On minimization of rational elliptic surfaces obtained from birational dynamical systems

Adrian-Stefan Carstea, Tomoyuki Takenawa

October 4, 2013

Research Group on Geometry and Physics
(http://events.theory.nipne.ro/gap/)
NIPNE, Bucharest, Romania
and
Tokyo University of Marine Science and Technology, Tokyo, Japan

Wemstemem

- Analytical stability and blowig-down structure
- Analytical stability and blowig-down structure
- Elliptic surfaces
- Analytical stability and blowig-down structure
- Elliptic surfaces
- Differential Nahm equations (basics)
- Analytical stability and blowig-down structure
- Elliptic surfaces
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- Analytical stability and blowig-down structure
- Elliptic surfaces
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- Discrete Nahm equations
- Analytical stability and blowig-down structure
- Elliptic surfaces
- Differential Nahm equations (basics)
- Hirota-Kimura discretisation
- Discrete Nahm equations
- Minimization of elliptic surfaces and invariants

The systems under consideration have the rational reversible form:

$$
(x, y) \in \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow(\bar{x}, \bar{y}) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

$$
\begin{aligned}
& \bar{x}=F(x, y) \\
& \bar{y}=G(x, y)
\end{aligned}
$$

and also the inverse (F, G, Φ, Γ are rational functions of x, y)

$$
\begin{aligned}
& \underline{x}=\Phi(x, y) \\
& \underline{y}=\Gamma(x, y)
\end{aligned}
$$

The projective space $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is generated by the following coordinate systems $(X=1 / x, Y=1 / y)$:

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}=(x, y) \cup(X, y) \cup(x, Y) \cup(X, Y)
$$

Analytical stability and blowing-down structure

Analytical stability and blowing-down structure

Let $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a birational automorphism with iterates growing quadratically with n.
For any such automorphism we can blow up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and construct a rational surface X such that: $\tilde{\phi}: X \rightarrow X$ with $\phi=\tilde{\phi}$ in general and $\tilde{\phi}$ is analytically stable which means: $\left(\tilde{\phi}^{*}\right)^{n}=\left(\tilde{\phi}^{n}\right)^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)$
Analitical stability is equivalent with the following: There is no divisor D such that exist $k>0$ and $\tilde{\phi}(D)=$ point, $\tilde{\phi}^{k}(D)=$ indeterminate

$$
D \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \bullet \rightarrow D^{\prime}
$$

- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem (1902), and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem (1902), and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- the genus formula is helping here $g=1+\frac{1}{2}\left(F^{2}+F \cdot K_{X}\right)$ which must be zero
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem (1902), and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- the genus formula is helping here $g=1+\frac{1}{2}\left(F^{2}+F \cdot K_{X}\right)$ which must be zero
- then we have a new coordinate system where X is minimal given by the following transformation:

$$
\mathbb{C}^{2} \ni(x, y) \longrightarrow\left(\frac{y^{\prime}}{x^{\prime}}, \frac{y^{\prime \prime}}{x^{\prime \prime}}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Rational elliptic surface:

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves of first kind.

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves of first kind.

Generalized Halphen surface: A rational surface X is called a generalized Halphen surface if the anticanonical divisor class $-K_{X}$ is decomposed into effective divisors as $\left[-K_{X}\right]=D=\sum m_{i} D_{i}\left(m_{i} \geq 1\right)$ such that $D_{i} \cdot K_{X}=0$ Generalized Halphen surfaces can be obtained from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by succesive 8 blow-ups. They can be classified by the topology of D as follows ($D_{\text {red }}=\cup D_{i}$):

- rank $H_{1}\left(D_{\text {red }}, \mathbb{Z}\right)=2$, surface is elliptic,
- rank $H_{1}\left(D_{\text {red }}, \mathbb{Z}\right)=1$, surface is multiplicative
- rank $H_{1}\left(D_{\text {red }}, \mathbb{Z}\right)=0$, surface is additive.

