).



Local generators of affine distributions on Riemannian
manifolds

Remark

For p = 0, the conclusion of Theorem (2) becomes as follows:
The distribution

X[X1, . . . ,Xk ] = {X ∈ X(U) | g(X ,X1) = · · ·= g(X ,Xk) = 0},

is locally generated by the set of vector fields{
?

(
n−k∧

i=1,i 6=a

Zi ∧
k∧

l=1

Xl

)
: a ∈ {1, . . . ,n−k}

}
,

where the set of locally defined vector fields

{Z1, . . . ,Zn−k ,X1, . . . ,Xk}

forms a moving frame.



Local generators of affine distributions on Riemannian
manifolds

For p = 1, the conclusion of Theorem (2) becomes as follows:
The affine distribution

A[X0;X1, . . . ,Xk ,Y1] = {X ∈ X(U) | g(X ,X1) = . . .

= g(X ,Xk) = 0,g(X ,Y1) = h1}= X0 +X[X1, . . . ,Xk ,Y1],

is locally generated by the set of vector fields

{X0}
⊎{

?

(
n−(k+1)∧
i=1,i 6=a

Zi ∧Y1∧
k∧

l=1

Xl

)
: a ∈ {1, . . . ,n− (k + 1)}

}
,



Local generators of affine distributions on Riemannian
manifolds

where

X0 =

∥∥∥∥∥Y1∧
k∧

j=1

Xj

∥∥∥∥∥
−2

k+1

·(−1)n−1h1 ·

(
?

[
k∧

l=1

Xl ∧?

(
Y1∧

k∧
l=1

Xl

)])
,

and respectively the set of locally defined vector fields

{Z1, . . . ,Zn−(k+1),X1, . . . ,Xk ,Y1}

forms a moving frame.



Local generators of affine distributions on Riemannian
manifolds

Remark

For k = 0, the conclusion of Theorem (2) becomes as follows:
The affine distribution

A[X0;Y1, . . . ,Yp] = {X ∈ X(U) | g(X ,Yj) = hj , 1≤ j ≤ p}
= X0 +X[Y1, . . . ,Yp],

is locally generated by the set of vector fields

{X0}
⊎{

?

(
n−p∧

i=1,i 6=a

Zi ∧
p∧

j=1

Yj

)
: a ∈ {1, . . . ,n−p}

}
,



Local generators of affine distributions on Riemannian
manifolds

where

X0 =

∥∥∥∥∥
p∧

i=1

Yi

∥∥∥∥∥
−2

p

·
p

∑
i=1

(−1)n−ihi ·

(
?

[
p∧

j=1,j 6=i

Yj ∧?

(
p∧

j=1

Yj

)])
,

and respectively the set of locally defined vector fields

{Z1, . . . ,Zn−p,Y1, . . . ,Yp}

forms a moving frame.



Local generators of affine distributions on Riemannian
manifolds

Remark

For k + p = n−1, the conclusion of Theorem (2) becomes as
follows:
The affine distribution A[X0;X1, . . . ,Xk ,Y1, . . . ,Yp] is locally
generated by the set vector fields

{X0}
⊎{

?

(
p∧

j=1

Yj ∧
k∧

l=1

Xl

)}
.



Local generators of affine distributions on Riemannian
manifolds

Remark

For k + p = n, the conclusion of Theorem (2) reduces to:

A[X0;X1, . . . ,Xk ,Y1, . . . ,Yp]

= {X ∈ X(U) | g(X ,Xi ) = 0,g(X ,Yj) = hj ,1≤ i ≤ k ,1≤ j ≤ p}
= {X0},

where

X0 =

∥∥∥∥∥
p∧

i=1

Yi ∧
k∧

l=1

Xl

∥∥∥∥∥
−2

n

·

p

∑
i=1

(−1)n−ihi ·

(
?

[
p∧

j=1,j 6=i

Yj ∧
k∧

l=1

Xl ∧?

