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The systems under consideration have the rational reversible form:

(x , y) ∈ P1 × P1 → (x , y) ∈ P1 × P1

x = F (x , y)

y = G(x , y)

and also the inverse (F ,G ,Φ, Γ are rational functions of x , y)

x = Φ(x , y)

y = Γ(x , y)

The projective space P1 × P1 is generated by the following coordinate systems
(X = 1/x ,Y = 1/y):

P1 × P1 = (x , y) ∪ (X , y) ∪ (x ,Y ) ∪ (X ,Y )
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Analytical stability and blowing-down structure

Let φ : C2 → C2 be a birational automorphism with iterates growing quadratically
with n.
For any such automorphism we can blow up P1 × P1 and construct a rational surface
X such that: φ̃ : X → X with φ = φ̃ in general and φ̃ is analytically stable which
means: (φ̃∗)n = (φ̃n)∗ : Pic(X )→ Pic(X )
Analitical stability is equivalent with the following: There is no divisor D such that
exist k > 0 and φ̃(D) =point, φ̃k (D) = indeterminate

D → • → • → ...• → D′

X

µ

��

φ̃ // X

µ

��
P1 × P1

φ // P1 × P1
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compute the surface X where φ̃ : X → X is analitically stable

there is a singularity pattern • → D1 → D2 → ...→ Dk → • having (−1) curves
in the components of some Di and this set of (−1) curves is preserved by the
action of φ̃ : X → X .

Blow down the (−1) curves in the following way: Let C be the (−1) divisor
class and F1, F2 two divisor classes such that

F1 · F1 = F2 · F2 = 0, F1 · F2 = 1, C · F1 = C · F2 = 0

all the above procedure is allowed by the Castelnuovo theorem (1902), and if
dim|F1| =dim|F2| = 1 we can put |F1| = α1x ′ + β1y ′, |F2| = α2x ′′ + β2y ′′

the genus formula is helping here g = 1 + 1
2

(F 2 + F · KX ) which must be zero

then we have a new coordinate system where X is minimal given by the
following transformation:

C2 3 (x , y) −→
(
y ′

x ′
,
y ′′

x ′′

)
∈ P1 × P1
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Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.

Generalized Halphen surface: A rational surface X is called a generalized Halphen
surface if the anticanonical divisor class −KX is decomposed into effective divisors as
[−KX ] = D =

∑
miDi (mi ≥ 1) such that Di · KX = 0 Generalized Halphen surfaces

can be obtained from P1 × P1 by succesive 8 blow-ups. They can be classified by the
topology of D as follows (Dred = ∪Di ):

rank H1(Dred,Z) = 2, surface is elliptic,

rank H1(Dred,Z) = 1, surface is multiplicative

rank H1(Dred,Z) = 0, surface is additive.

If the fibers contain exceptional curves of first kind the elliptic surface is called
non-minimal. To make it minimal one has to blow down that curves.

Adrian-Stefan Carstea, Tomoyuki Takenawa



Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.

Generalized Halphen surface: A rational surface X is called a generalized Halphen
surface if the anticanonical divisor class −KX is decomposed into effective divisors as
[−KX ] = D =

∑
miDi (mi ≥ 1) such that Di · KX = 0 Generalized Halphen surfaces

can be obtained from P1 × P1 by succesive 8 blow-ups. They can be classified by the
topology of D as follows (Dred = ∪Di ):

rank H1(Dred,Z) = 2, surface is elliptic,

rank H1(Dred,Z) = 1, surface is multiplicative

rank H1(Dred,Z) = 0, surface is additive.

If the fibers contain exceptional curves of first kind the elliptic surface is called
non-minimal. To make it minimal one has to blow down that curves.

Adrian-Stefan Carstea, Tomoyuki Takenawa



Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.

Generalized Halphen surface: A rational surface X is called a generalized Halphen
surface if the anticanonical divisor class −KX is decomposed into effective divisors as
[−KX ] = D =

∑
miDi (mi ≥ 1) such that Di · KX = 0 Generalized Halphen surfaces

can be obtained from P1 × P1 by succesive 8 blow-ups. They can be classified by the
topology of D as follows (Dred = ∪Di ):

rank H1(Dred,Z) = 2, surface is elliptic,

rank H1(Dred,Z) = 1, surface is multiplicative

rank H1(Dred,Z) = 0, surface is additive.