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves of first kind.

Generalized Halphen surface: A rational surface X is called a generalized Halphen surface if the anticanonical divisor class $-K_{X}$ is decomposed into effective divisors as $\left[-K_{X}\right]=D=\sum m_{i} D_{i}\left(m_{i} \geq 1\right)$ such that $D_{i} \cdot K_{X}=0$ Generalized Halphen surfaces can be obtained from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by succesive 8 blow-ups. They can be classified by the topology of D as follows ($D_{\text {red }}=\cup D_{i}$):

- rank $H_{1}\left(D_{\text {red }}, \mathbb{Z}\right)=2$, surface is elliptic,
- rank $H_{1}\left(D_{\text {red }}, \mathbb{Z}\right)=1$, surface is multiplicative
- rank $H_{1}\left(D_{\text {red }}, \mathbb{Z}\right)=0$, surface is additive.

If the fibers contain exceptional curves of first kind the elliptic surface is called non-minimal. To make it minimal one has to blow down that curves.

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95)

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems: Tetrahedral symmetry can be simplified to:

$$
\begin{gathered}
\dot{x}=x^{2}-y^{2} \\
\dot{y}=-2 x y
\end{gathered}
$$

with the invariant, $K=3 x^{2} y-y^{3}$

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems:
Tetrahedral symmetry can be simplified to:

$$
\begin{gathered}
\dot{x}=x^{2}-y^{2} \\
\dot{y}=-2 x y
\end{gathered}
$$

with the invariant, $K=3 x^{2} y-y^{3}$
Octahedral symmetry:

$$
\begin{aligned}
& \dot{x}=2 x^{2}-12 y^{2} \\
& \dot{y}=-6 x y-4 y^{2}
\end{aligned}
$$

with the invariant: $K=y(2 x+3 y)(x-y)^{2}$

Differential Nahm equations are nonlinear ODE order two describing symmetric monopoles associted to some rotational symmetry groups. The solutions are expressed through rational expressions of Weierstrass elliptic functions and their derivatives (Hitchin, Manton, Murray -'95) Three types of Nahm systems:
Tetrahedral symmetry can be simplified to:

$$
\begin{gathered}
\dot{x}=x^{2}-y^{2} \\
\dot{y}=-2 x y
\end{gathered}
$$

with the invariant, $K=3 x^{2} y-y^{3}$
Octahedral symmetry:

$$
\begin{aligned}
& \dot{x}=2 x^{2}-12 y^{2} \\
& \dot{y}=-6 x y-4 y^{2}
\end{aligned}
$$

with the invariant: $K=y(2 x+3 y)(x-y)^{2}$ Icosahedral symmetry:

$$
\begin{gathered}
\dot{x}=2 x^{2}-y^{2} \\
\dot{y}=-10 x y+y^{2}
\end{gathered}
$$

with the invariant: $K=y(3 x-y)^{2}(4 x+y)^{3}$

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$
\dot{x}_{i}=\sum_{j=1}^{N} a_{i j} x_{j}^{2}+\sum_{j<k} b_{i j k} x_{j} x_{k}+c_{i}
$$

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$
\dot{x}_{i}=\sum_{j=1}^{N} a_{i j} x_{j}^{2}+\sum_{j<k} b_{i j k} x_{j} x_{k}+c_{i}
$$

In order to find the time discretisation first we bilinearize it by using projective substitution $x_{i}=G_{i} / F$ and we get:

$$
D_{t} G_{i} \cdot F=\sum_{j=1}^{N} a_{i j} G_{j}^{2}+\sum_{j<k} b_{i j k} G_{j} G_{k}+c_{i} F^{2}
$$

Discretize the bilinear operator and impose gauge-invariance in the right hand side

$$
D_{t} G_{i} \cdot F \rightarrow\left(\bar{G}_{i} F-G_{i} \bar{F}\right) / \epsilon
$$