(
p∧

j=1

Yj ∧
k∧

l=1

Xl

)])
.



Applications to dynamical systems

The aim of this section is to apply the main results from the
previous section in the case of linear/affine distributions associated
to conservative/dissipative dynamical systems defined eventually
on an open subset U of a Riemannian manifold (M,g).



Applications to dynamical systems

Before stating the main results, let us recall that a smooth
function F ∈ C ∞(U,R) is said to be a first integral (or
conservation law) of the vector field X ∈ X(U) if LXF = 0, where
LX stands for the Lie derivative along the vector field X , or
equivalently one say that X conserves F .
Similarly, a vector field X ∈ X(U) is said to dissipate the smooth
function H ∈ C ∞(U,R) with dissipation rate h ∈ C ∞(U,R), if
LXH = h.
In the Riemannian setting, these conditions are obviously
equivalent to g(X ,∇gF ) = 0, and respectively g(X ,∇gH) = h,
where ∇g stands for the gradient operator with respect to the
Riemannian metric g .



Applications to dynamical systems

In what follows, a vector field X ∈ X(U) will be called dissipative
if there exist k ,p ∈ N with k + p > 0, and a set of smooth
functions {I1, . . . , Ik ,D1, . . . ,Dp,h1, . . . ,hp} ⊂ C ∞(U,R) such that
the vector field X conserves I1, . . . , Ik and dissipates D1, . . . ,Dp

with (corresponding) dissipation rates h1, . . . ,hp. If p = 0, the
vector field X will be called conservative.



Applications to dynamical systems

Hence, one can apply the Theorem (2) in the case of linear/affine
distributions associated to conservative/dissipative vector fields
defined eventually on an open subset U of a Riemannian manifold
(M,g).

Theorem

Let (M,g) be an n-dimensional smooth Riemannian manifold, and
fix k ,p ∈ N two natural numbers such that k > 0, p > 1,
k + p < n−1. Let h1, . . . ,hp ∈ C ∞(U,R) be a given set of non-zero
smooth functions defined on an open subset U ⊆M, and
respectively let I1, . . . , Ik ,D1, . . . ,Dp ∈ C ∞(U,R) be given, such that

{∇g I1, . . . ,∇g Ik ,∇gD1, . . . ,∇gDp} ⊂ X(U)

form a set of linearly independent vector fields on U.



Applications to dynamical systems

Then the solutions X ∈ X(U) of the system{
LX I1 = · · ·= LX Ik = 0,
LXD1 = h1, . . . ,LXDp = hp,

form the affine distribution (consisting of dissipative vector fields)

A[X0;∇g I1, . . . ,∇g Ik ,∇gD1, . . . ,∇gDp] =

X0 +X[∇g I1, . . . ,∇g Ik ,∇gD1, . . . ,∇gDp],

locally generated by the set of vector fields

{X0}
⊎{

?

(
n−(k+p)∧
i=1,i 6=a

Zi ∧
p∧

j=1

∇gDj ∧
k∧

l=1

∇g Il

)
: a ∈ {1, . . . ,n− (k + p)

}



Applications to dynamical systems

where

X0 =

∥∥∥∥∥
p∧

i=1

∇gDi ∧
k∧

j=1

∇g Ij

∥∥∥∥∥
−2

k+p

·
p

∑
i=1

(−1)n−ihiΘi ,

Θi = ?

[
p∧

j=1,j 6=i

∇gDj ∧
k∧

l=1

∇g Il ∧?

(
p∧

j=1

∇gDj ∧
k∧

l=1

∇g Il

)]
,

and respectively the set of locally defined vector fields

{∇g I1, . . . ,∇g Ik ,∇gD1, . . . ,∇gDp,Z1, . . . ,Zn−(k+p)}

forms a moving frame.



Applications to dynamical systems

A dynamical version of Theorem (4) can be formulated as follows.