If the fibers contain exceptional curves of first kind the elliptic surface is called
non-minimal. To make it minimal one has to blow down that curves.

Adrian-Stefan Carstea, Tomoyuki Takenawa



Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given
by the morphism: π : X → P1 such that:

for all but finitely many points k ∈ P1 the fibre π−1(k) is an elliptic curve

π is not birational to the projection : E × P1 → P1 for any curve E

no fibers contains exceptional curves of first kind.

Generalized Halphen surface: A rational surface X is called a generalized Halphen
surface if the anticanonical divisor class −KX is decomposed into effective divisors as
[−KX ] = D =

∑
miDi (mi ≥ 1) such that Di · KX = 0 Generalized Halphen surfaces

can be obtained from P1 × P1 by succesive 8 blow-ups. They can be classified by the
topology of D as follows (Dred = ∪Di ):

rank H1(Dred,Z) = 2, surface is elliptic,

rank H1(Dred,Z) = 1, surface is multiplicative

rank H1(Dred,Z) = 0, surface is additive.

If the fibers contain exceptional curves of first kind the elliptic surface is called
non-minimal. To make it minimal one has to blow down that curves.

Adrian-Stefan Carstea, Tomoyuki Takenawa



Differential Nahm equations are nonlinear ODE order two describing symmetric
monopoles associted to some rotational symmetry groups. The solutions are expressed
through rational expressions of Weierstrass elliptic functions and their derivatives
(Hitchin, Manton, Murray -’95)

Three types of Nahm systems:
Tetrahedral symmetry can be simplified to:

ẋ = x2 − y2

ẏ = −2xy

with the invariant, K = 3x2y − y3

Octahedral symmetry:

ẋ = 2x2 − 12y2

ẏ = −6xy − 4y2

with the invariant: K = y(2x + 3y)(x − y)2

Icosahedral symmetry:

ẋ = 2x2 − y2

ẏ = −10xy + y2

with the invariant: K = y(3x − y)2(4x + y)3
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It applies to some class of ODE (quadratic) and has close relation with Hirota bilinear
method. More precisely start with:

ẋi =
N∑
j=1

aijx
2
j +

∑
j<k

bijkxjxk + ci

In order to find the time discretisation first we bilinearize it by using projective
substitution xi = Gi/F and we get:

DtGi · F =
N∑
j=1

aijG
2
j +

∑
j<k

bijkGjGk + ciF
2

Discretize the bilinear operator and impose gauge-invariance in the right hand side

DtGi · F → (ḠiF − Gi F̄ )/ε

ḠiF − Gi F̄ = ε(
N∑
j=1

aijGj Ḡj +
∑
j<k

bijk (αḠjGk + (1− α)Gj Ḡk ) + ciFF̄ )

or in the nonlinear form (Kahan ’93, Hirota-Kimura, ’00)

x̄i − xi = ε(
N∑
j=1

aijxj x̄j +
∑
j<k

bijk (αx̄jxk + (1− α)xj x̄k ) + ci )
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Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above
mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

Tetrahedral symmetry:
x̄ − x = ε(xx̄ − yȳ)

ȳ − y = −ε(yx̄ + xȳ)

with the integral of motion:

K(ε) =
3x2y − y3

1− ε2(x2 + y2)

Octahedral symmetry
x̄ − x = ε(2xx̄ − 12yȳ)

ȳ − y = −ε(3yx̄ + 3xȳ + 4yȳ)

with the integral of motion:

K(ε) =
y(2x + 3y)(x − y)2

1− 10ε2(x2 + 4y2) + ε4(9x4 + 272x3y − 352xy3 + 696y4)

,

Icosahedral symmetry
x̄ − x = ε(2xx̄ − yȳ)

ȳ − y = −ε(5yx̄ + 5xȳ − yȳ)

Adrian-Stefan Carstea, Tomoyuki Takenawa



Using the above Kahan-Hirota-Kimura procedure one can easily discretize the above
mentioned Nahm equations (Petrera, Pfadler, Suris ’12)

Tetrahedral symmetry:
x̄ − x = ε(xx̄ − yȳ)
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ȳ − y = −ε(5yx̄ + 5xȳ − yȳ)
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with the integral of motion:

K(ε) =
y(3x − y)2(4x + y)3

1 + ε2c2 + ε4c4 + ε6c6

with
c2 = −35x2 + 7y2

c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4)

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4

Question: Can one found these complicated integrals starting from singularity
structure associated to the equations?

