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I. STATIONARY SYSTEMS

� 1) N electrons and N ′ nuclei.
2) The system is closed and stationary (E is constant and U
does not depend explicitly on time).
3) The behavior of the system is completely described by the
Schrödinger equation.

� The analysis is made in the space R3N of the electron
coordinates q = (q1, q2, ..., q3N ).



The equivalence between the Schrödinger and wave
equation.
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Ψ = Ψ(q, t,E , c) Ψ0 = Ψ0(q,E , c) where c = (c1, c2, . . . , cS )



Calculation of the characteristic surfaces, which are
identical to the wave surfaces (Courant and Hilbert or
Smirnov).

� Equation of the characteristic surfaces (χ is the charactertistic
function):
χ(q, t,E , c) = 0 (5)
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� Solution of (5) leads to the equation of the wave surfaces:
f (q,E , c) = |E |t − pπ/k (7)
where f is the single valued function which verifies the time
independent Hamilton-Jacobi equation



Proof of the properties of the characteristic surfaces and of
their normals.
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� Two Σ surfaces never intersects each other.

� The velocity vw never passes through zero and the point P
moves always in the same direction.



� The motion of the Σ surface is periodic, and the C curve is
closed.
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Figure: 3



Equations which characterize the periodical motion of the
wave.

1) Motion equation of the Σ surface:
f (q,E , c) = |E |t − p|E |τw for pτw ≤ t < (p + 1)τw (8)
0 ≤ f (q,E , c) < fM where fM = |E | · τw (9)
2) Equations of the reduced action function and its variation along
the C curve:
S0(q,E , c) = f (q,E , c) + pfM and ΔCS0 = fM (10)
3) Relation between the velocities of the two motions which are
associated with the C curve.
vvw = |E |/m (11)



Properties resulting from the integral relation of the time
independent Schrödinger equation on the C curve.

� Substitution Ψ0 = exp(iσ/�) (12) in the time independent
Schrödinger equation leads to:
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� The integral relation of (13) on the C curve:∫
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� Solution of (14) is σg = S0 (15)

� From (2), (12) and (15) obtain
Ψ0g = A exp(iS0/�) (16) and
Ψg = A exp(iS/�) where S = S0 − Et (17)



Generalized relations.

� The single valued property of Ψg0 leads to the generalized
Bohr quantization relation:
ΔCS0 = nh (18)

� From (9)-(11) and (18) obtain the generalized de Broglie
relations:
p = n�kw (19)
|E | = n�ωw (20)
where λw = τw · vw and ωw = 2π/τw .



The principle of our method. The wave function and the
characteristic surfaces and curves are mathematical objects
which describe the same physical system and depend on its
constants of motion. It follows that any of these
mathematical objects can be used to study the properties
of the system.
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� A central field method leads to the calculations of the
projections of the motion from the space R3N to the spaces of
the electrons coordinates, and to the calculation of the energy
of the system.



Exact connection between Schrödinger and
Hamilton-Jacobi equation
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a) R. Courant and P. D. Lax, Proc. Nat. Acad. Sci., 42, 872,
1956.
b) A. Luis, Phys. Rev. A, 67, 024102, 2003.

� 2) Characterictic surfaces of the wave equation are solutions
of Hamilton-Jacobi equation:
a) A. Popa, Rev. Roum. Mathem. Pures Appl., 41, 109,
1996; 43, 415, 1998; 44, 119, 1999.
b) A. Popa, J. of the Phys. Soc. of Japan, 67, 2645, 1998;
68, 763, 1999; 68, 2923, 1999.



II. SYSTEMS COMPOSED OF PARTICLES AND FIELDS

� We consider a system composed of an electron interacting
with an elliptic polarized electromagnetic field in the general
case, when the electron velocity and the phase of the field are
arbitrary.

� We proved [Phys. Rev. A, 84, 023824, 2011] that the
Klein-Gordon equation, written for this system[
c2

(−i�∇+ eA
)2 − (i�∂/∂t)2 +

(
mc2

)2]
Ψ = 0 (21)

is verified exactly by
Ψ = A exp(iS/�) (22)
where S is the solution of the relativistic Hamilton-Jacobi
equation.



PROPERTY RELATED TO CLASSICAL SOLUTION (22)

� The relations are used to prove the connection between
Klein-Gordon and relativistic Hamilton-Jacobi equation, lead
also to a periodicity property which simplifies significantly the
modeling interactions between very intense laser beams and:
(1) electron plasmas
(2) relativistic electron beams
(3) atoms
PERIODICITY PROPERTY: All the physical quantities, which
are involved in the generation of harmonics, in the interactions
(1), (2), (3), are periodic functions of only one variable, that
is the phase of the incident electromagnetic field. The
property is valid also for the physical quantities which describe
the radiation damping effect, using the Landau and Lifschitz
model, for the above interactions.