Theorem

Let ẋ = X (x) be the dynamical system generated by a vector field
X ∈ X(U) which conserves the smooth (functionally independent)
functions

I1, . . . , Ik ,D1, . . . ,Dp ∈ C ∞(U,R).

Then the perturbed dynamical system

ẋ = X (x) + X0(x),

with X0 given in Theorem (4), is a dissipative dynamical system,
generated by the dissipative vector field X + X0 which conserves
I1, . . . , Ik , and dissipates D1, . . . ,Dp with (corresponding) dissipation
rates h1, . . . ,hp.



Applications to dynamical systems

Remark

For p = 0, the conclusion of Theorem (4) becomes as follows:
The distribution

X[∇g I1, . . . ,∇g Ik ] = {X ∈ X(U) |LX I1 = · · ·= LX Ik = 0},

is locally generated by the set of vector fields{
?

(
n−k∧

i=1,i 6=a

Zi ∧
k∧

l=1

∇g Il

)
: a ∈ {1, . . . ,n−k}

}
,

where the set of locally defined vector fields

{Z1, . . . ,Zn−k ,∇g Il , . . . ,∇g Ik}

forms a moving frame.



Applications to dynamical systems

For p = 1, the conclusion of Theorem (4) becomes as follows:
The affine distribution

A[X0;∇g I1, . . . ,∇g Ik ,∇gD1]

= {X ∈ X(U) |LX I1 = · · ·= LX Ik = 0,LXD1 = h1}
= X0 +X[∇g I1, . . . ,∇g Ik ,∇gD1],

is locally generated by the set of vector fields

{X0}
⊎{

?

(
n−(k+1)∧
i=1,i 6=a

Zi ∧∇gD1∧
k∧

l=1

∇g Il

)
: a ∈ {1, . . . ,n− (k + 1)}

}
,



Applications to dynamical systems

where

X0 =

∥∥∥∥∥∇gD1∧
k∧

j=1

∇g Ij

∥∥∥∥∥
−2

k+1

· (−1)n−1h1 ·

(
?

[
k∧

l=1

∇g Il ∧?

(
∇gD1∧

k∧
l=1

∇g Il

)])
,

and respectively the set of locally defined vector fields

{Z1, . . . ,Zn−(k+1),∇g I1, . . . ,∇g Ik ,∇gD1}

forms a moving frame.



Applications to dynamical systems

The first part of Remark (5.1) (namely for p = 0) provides a set of
local generators for the distribution given by the conservative
vector fields X ∈ X(U) admitting the set of (functionally
independent) first integrals I1, . . . , Ik ∈ C ∞(U,R).
Moreover, if p = 0 and k = n−1, then the conclusion of Remark
(5.1) becomes as follows:

The vector field ?
(∧k

l=1 ∇g Il

)
generates locally the distribution of

completely integrable vector fields

X[∇g I1, . . . ,∇g In−1] = {X ∈ X(U) |LX I1 = · · ·= LX In−1 = 0}.



Applications to dynamical systems

Remark

For k = 0, the conclusion of Theorem (4) becomes as follows:
The affine distribution

A[X0;∇gD1, . . . ,∇gDp] = {X ∈ X(U) |LXDj = hj , 1≤ j ≤ p}
= X0 +X[∇gD1, . . . ,∇gDp],

is locally generated by the set of vector fields

{X0}
⊎{

?

(
n−p∧

i=1,i 6=a

Zi ∧
p∧

j=1

∇gDj

)
: a ∈ {1, . . . ,n−p}

}
,



Applications to dynamical systems

where

X0 =

∥∥∥∥∥
p∧

i=1

∇gDi

∥∥∥∥∥
−2

p

·
p

∑
i=1

(−1)n−ihi ·

(
?

[
p∧

j=1,j 6=i

∇gDj ∧?