It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear method. More precisely start with:

$$
\dot{x}_{i}=\sum_{j=1}^{N} a_{i j} x_{j}^{2}+\sum_{j<k} b_{i j k} x_{j} x_{k}+c_{i}
$$

In order to find the time discretisation first we bilinearize it by using projective substitution $x_{i}=G_{i} / F$ and we get:

$$
D_{t} G_{i} \cdot F=\sum_{j=1}^{N} a_{i j} G_{j}^{2}+\sum_{j<k} b_{i j k} G_{j} G_{k}+c_{i} F^{2}
$$

Discretize the bilinear operator and impose gauge-invariance in the right hand side

$$
\begin{gathered}
D_{t} G_{i} \cdot F \rightarrow\left(\bar{G}_{i} F-G_{i} \bar{F}\right) / \epsilon \\
\bar{G}_{i} F-G_{i} \bar{F}=\epsilon\left(\sum_{j=1}^{N} a_{i j} G_{j} \bar{G}_{j}+\sum_{j<k} b_{i j k}\left(\alpha \bar{G}_{j} G_{k}+(1-\alpha) G_{j} \bar{G}_{k}\right)+c_{i} F \bar{F}\right)
\end{gathered}
$$

or in the nonlinear form (Kahan '93, Hirota-Kimura, '00)

$$
\bar{x}_{i}-x_{i}=\epsilon\left(\sum_{j=1}^{N} a_{i j} x_{j} \bar{x}_{j}+\sum_{j<k} b_{i j k}\left(\alpha \bar{x}_{j} x_{k}+(1-\alpha) x_{j} \bar{x}_{k}\right)+c_{i}\right)
$$

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

- Octahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above mentioned Nahm equations (Petrera, Pfadler, Suris '12)

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

- Octahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

- Icosahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?
with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES

The tetrahedral symmetry (simple can be brought to QRT):

$$
\begin{aligned}
\bar{x}-x & =\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y & =-\epsilon(y \bar{x}+x \bar{y})
\end{aligned}
$$

use the substitution $u=(1-\epsilon x) / y, v=(1+\epsilon x) / y$ and we get QRT-mapping ($\bar{u}=v$) and

$$
3 \bar{u} \underline{u}-u(\bar{u}+\underline{u})-u^{2}+4 \epsilon^{2}=0
$$

with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
So we need to analyse carefully the singularity structure. What is seen is that we have more singularities and apparently some of them are useless making the corresponding rational elliptic surface to be more complicated.

Warming up exercise

$$
\begin{equation*}
x_{n+1}=-x_{n-1} \frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)}{\left(x_{n}+a\right)\left(x_{n}+1 / a\right)} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=y \\
& \bar{y}=-x \frac{(y-a)(y-1 / a)}{(y+a)(y+1 / a)} \tag{2}
\end{align*}
$$

Warming up exercise

$$
\begin{equation*}
x_{n+1}=-x_{n-1} \frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)}{\left(x_{n}+a\right)\left(x_{n}+1 / a\right)} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=y \\
& \bar{y}=-x \frac{(y-a)(y-1 / a)}{(y+a)(y+1 / a)} \tag{2}
\end{align*}
$$

Indeterminate points for ϕ and ϕ^{-1} :

$$
\begin{array}{rc}
P_{1}:(x, y)=(0,-a), & P_{2}:(x, y)=(0,-1 / a) \\
P_{3}:(X, y)=(0, a), & P_{4}:(X, y)=(0,1 / a), \\
P_{5}:(x, y)=(a, 0), & P_{6}:(x, y)=(1 / a, 0) \\
P_{7}:(x, Y)=(-a, 0), & P_{8}:(x, Y)=(-1 / a, 0)
\end{array}
$$

Wemstemem

The Picard group of X is a \mathbf{Z}-module

$$
\operatorname{Pic}(X)=\mathbb{Z} H_{x} \oplus \mathbb{Z} H_{y} \oplus \bigoplus_{i=1}^{8} \mathbb{Z} E_{i}
$$