II.1. MODELING INTERACTION BETWEEN LASER
BEAM AND ELECTRONS

� System composed of an electron interacting with an elliptic
polarized electromagnetic field in the general case. Three step
solution.

� First step. The solution of the relativistic motion equations.
We obtain: β = β (sin η, cos η, constants) and

β̇ = β̇ (sin η, cos η, constants).

� Second step. We introduce β and β̇ in Liènard-Wiechert
equation and obtain E = E (sin η, cos η, constants, θ, ϕ) and

intensity of the scattered radiation: Iav = ε0c
1
2π

∫ 2π
0 E

2
dη.

� Third step. The Fourier series development leads to the
spectral components of the electrical field:
E j = E j (sin jη, cos jη, constants, θ, ϕ) and to the intensity of

the harmonic of order j : Ij = ε0c
1
2π

∫ 2π
0 E j

2
dη.



� Spectral distribution of the scattered radiation:
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Figure: 5. Spectral distribution for elliptic polarized field, having
a2 = 5. The curves 1, 2, 3 and 4 correspond, to a1 = 2, 4, 6, 8.



� Angular distributions of the scattered radiation.
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Figure: 6. Polar plots of I av in the case of the interaction between a
circular polarized field, having a1 = a2 = 2, which propagate in the
oz direction, and relativistic electrons which move (a) in the
opposite direction and (b) which move in the ox direction.
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Figure: 7. Typical angular distributions of I av versus θ, when the
laser field interact with nine electrons whose velocities are situated
(a) in the the plane xz and (b) in the the plane xy .



I.2. MODELING COLLISIONS BETWEEN VERY
INTENSE LASER BEAMS AND RELATIVISTIC
ELECTRON BEAMS

� We consider the head-on collision between laser and electron
beams. The analysis is identical to that from the previous
case, but it is made in the inertial system S ′ in which the
velocity of the electron is zero.

� Spectral distribution of the scattered radiation:
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Figure: 8. Typical spectral distributions, namely variations of I ′j and
I j in the inertial systems S ′ and S . The spectra from curves 1, 2
and 3 correspond, respectively, to a = 3, a = 5 and a = 7.



� Angular distributions of the scattered radiation.
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Figure: 9. (a) Variations of I 1 and I 2 with α = π− θ; (b) Variations
of I 2 with φ when the field is linearly polarized in the ox direction
for curve 1, and in oy direction for curve 2.
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Figure: 10. Variations of I 1, with α for different experiments.



II.3. MODELING INTERACTION BETWEEN LASER
BEAM AND ATOMS

�

Figure: 11. The three sequences of the harmonic generation.

� Three sequences mechanism of harmonic generation:
1) Multiphoton absorption followed by leaving the atom by
tunneling.
2) Oscillation in the ionization domain.
3) The electron returns in the vicinity of the atom; it transfers
the kinetic energy to the electromagnetic field by electric
dipole transition.



Two dominant effects involved in the harmonic generation

� 1. The behavior of the system in the second phase can be
approximated by classical motion of the electron. The solution
identical to that from I.1.

� 2. The emission of the harmonics is due to the electric dipole
transition. An accurate rate of electric dipole transition, is
calculated by Lewenstein et al (Phys.Rev.A 49, 2117, 1994),
in the frame of the theory of Bethe and Salpeter.



� Typical harmonic spectra.
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Figure: 12. Typical harmonic spectra. (a) For low values of IL, of
the order 1013 W/cm2 the spectrum has the well known plateau
shape; (b) When IL is increased to the order 1015 W/cm2, the slope
of the plateau is increased; (c) When IL is of the order 1017 W/cm2,
the domain of the high harmonics is strongly diminished.



CONCLUSIONS:

� Despite the fact that the stationary atomic and molecular
(AM) systems and the nonstationary electrodynamic (ED)
systems are very different, they have common properties.

� The connection between quantum and classical equations
results directly, without any supplementary postulate or
approximation, from the properties of quantum equations, in
both cases.

� A classical solution of the type A exp iS/� results, without any
approximation, from the mathematical properties of both, the
Schrodinger and Klein-Gordon equations

� The existence of connections between quantum and classical
equations is accompanied by the existence of periodicity
properties in both cases, for AM and ED systems. This
property has a practical importance, because it leads to
accurate models for the calculation of properties of AM and
ED systems.