(
p∧

j=1

∇gDj

)])
,

and respectively the set of locally defined vector fields

{Z1, . . . ,Zn−p,∇gD1, . . . ,∇gDp}

forms a moving frame.



Applications to dynamical systems

Remark

For k + p = n−1, the conclusion of Theorem (4) becomes as
follows:
The affine distribution

A[X0;∇g I1, . . . ,∇g Ik ,∇gD1, . . . ,∇gDp]

is locally generated by the set of vector fields

{X0}
⊎{

?

(
p∧

j=1

∇gDj ∧
k∧

l=1

∇g Il

)}
.



Applications to dynamical systems

Remark

For k + p = n, the conclusion of Theorem (4) reduces to:

A[X0;∇g I1, . . . ,∇g Ik ,∇gD1, . . . ,∇gDp]

= {X ∈ X(U) |LX Ii = 0,LXDj = hj ,1≤ i ≤ k ,1≤ j ≤ p}
= {X0},

where

X0 =

∥∥∥∥∥
p∧

i=1

∇gDi ∧
k∧

l=1

∇g Il

∥∥∥∥∥
−2

n

·
p

∑
i=1

(−1)n−ihiΘi ,

Θi = ?

[
p∧

j=1,j 6=i

∇gDj ∧
k∧

l=1

∇g Il ∧?

(
p∧

j=1

∇gDj ∧
k∧

l=1

∇g Il

)]
.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

The first result of this section is an explicit formula for the
characteristic multipliers of a given periodic orbit of a general
codimension-one dissipative dynamical system. Because of the
local nature of the main results, one can suppose that we work on
an open subset U ⊆ Rn.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Let ẋ = X (x), X ∈ X(U), be a given codimension-one dissipative
dynamical system, i.e., there exists k,p ∈ N such that
k + p = n−1, and some smooth functions I1, . . . , Ik ,D1, . . . ,Dp, h1,
. . . , hp ∈ C ∞(U,R) such that the vector field X conserves I1, . . . , Ik ,
and dissipates D1, . . . ,Dp with associated dissipation rates
h1D1, . . . ,hpDp.

Suppose that Γ := {γ(t)⊂ U : 0≤ t ≤ T} is a T−periodic orbit of
ẋ = X (x) such that Γ⊂ ID−1({0}), and moreover, 0 ∈ Rn−1 is a
regular value of the map
ID := (I1, . . . , Ik ,D1, . . . ,Dp) : U ⊆ Rn→ Rn−1.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Let us recall first that for a general dynamical system ẋ = X (x),
generated by a smooth vector field X ∈ X(U), defined on an open
subset U ⊆ Rn, and respectively a given T−periodic orbit
Γ := {γ(t)⊂ U : 0≤ t ≤ T}, the characteristic multipliers of Γ are
the eigenvalues of the fundamental matrix u(T ), where u is the
solution of the variational equation

du

dt
= DX (γ(t))u(t), u(0) = In,n,

and In,n stands for the identity matrix of dimensions n×n.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Taking into account the complexity of the variational equation, the
computation of characteristic multipliers in general is almost
impossible, since there exist no general methods to solve explicitly
the variational equation.
One of the main results of this section is to complete this task for
the class of codimension-one dissipative dynamical systems.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Theorem

Let ẋ = X (x) be a codimension-one dissipative dynamical system
generated by a smooth vector field X ∈ X(U) defined eventually on
an open subset U ⊆ Rn, such that there exist k,p ∈ N,
k + p = n−1, and respectively I1, . . . , Ik ,D1, . . . ,Dp, h1, . . . ,
hp ∈ C ∞(U,R) such that LX I1 = · · ·= LX Ik = 0, and
LXD1 = h1D1, . . . , LXDp = hpDp. Suppose that
Γ = {γ(t)⊂ U : 0≤ t ≤ T} is a T−periodic orbit of ẋ = X (x),
such that the following conditions hold true:



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Γ⊂ ID−1({0}), and 0 ∈ Rn−1 is a regular value of the map

ID = (I1, . . . , Ik ,D1, . . . ,Dp) : U ⊆ Rn→ Rn−1,

∇I1(γ(t)), . . . ,∇Ik(γ(t)),∇D1(γ(t)), . . . ,∇Dp(γ(t)),X (γ(t))
are linearly independent for each 0≤ t ≤ T .