H_{x}, H_{y} are the total transforms of the lines $x=$ const., $y=$ const. E_{i} are the total transforms of the eight blowing up points. The intersection form:

$$
H_{z} \cdot H_{w}=1-\delta_{z w}, \quad E_{i} \cdot E_{j}=-\delta_{i j}, \quad H_{z} \cdot E_{k}=0
$$

for $z, w=x, y$. Anti-canonical divisor of X :

$$
-K_{X}=2 H_{x}+2 H_{y}-\sum_{i=1}^{8} E_{i}
$$

Wemstemem

If $A=h_{0} H_{x}+h_{1} H_{y}+\sum_{i=1}^{8} e_{i} E_{i}$ is an element of the Picard lattice ($h_{i}, e_{j} \in \mathbf{Z}$) the induced bundle mapping is acting on it as

$$
\begin{aligned}
& \phi_{*}\left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right) \\
= & \\
& \left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right)\left(\begin{array}{cccccccccc}
2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

If $A=h_{0} H_{x}+h_{1} H_{y}+\sum_{i=1}^{8} e_{i} E_{i}$ is an element of the Picard lattice ($h_{i}, e_{j} \in \mathbf{Z}$) the induced bundle mapping is acting on it as

$$
\begin{aligned}
& \phi_{*}\left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right) \\
= & \\
& \left(h_{0}, h_{1}, e_{1}, \ldots, e_{8}\right)\left(\begin{array}{cccccccccc}
2 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

It preserves the decomposition of $-K_{X}=\sum_{i=0}^{3} D_{i}$:

$$
\begin{aligned}
& D_{0}=H_{x}-E_{1}-E_{2}, D_{1}=H_{y}-E_{5}-E_{6} \\
& D_{2}=H_{x}-E_{3}-E_{4}, D_{3}=H_{y}-E_{7}-E_{8}
\end{aligned}
$$

there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

- this family of curves defines a rational elliptic surface.
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

- this family of curves defines a rational elliptic surface.
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchange fibers of the elliptic fibration)
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any k).

$$
\begin{aligned}
F \equiv & \alpha x y-\beta\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 \\
& \Leftrightarrow k x y-\left(\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)\right)=0 .
\end{aligned}
$$

- this family of curves defines a rational elliptic surface.
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchange fibers of the elliptic fibration)
So the conservation law will be:

$$
I=\left(\frac{\left(x^{2}+1\right)\left(y^{2}+1\right)+(a+1 / a)(y-x)(x y+1)}{x y}\right)^{2}
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following:
$x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the non-QRT type system:

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following:
$x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the non-QRT type system:

$$
\left\{\begin{array}{l}
\bar{u}=v \tag{3}\\
\bar{v}=\frac{(u+2 v-20 \epsilon)(v+10 \epsilon)}{4 u-v+10 \epsilon}
\end{array}\right.
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following:
$x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the non-QRT type system:

$$
\left\{\begin{array}{l}
\bar{u}=v \tag{3}\\
\bar{v}=\frac{(u+2 v-20 \epsilon)(v+10 \epsilon)}{4 u-v+10 \epsilon}
\end{array}\right.
$$

The space of initial conditions is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following nine points:

$$
\begin{aligned}
& E_{1}:(u, v)=(-10 \epsilon, 0), E_{2}(0,10 \epsilon), E_{3}(10 \epsilon, 5 \epsilon) \\
& E_{4}(5 \epsilon, 0), E_{5}(0,-5 \epsilon), E_{6}(-5 \epsilon,-10 \epsilon) \\
& E_{7}(\infty, \infty), E_{8}:(1 / u, u / v)=(0,-1 / 2), E_{9}:(1 / u, u / v)=(0,-2)
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6}, \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9}, \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7} .
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6}, \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9}, \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7} .
\end{aligned}
$$