YES

The tetrahedral symmetry (simple can be brought to QRT):

x̄ − x = ε(xx̄ − yȳ)

ȳ − y = −ε(yx̄ + xȳ)

use the substitution u = (1− εx)/y , v = (1 + εx)/y and we get QRT-mapping
(ū = v) and

3ūu − u(ū + u)− u2 + 4ε2 = 0

Adrian-Stefan Carstea, Tomoyuki Takenawa
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use the substitution u = (1− εx)/y , v = (1 + εx)/y and we get QRT-mapping
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(ū = v) and
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with the invariant

K =
−3(u − ū)2 + 4ε2

2ε2(u + ū)(uū − ε2)
≡

3x2y − y3

1− ε2(x2 + y2)

What we learn:

The red substitution looks like curves corresponding to divisor classes of some
blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT
forms by these type of substitutions.
So we need to analyse carefully the singularity structure. What is seen is that we have
more singularities and apparently some of them are useless making the corresponding
rational elliptic surface to be more complicated.
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Warming up exercise

xn+1 = −xn−1
(xn − a)(xn − 1/a)

(xn + a)(xn + 1/a)
(1)

x = y

y = −x
(y − a)(y − 1/a)

(y + a)(y + 1/a)
(2)

Indeterminate points for φ and φ−1:

P1 : (x , y) = (0,−a), P2 : (x , y) = (0,−1/a),

P3 : (X , y) = (0, a), P4 : (X , y) = (0, 1/a),

P5 : (x , y) = (a, 0), P6 : (x , y) = (1/a, 0),

P7 : (x ,Y ) = (−a, 0), P8 : (x ,Y ) = (−1/a, 0).
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The Picard group of X is a Z-module

Pic(X ) = ZHx ⊕ ZHy ⊕
8⊕

i=1

ZEi ,

Hx , Hy are the total transforms of the lines x = const., y = const.
Ei are the total transforms of the eight blowing up points.
The intersection form:

Hz · Hw = 1− δzw , Ei · Ej = −δij , Hz · Ek = 0

for z,w = x , y . Anti-canonical divisor of X:

−KX = 2Hx + 2Hy −
8∑

i=1

Ei .
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If A = h0Hx + h1Hy +
∑8

i=1 eiEi is an element of the Picard lattice (hi , ej ∈ Z) the
induced bundle mapping is acting on it as

φ∗(h0, h1, e1, ..., e8)

=(h0, h1, e1, ..., e8)



2 1 0 0 0 0 −1 −1 −1 −1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0


.

It preserves the decomposition of −KX =
∑3

i=0 Di :

D0 = Hx − E1 − E2, D1 = Hy − E5 − E6

D2 = Hx − E3 − E4, D3 = Hy − E7 − E8
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there are many elliptic curves corresponding to the this anti-canonical class (these
curves pass through all Ei for any k).

F ≡αxy − β((x2 + 1)(y2 + 1) + (a + 1/a)(y − x)(xy + 1)) = 0

⇔ kxy − ((x2 + 1)(y2 + 1) + (a + 1/a)(y − x)(xy + 1)) = 0.

this family of curves defines a rational elliptic surface.

anti-canonical class is preserved by the mapping, the linear system is not. More
precisely the action changes k in −k (the mapping exchange fibers of the elliptic
fibration)

So the conservation law will be:

I =

(
(x2 + 1)(y2 + 1) + (a + 1/a)(y − x)(xy + 1)

xy

)2
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The case of octahedral symmetry:

x̄ − x = ε(2xx̄ − 12yȳ)

ȳ − y = −ε(3yx̄ + 3xȳ + 4yȳ)

We simplify by the following:
x = 1

3
(χ− 2y), x̄ = 1

3
(χ̄− 2ȳ), u = (1− εχ)/y , v = (1 + εχ)/y to the non-QRT

type system:  ū = v

v̄ =
(u + 2v − 20ε)(v + 10ε)