Then, the characteristic multipliers of the periodic orbit Γ are

1, . . . ,1︸ ︷︷ ︸
k+1 times

,exp

(∫ T

0
h1(γ(s))ds

)
, . . . ,exp

(∫ T

0
hp(γ(s))ds

)
.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Next section has two main purposes, namely, the first purpose is to
provide sufficient conditions to guarantee the partial orbital phase
asymptotic stability of periodic orbits of a codimension-one
dissipative dynamical system, whereas the second purpose is to
give sufficient conditions to guarantee the instability of periodic
orbits of a codimension-one dissipative dynamical system.

Let us start by recalling some definitions concerning the stability of
the periodic orbits of a general dynamical system. In order to do
that, let ẋ = X (x) be a dynamical system generated by a smooth
vector field X ∈ X(U), defined eventually on an open subset
U ⊆ Rn. Suppose Γ = {γ(t)⊂ U : 0≤ t ≤ T} is a T−periodic
orbit of ẋ = X (x).



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Definition

The periodic orbit Γ is called orbitally stable if, given ε > 0
there exists a δ > 0 such that dist(x(t,x0),Γ) < ε for all t > 0
and for all x0 ∈ U such that dist(x0,Γ) < δ .

The periodic orbit Γ is called unstable if it is not orbitally
stable.

The periodic orbit Γ is called orbitally asymptotically stable
if it is orbitally stable and (by choosing δ smaller if
necessary), dist(x(t,x0),Γ)→ 0 as t→ ∞.

The periodic orbit Γ is called orbitally phase asymptotically
stable, if it is asymptotically orbitally stable and there is a
δ > 0 such that for each x0 ∈ U with dist(x0,Γ) < δ , there
exists θ0 = θ0(x0) such that

lim
t→∞
‖x(t,x0)− γ(t + θ0)‖= 0.



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Theorem

Let ẋ = X (x) be a codimension-one dissipative dynamical system
generated by a smooth vector field X ∈ X(U) defined eventually on
an open subset U ⊆ Rn, such that there exists k,p ∈ N with p > 0,
k + p = n−1, and respectively I1, . . . , Ik ,D1, . . . ,Dp, h1, . . . ,
hp ∈ C ∞(U,R) such that LX I1 = · · ·= LX Ik = 0, and
LXD1 = h1D1, . . . , LXDp = hpDp. Suppose
Γ = {γ(t)⊂ U : 0≤ t ≤ T} is a T−periodic orbit of ẋ = X (x),
such that the following conditions hold true:



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Γ⊂ ID−1({0}), and 0 ∈ Rn−1 is a regular value of the map

ID = (I1, . . . , Ik ,D1, . . . ,Dp) : U ⊆ Rn→ Rn−1,

∇I1(γ(t)), . . . ,∇Ik(γ(t)),∇D1(γ(t)), . . . ,∇Dp(γ(t)),X (γ(t))
are linearly independent for each 0≤ t ≤ T .



Stability of periodic orbits of codimension-one dissipative
dynamical systems

Then, if moreover 0 ∈ Rk is a regular value of the map
I = (I1, . . . , Ik) : U ⊆ Rn→ Rk , and if∫ T

0
h1(γ(s))ds < 0, . . . ,

∫ T

0
hp(γ(s))ds < 0,

then the periodic orbit Γ is orbitally phase asymptotically stable,
with respect to perturbations along the invariant manifold
I−1({0}).
On the other hand, if there exists i0 ∈ {1, . . . ,p} such that∫ T
0 hi0(γ(s))ds > 0, then the periodic orbit Γ is unstable.