The curve corresponding to α_{0} is a (-1) curve which must be blown down. $E_{1} \rightarrow H_{a}=H_{u}+H_{v}-E_{2}-E_{7}$ and $E_{2} \rightarrow H_{b}=H_{u}+H_{v}-E_{1}-E_{7}, 0$-curves intersecting each other: The corresponding curves are given by:

$$
a_{1} u+a_{2}(v-10 \epsilon)=0, \quad b_{1}(u+10 \epsilon)+b_{2} v=0
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9}, \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7} .
\end{aligned}
$$

The curve corresponding to α_{0} is a (-1) curve which must be blown down. $E_{1} \rightarrow H_{a}=H_{u}+H_{v}-E_{2}-E_{7}$ and $E_{2} \rightarrow H_{b}=H_{u}+H_{v}-E_{1}-E_{7}, 0$-curves intersecting each other: The corresponding curves are given by:

$$
a_{1} u+a_{2}(v-10 \epsilon)=0, \quad b_{1}(u+10 \epsilon)+b_{2} v=0
$$

So if we set $a=(v-10 \epsilon) / u \quad b=(u+10 \epsilon) / v$ our dynamical system becomes

$$
\left\{\begin{array}{l}
\bar{a}=\frac{3 a b-2 a+2}{a-4} \tag{4}\\
\bar{b}=\frac{4-a}{2 a+1}
\end{array}\right.
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), \quad F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), \quad F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), \quad F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2) .
\end{aligned}
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), \quad F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), \quad F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), \quad F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2) .
\end{aligned}
$$

The invariant is nothing but the proper transform of the anti-canonical divisor:

$$
K_{X}=2 H_{a}+2 H_{b}-\oplus_{i=1}^{8} F_{i}
$$

namely

$$
K=\frac{(a b-1)(a b+2 a+2 b-5)}{4 a b+2 a+2 b+1}
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), \quad F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), \quad F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), \quad F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2)
\end{aligned}
$$

The invariant is nothing but the proper transform of the anti-canonical divisor:

$$
K_{X}=2 H_{a}+2 H_{b}-\oplus_{i=1}^{8} F_{i}
$$

namely

$$
K=\frac{(a b-1)(a b+2 a+2 b-5)}{4 a b+2 a+2 b+1}
$$

which is the same as the one found by Suris et al.

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The space of initial condition is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following 12 points:

$$
\begin{aligned}
& E_{1}:(x, y)=(\infty, \infty), E_{2}(-1 / 7 \epsilon,-3 / 7 \epsilon), E_{3}(-1 / 7 \epsilon, 4 / 7 \epsilon), \\
& E_{4}(1 / 7 \epsilon, 3 / 7 \epsilon), \quad E_{5}(1 / 7 \epsilon,-4 / 7 \epsilon) E_{6}(1 / 5 \epsilon, 0), \\
& E_{7}(1 / 3 \epsilon, 0), E_{8}(1 / \epsilon, 0), E_{9}(-1 / \epsilon, 0) \\
& E_{10}(-1 / 3 \epsilon, 0), E_{11}(-1 / 5 \epsilon, 0) \cdot E_{12}:(1 / x, x / y)=(0,1 / 3)
\end{aligned}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The space of initial condition is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following 12 points:

$$
\begin{aligned}
& E_{1}:(x, y)=(\infty, \infty), \quad E_{2}(-1 / 7 \epsilon,-3 / 7 \epsilon), E_{3}(-1 / 7 \epsilon, 4 / 7 \epsilon), \\
& E_{4}(1 / 7 \epsilon, 3 / 7 \epsilon), \quad E_{5}(1 / 7 \epsilon,-4 / 7 \epsilon) E_{6}(1 / 5 \epsilon, 0), \\
& E_{7}(1 / 3 \epsilon, 0), E_{8}(1 / \epsilon, 0), E_{9}(-1 / \epsilon, 0) \\
& E_{10}(-1 / 3 \epsilon, 0), E_{11}(-1 / 5 \epsilon, 0) \cdot E_{12}:(1 / x, x / y)=(0,1 / 3)
\end{aligned}
$$