4u − v + 10ε

. (3)

The space of initial conditions is given by the P1 × P1 blown up at the following nine
points:

E1 : (u, v) = (−10ε, 0), E2(0, 10ε), E3(10ε, 5ε),

E4(5ε, 0), E5(0,−5ε), E6(−5ε,−10ε)

E7(∞,∞), E8 : (1/u, u/v) = (0,−1/2), E9 : (1/u, u/v) = (0,−2).
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(χ̄− 2ȳ), u = (1− εχ)/y , v = (1 + εχ)/y to the non-QRT

type system:  ū = v
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(χ̄− 2ȳ), u = (1− εχ)/y , v = (1 + εχ)/y to the non-QRT

type system:  ū = v
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The action on the Picard group:

H̄u = 2Hu + Hv − E1 − E3 − E7 − E8, H̄v = Hu

Ē1 = E2, Ē2 = Hu − E3, Ē3 = E4, Ē4 = E5, Ē5 = E6,

Ē6 = Hu − E1, Ē7 = Hu − E8, Ē8 = E9, Ē9 = Hu − E7.

Three invariant divisor classes:

α0 = Hu + Hv − E1 − E2 − E7, α1 = Hu + Hv − E1 − E2 − E8 − E9,

α2 = E7 − E8 − E9, α3 = Hu + Hv − E3 − E4 − E5 − E6 − E7.

The curve corresponding to α0 is a (-1) curve which must be blown down.
E1 → Ha = Hu + Hv − E2 − E7 and E2 → Hb = Hu + Hv − E1 − E7, 0-curves
intersecting each other: The corresponding curves are given by:

a1u + a2(v − 10ε) = 0, b1(u + 10ε) + b2v = 0

So if we set a = (v − 10ε)/u b = (u + 10ε)/v our dynamical system becomes


ā =

3ab − 2a + 2

a− 4

b̄ =
4− a

2a + 1

. (4)
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ā =

3ab − 2a + 2

a− 4

b̄ =
4− a

2a + 1

. (4)

Adrian-Stefan Carstea, Tomoyuki Takenawa



The action on the Picard group:

H̄u = 2Hu + Hv − E1 − E3 − E7 − E8, H̄v = Hu
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This system has the following space of initial conditions which define a minimal
rational elliptic surface:

F1 : (a, b) = (0,∞), F2 : (a, b) = (∞, 0),

F3 : (a, b) = (−1/2, 4), F4 : (a, b) = (−2,∞)

F5 : (a, b) = (∞,−2), F6 : (a, b) = (4,−1/2),

F7 : (a, b) = (−2,−1/2), F8 : (a, b) = (−1/2,−2).

The invariant is nothing but the proper transform of the anti-canonical divisor:

KX = 2Ha + 2Hb −⊕8
i=1Fi

namely

K =
(ab − 1)(ab + 2a + 2b − 5)

4ab + 2a + 2b + 1

which is the same as the one found by Suris et al.

K(ε) =
y(2x + 3y)(x − y)2

1− 10ε2(x2 + 4y2) + ε4(9x4 + 272x3y − 352xy3 + 696y4)
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The case of icosahedral symmetry:

x̄ − x = ε(2xx̄ − yȳ)

ȳ − y = −ε(5yx̄ + 5xȳ − yȳ)

The space of initial condition is given by the P1 × P1 blown up at the following 12
points:

E1 : (x , y) = (∞,∞), E2(−1/7ε,−3/7ε), E3(−1/7ε, 4/7ε),

E4(1/7ε, 3/7ε), E5(1/7ε,−4/7ε)E6(1/5ε, 0),

E7(1/3ε, 0), E8(1/ε, 0), E9(−1/ε, 0),

E10(−1/3ε, 0), E11(−1/5ε, 0).E12 : (1/x , x/y) = (0, 1/3)

Singularity confinement gives the following pattern:

Hy − E1 (y =∞)→ point→ · · · (4 points) · · · → point→ Hy − E1

· · · → point→ point→ Hx − E1 (x =∞)→ point→ point→ · · · .