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

The purpose of next section is to apply the results from the
previous section in order to partially orbitally asymptotically
stabilize, a given periodic orbit of a completely integrable
dynamical system.

In order to do that, let us consider a completely integrable
dynamical system ẋ = X (x), X ∈ X(U), defined eventually on an
open subset U ⊆ Rn (i.e., it admits a set of n−1 first integrals,
I1, . . . , Ik ,D1, . . . ,Dp ∈ C ∞(U,R), independent at least on an open
subset V ⊆ U). Suppose that Γ = {γ(t)⊂ V : 0≤ t ≤ T} is a
T−periodic orbit of the system ẋ = X (x).



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

The idea for the stabilization procedure is to perturb the
completely integrable system ẋ = X (x), in such a way that the
perturbed dynamical system becomes a dissipative dynamical
system on V , which admits also Γ as a periodic orbit, and
moreover verifies the hypothesis of Theorem (7). Note that using
classical perturbation methods, the persistence of periodic orbits
after perturbations, follows as a consequence of the implicit
function theorem. The method introduced in this section, provide
for the class of completely integrable dynamical systems, an
explicit perturbation which preserve (under reasonable conditions)
an a-priori given periodic orbit.



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

Theorem

Let ẋ = X (x) be a completely integrable dynamical system
generated by a smooth vector field X ∈ X(U) defined eventually on
an open subset U ⊆ Rn, and let k,p ∈ N be two natural numbers,
with k + p = n−1, such that there exist n−1 first integrals
I1, . . . , Ik ,D1, . . . ,Dp ∈ C ∞(U,R), independent on an open subset
V ⊆ U. Suppose the system ẋ = X (x) admits a T−periodic orbit
Γ = {γ(t)⊂ V : 0≤ t ≤ T} such that:

Γ⊂ ID−1({0}), and 0 ∈ Rn−1 is a regular value of the map

ID = (I1, . . . , Ik ,D1, . . . ,Dp) : V ⊆ Rn→ Rn−1,

∇I1(γ(t)), . . . ,∇Ik(γ(t)),∇D1(γ(t)), . . . ,∇Dp(γ(t)),X (γ(t))
are linearly independent for each 0≤ t ≤ T .



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

If moreover, 0 ∈ Rk is a regular value of the map
I = (I1, . . . , Ik) : V ⊆ Rn→ Rk , then for any choice of smooth
functions h1, . . . ,hp ∈ C ∞(V ,R) such that∫ T

0
h1(γ(s))ds < 0, . . . ,

∫ T

0
hp(γ(s))ds < 0,

Γ, as a periodic orbit of the dissipative dynamical system
ẋ = X (x) + X0(x), x ∈ V ,



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

X0 =

∥∥∥∥∥
p∧

i=1

∇Di ∧
k∧

j=1

∇Ij

∥∥∥∥∥
−2

n−1

·
p

∑
i=1

(−1)n−ihiDiΘi ,

Θi = ?

[
p∧

j=1,j 6=i

∇Dj ∧
k∧

l=1

∇Il ∧?

(
p∧

j=1

∇Dj ∧
k∧

l=1

∇Il

)]
,

is orbitally phase asymptotically stable, with respect to
perturbations along the invariant manifold I−1({0}).



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

On the other hand, for any choice of smooth functions
k1, . . . ,kp ∈ C ∞(V ,R), such that there exists i0 ∈ {1, . . . ,p} for
which ∫ T

0
ki0(γ(s))ds > 0,

Γ, as a periodic orbit of the dissipative dynamical system
ẋ = X (x) + X0(x), x ∈ V ,

X0 =

∥∥∥∥∥
p∧

i=1

∇Di ∧
k∧

j=1

∇Ij

∥∥∥∥∥
−2

n−1

·
p

∑
i=1

(−1)n−ikiDiΘi ,

Θi = ?