Singularity confinement gives the following pattern:

$$
\begin{aligned}
& H_{y}-E_{1}(y=\infty) \rightarrow \text { point } \rightarrow \cdots(4 \text { points }) \cdots \rightarrow \text { point } \rightarrow H_{y}-E_{1} \\
& \cdots \rightarrow \text { point } \rightarrow \text { point } \rightarrow H_{x}-E_{1}(x=\infty) \rightarrow \text { point } \rightarrow \text { point } \rightarrow \cdots .
\end{aligned}
$$

The case of icosahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

The space of initial condition is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following 12 points:

$$
\begin{aligned}
& E_{1}:(x, y)=(\infty, \infty), \quad E_{2}(-1 / 7 \epsilon,-3 / 7 \epsilon), E_{3}(-1 / 7 \epsilon, 4 / 7 \epsilon), \\
& E_{4}(1 / 7 \epsilon, 3 / 7 \epsilon), \quad E_{5}(1 / 7 \epsilon,-4 / 7 \epsilon) E_{6}(1 / 5 \epsilon, 0), \\
& E_{7}(1 / 3 \epsilon, 0), E_{8}(1 / \epsilon, 0), E_{9}(-1 / \epsilon, 0) \\
& E_{10}(-1 / 3 \epsilon, 0), E_{11}(-1 / 5 \epsilon, 0) \cdot E_{12}:(1 / x, x / y)=(0,1 / 3)
\end{aligned}
$$

Singularity confinement gives the following pattern:

$$
\begin{aligned}
& H_{y}-E_{1}(y=\infty) \rightarrow \text { point } \rightarrow \cdots(4 \text { points }) \cdots \rightarrow \text { point } \rightarrow H_{y}-E_{1} \\
& \cdots \rightarrow \text { point } \rightarrow \text { point } \rightarrow H_{x}-E_{1}(x=\infty) \rightarrow \text { point } \rightarrow \text { point } \rightarrow \cdots .
\end{aligned}
$$

The curve $4 x+y=0: H_{x}+H_{y}-E_{1}-E_{3}-E_{5}$ is invariant and we blow it down

So $E_{3} \rightarrow H_{v}=H_{x}+H_{y}-E_{1}-E_{5}$ and $E_{5} \rightarrow H_{u}=H_{x}+H_{y}-E_{1}-E_{3}$ with

$$
H_{u} \cdot H_{u}=H_{v} \cdot H_{v}=0, H_{u} \cdot H_{v}=1
$$

where the linear systems of H_{u} and H_{v} are given by

$$
\begin{aligned}
& \left|\mathcal{H}_{\square}\right|: u_{0}(1+7 \epsilon x)+u_{1}(4 x+y) \\
& \left|\mathcal{H}_{\sqsubseteq}\right|: v_{0}(1-7 \epsilon x)+v_{1}(4 x+y) .
\end{aligned}
$$

So $E_{3} \rightarrow H_{v}=H_{x}+H_{y}-E_{1}-E_{5}$ and $E_{5} \rightarrow H_{u}=H_{x}+H_{y}-E_{1}-E_{3}$ with

$$
H_{u} \cdot H_{u}=H_{v} \cdot H_{v}=0, H_{u} \cdot H_{v}=1
$$

where the linear systems of H_{u} and H_{v} are given by

$$
\begin{aligned}
& \left|\mathcal{H}_{\square}\right|: u_{0}(1+7 \epsilon x)+u_{1}(4 x+y) \\
& \left|\mathcal{H}_{\sqsubseteq}\right|: v_{0}(1-7 \epsilon x)+v_{1}(4 x+y) .
\end{aligned}
$$

If we take the new variables u and v as

$$
u=\frac{2(1+7 \epsilon x)}{\epsilon(4 x+y)}, v=\frac{2(1-7 \epsilon x)}{\epsilon(4 x+y)},
$$