The curve 4x + y = 0 : Hx + Hy − E1 − E3 − E5 is invariant and we blow it down
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ȳ − y = −ε(5yx̄ + 5xȳ − yȳ)
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The space of initial condition is given by the P1 × P1 blown up at the following 12
points:

E1 : (x , y) = (∞,∞), E2(−1/7ε,−3/7ε), E3(−1/7ε, 4/7ε),

E4(1/7ε, 3/7ε), E5(1/7ε,−4/7ε)E6(1/5ε, 0),

E7(1/3ε, 0), E8(1/ε, 0), E9(−1/ε, 0),

E10(−1/3ε, 0), E11(−1/5ε, 0).E12 : (1/x , x/y) = (0, 1/3)

Singularity confinement gives the following pattern:

Hy − E1 (y =∞)→ point→ · · · (4 points) · · · → point→ Hy − E1

· · · → point→ point→ Hx − E1 (x =∞)→ point→ point→ · · · .

The curve 4x + y = 0 : Hx + Hy − E1 − E3 − E5 is invariant and we blow it down

Adrian-Stefan Carstea, Tomoyuki Takenawa



So E3 → Hv = Hx + Hy − E1 − E5 and E5 → Hu = Hx + Hy − E1 − E3 with

Hu · Hu = Hv · Hv = 0,Hu · Hv = 1

where the linear systems of Hu and Hv are given by

|Hu| :u0(1 + 7εx) + u1(4x + y)

|Hv| :v0(1− 7εx) + v1(4x + y).

If we take the new variables u and v as

u =
2(1 + 7εx)

ε(4x + y)
, v =

2(1− 7εx)

ε(4x + y)
,

then we have a new space for initial conditions given by nine blow up points:

F1 : (u, v) = (2,−2),F2 : (0,−4),F3 : (4, 0),F4 : (6,−1),F5 : (5,−2),

F6 : (4,−3),F7 : (3,−4),F8 : (2,−5),F9 : (1,−6).
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The dynamical system becomes an automorphism having the following topological
singularity patterns

Hv − F9 → F2 → F1 → F3 → Hu − F4

Hv − F3 → F4 → F5 → F6 → F7 → F8 → F9 → Hu − F2

and Hu → Hu + Hv − F2 − F4.

The invariant (−1) curve Hu + Hv − F1 − F2 − F3, which should be blown down.

F3 → Hs = Hu + Hv − F1 − F2, F2 → Ht = Hu + Hv − F1 − F3

where the linear systems of Hs and Ht are given by

|H∫ | :s0u(v + 2) + s1(u − v − 4)

|Ht| :t0v(u − 2) + t1(u − v − 4)

and hence we take the new variables s and t as

s = −
3u(v + 2)

2(u − v − 4)
, t = −

3v(u − 2)

2(u − v − 4)
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s̄ =

2st − 3s − 3t + 9

s + t − 3

t̄ =
2(s − 3)(t + 3)

3s − t − 9

.

with the blow-up points

F ′1 : (s, t) = (3, 0), F ′2(0, 3), F ′3(−3, 2), F ′4 : (
s

t − 3
, t − 3) = (5, 0),

F ′5(2, 3), F ′6(3, 2), F ′7 : (s − 3,
t

s − 3
) = (0, 5), F ′8(2,−3)

The invariants can be computed by using the the anticanonical divisor:

K =
(s − t)2 + 4(s + t)− 21

(s − 2)(t − 2)(2st − 5s − 5t + 15)
=
−56ε6y(−3x + y)2(4x + y)3

d1d2d3
(5)

where

d1 = −3− 12εx + 15ε2x2 − 3εy − 17ε2xy + 4ε2y2

d2 = −3 + 12εx + 15ε2x2 + 3εy − 17ε2xy + 4ε2y2

d3 = −3 + 27ε2x2 + 10ε2xy + 10ε2y2.
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Conclusions

The singularity structure may give a non-minimal elliptic surface. In order to
make it minimal one has to blow down some -1 divisor classes (one has to prove
the existence of the blow-down structure)

after minimization the mapping can be ”solved”

the procedure applies not only to confining mappings but also to linearisable
mappings and is quite effective since we do not have to compute the action on
the Picard group (which is more complicated in linearisable cases)
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