[
p∧

j=1,j 6=i

∇Dj ∧
k∧

l=1

∇Il ∧?

(
p∧

j=1

∇Dj ∧
k∧

l=1

∇Il

)]
,

is an unstable periodic orbit.



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

Remark

In the hypothesis of the Theorem (8), note that:

the condition Γ⊂ ID−1({0}) implies that for any choice of
smooth functions h1, . . . ,hp ∈ C ∞(V ,R), the control vector
field X0 ∈ X(V ), given by

X0 =

∥∥∥∥∥
p∧

i=1

∇Di ∧
k∧

j=1

∇Ij

∥∥∥∥∥
−2

n−1

·
p

∑
i=1

(−1)n−ihiDiΘi ,

Θi = ?

[
p∧

j=1,j 6=i

∇Dj ∧
k∧

l=1

∇Il ∧?

(
p∧

j=1

∇Dj ∧
k∧

l=1

∇Il

)]
,

verifies that X0(γ(t)) = 0, for every t ∈ [0,T ];



Orbitally asymptotically stabilizing the periodic orbits of
completely integrable dynamical systems

each of the smooth functions h1, . . . ,hp ∈ C ∞(V ,R) might be
chosen of the type e.g., h(x) =−(ψ2(x) + c), x ∈ V , with
ψ ∈ C ∞(V ,R) and c ∈ (0,∞), since∫ T

0
h(γ(s))ds =−

∫ T

0
ψ

2(γ(s))ds−Tc ≤−Tc < 0;

the smooth function ki0 ∈ C ∞(V ,R) might be chosen of type
e.g., k(x) = ϕ2(x) + c , x ∈ V , with ϕ ∈ C ∞(V ,R) and
c ∈ (0,∞), since∫ T

0
k(γ(s))ds =

∫ T

0
ϕ
2(γ(s))ds + Tc ≥ Tc > 0.



Example

Example

Let us consider the family of harmonic oscillators, described by the
three dimensional vector field

X (x ,y ,z) = y∂x −x∂y ∈ X(R3).

The induced dynamical system,

ẋ = X (x), x = (x ,y ,z) ∈ R3, (4)

admits a 2π−periodic orbit given by
Γ = {γ(t) = (sin t,cos t,0) : 0≤ t ≤ 2π}.
Moreover, the system (4) is completely integrable, since it has two
independent first integrals, namely

I (x ,y ,z) = x2 + y2−1, D(x ,y ,z) = z .



Example

By straightforward computations we obtain that the vector field X0

from Theorem (8), in this case has the expression

X0(x ,y ,z) = zu(x ,y ,z)∂z , (x ,y ,z) ∈ R3,

and consequently it verifies the condition X0 ◦ γ = 0, for any
smooth real function u ∈ C ∞(R3,R).
Consequently, the perturbed system

ẋ = X (x) + X0(x), x = (x ,y ,z) ∈ R3, (5)

is a codimension-one dissipative dynamical system associated to
I ,D,u ∈ C ∞(R3,R), i.e., LX+X0 I = 0, and respectively
LX+X0D = uD.
Since X0 ◦ γ = 0, for any smooth real function u ∈ C ∞(R3,R), we
obtain that Γ is a periodic orbit of the dissipative system
ẋ = X (x) + X0(x), for any smooth real function u ∈ C ∞(R3,R).



Example

Hence, by Theorem (8), we obtain the following conclusions:

for any smooth function u ∈ C ∞(R3,R) such that∫ 2π

0 u(sin t,cos t,0)dt < 0, the periodic orbit Γ of the
associated perturbed system (5) is orbitally phase
asymptotically stable, with respect to perturbations along the
cylinder I−1({0});

for any smooth function u ∈ C ∞(R3,R) such that∫ 2π

0 u(sin t,cos t,0)dt > 0, the periodic orbit Γ of the
associated perturbed system (5) is unstable.
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