So $E_{3} \rightarrow H_{v}=H_{x}+H_{y}-E_{1}-E_{5}$ and $E_{5} \rightarrow H_{u}=H_{x}+H_{y}-E_{1}-E_{3}$ with

$$
H_{u} \cdot H_{u}=H_{v} \cdot H_{v}=0, H_{u} \cdot H_{v}=1
$$

where the linear systems of H_{u} and H_{v} are given by

$$
\begin{aligned}
& \left|\mathcal{H}_{\square}\right|: u_{0}(1+7 \epsilon x)+u_{1}(4 x+y) \\
& \left|\mathcal{H}_{\sqsubseteq}\right|: v_{0}(1-7 \epsilon x)+v_{1}(4 x+y) .
\end{aligned}
$$

If we take the new variables u and v as

$$
u=\frac{2(1+7 \epsilon x)}{\epsilon(4 x+y)}, v=\frac{2(1-7 \epsilon x)}{\epsilon(4 x+y)},
$$

then we have a new space for initial conditions given by nine blow up points:

$$
\begin{aligned}
& F_{1}:(u, v)=(2,-2), F_{2}:(0,-4), F_{3}:(4,0), F_{4}:(6,-1), F_{5}:(5,-2), \\
& F_{6}:(4,-3), F_{7}:(3,-4), F_{8}:(2,-5), F_{9}:(1,-6) .
\end{aligned}
$$

The dynamical system becomes an automorphism having the following topological singularity patterns

$$
\begin{aligned}
& H_{v}-F_{9} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{3} \rightarrow H_{u}-F_{4} \\
& H_{v}-F_{3} \rightarrow F_{4} \rightarrow F_{5} \rightarrow F_{6} \rightarrow F_{7} \rightarrow F_{8} \rightarrow F_{9} \rightarrow H_{u}-F_{2}
\end{aligned}
$$

and $H_{u} \rightarrow H_{u}+H_{v}-F_{2}-F_{4}$.

The dynamical system becomes an automorphism having the following topological singularity patterns

$$
\begin{aligned}
& H_{v}-F_{9} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{3} \rightarrow H_{u}-F_{4} \\
& H_{v}-F_{3} \rightarrow F_{4} \rightarrow F_{5} \rightarrow F_{6} \rightarrow F_{7} \rightarrow F_{8} \rightarrow F_{9} \rightarrow H_{u}-F_{2}
\end{aligned}
$$

and $H_{u} \rightarrow H_{u}+H_{v}-F_{2}-F_{4}$.
The invariant (-1) curve $H_{u}+H_{v}-F_{1}-F_{2}-F_{3}$, which should be blown down.

$$
F_{3} \rightarrow H_{s}=H_{u}+H_{v}-F_{1}-F_{2}, \quad F_{2} \rightarrow H_{t}=H_{u}+H_{v}-F_{1}-F_{3}
$$

where the linear systems of H_{s} and H_{t} are given by

$$
\begin{aligned}
& \left|\mathcal{H}_{\rho}\right|: s_{0} u(v+2)+s_{1}(u-v-4) \\
& \left|\mathcal{H}_{\sqcup}\right|: t_{0} v(u-2)+t_{1}(u-v-4)
\end{aligned}
$$

The dynamical system becomes an automorphism having the following topological singularity patterns

$$
\begin{aligned}
& H_{v}-F_{9} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{3} \rightarrow H_{u}-F_{4} \\
& H_{v}-F_{3} \rightarrow F_{4} \rightarrow F_{5} \rightarrow F_{6} \rightarrow F_{7} \rightarrow F_{8} \rightarrow F_{9} \rightarrow H_{u}-F_{2}
\end{aligned}
$$

and $H_{u} \rightarrow H_{u}+H_{v}-F_{2}-F_{4}$.
The invariant (-1) curve $H_{u}+H_{v}-F_{1}-F_{2}-F_{3}$, which should be blown down.

$$
F_{3} \rightarrow H_{s}=H_{u}+H_{v}-F_{1}-F_{2}, \quad F_{2} \rightarrow H_{t}=H_{u}+H_{v}-F_{1}-F_{3}
$$

where the linear systems of H_{s} and H_{t} are given by

$$
\begin{aligned}
& \left|\mathcal{H}_{f}\right|: s_{0} u(v+2)+s_{1}(u-v-4) \\
& \left|\mathcal{H}_{\sqcup}\right|: t_{0} v(u-2)+t_{1}(u-v-4)
\end{aligned}
$$

and hence we take the new variables s and t as

$$
s=-\frac{3 u(v+2)}{2(u-v-4)}, t=-\frac{3 v(u-2)}{2(u-v-4)}
$$

$$
\left\{\begin{array}{l}
\bar{s}=\frac{2 s t-3 s-3 t+9}{s+t-3} \\
\bar{t}=\frac{2(s-3)(t+3)}{3 s-t-9}
\end{array}\right.
$$

with the blow-up points

$$
\left\{\begin{array}{l}
\bar{s}=\frac{2 s t-3 s-3 t+9}{s+t-3} \\
\bar{t}=\frac{2(s-3)(t+3)}{3 s-t-9}
\end{array}\right.
$$

with the blow-up points

$$
\begin{aligned}
& F_{1}^{\prime}:(s, t)=(3,0), F_{2}^{\prime}(0,3), F_{3}^{\prime}(-3,2), F_{4}^{\prime}:\left(\frac{s}{t-3}, t-3\right)=(5,0) \\
& F_{5}^{\prime}(2,3), F_{6}^{\prime}(3,2), F_{7}^{\prime}:\left(s-3, \frac{t}{s-3}\right)=(0,5), F_{8}^{\prime}(2,-3)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\bar{s}=\frac{2 s t-3 s-3 t+9}{s+t-3} \\
\bar{t}=\frac{2(s-3)(t+3)}{3 s-t-9}
\end{array}\right.
$$

with the blow-up points

$$
\begin{aligned}
& F_{1}^{\prime}:(s, t)=(3,0), F_{2}^{\prime}(0,3), F_{3}^{\prime}(-3,2), F_{4}^{\prime}:\left(\frac{s}{t-3}, t-3\right)=(5,0), \\
& F_{5}^{\prime}(2,3), F_{6}^{\prime}(3,2), F_{7}^{\prime}:\left(s-3, \frac{t}{s-3}\right)=(0,5), F_{8}^{\prime}(2,-3)
\end{aligned}
$$

The invariants can be computed by using the the anticanonical divisor:

$$
\begin{equation*}
K=\frac{(s-t)^{2}+4(s+t)-21}{(s-2)(t-2)(2 s t-5 s-5 t+15)}=\frac{-56 \epsilon^{6} y(-3 x+y)^{2}(4 x+y)^{3}}{d_{1} d_{2} d_{3}} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{1}=-3-12 \epsilon x+15 \epsilon^{2} x^{2}-3 \epsilon y-17 \epsilon^{2} x y+4 \epsilon^{2} y^{2} \\
& d_{2}=-3+12 \epsilon x+15 \epsilon^{2} x^{2}+3 \epsilon y-17 \epsilon^{2} x y+4 \epsilon^{2} y^{2} \\
& d_{3}=-3+27 \epsilon^{2} x^{2}+10 \epsilon^{2} x y+10 \epsilon^{2} y^{2} .
\end{aligned}
$$

Conclusions

- The singularity structure may give a non-minimal elliptic surface. In order to make it minimal one has to blow down some - 1 divisor classes (one has to prove the existence of the blow-down structure)
- after minimization the mapping can be "solved"
- the procedure applies not only to confining mappings but also to linearisable mappings and is quite effective since we do not have to compute the action on the Picard group (which is more complicated in linearisable cases)

Main reference:
A. S. Carstea, T. Takenawa, arXiv:1211.5393 (to appear in JNMP vol 20)

