
Canonical quantum gravity and cosmological applications

Calin Lazaroiu

Horia Hulubei Institute, Romania

Calin Lazaroiu Canonical quantum gravity and cosmological applications 1/11



Outline

1 The canonical approach to gravity

2 The Wheeler-DeWitt equation

3 Quantum cosmology

4 Some related topics in geometric analysis and operator theory

Calin Lazaroiu Canonical quantum gravity and cosmological applications 2/11



The canonical formulation of gravity

The Arnowitt–Deser–Misner (ADM) formalism was one of the first attempts to
a canonical formulation of general relativity (first published in 1959).
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The ADM formalism

To build a canonical formulation of gravity, one assumes that the Lorentzian
metrics g of interest are globally hyperbolic and hence that spacetime is
foliated by spacelike hypersurfaces Σt transverse to a timelike curve which we
parameterize by a variable t ∈ I with I a non-degenerate interval. We denote
by h(t) the positive-definite metric induced by g on Σt . Choosing local
coordinates x⃗ = (x1, x2, x3) on Σt , such metrics can be written in the ADM
form:

ds2 = −N(t, x)2dt2 + hij(t, x)(dx
i + N i (t, x))(dx j + N j(t, x))

where N is called the lapse function and N⃗ = (N1,N2,N3) is called the shift
vector. Geometrically, the leaves Σt are diffeomorphic to a model leaf Σ and
the spacetime manifold M is diffeomorphic with I ×Σ. We can take N to be a
real-valued function defined on I × Σ) and N⃗ to be a section of the bundle
p∗
2 (TΣ)), where p2 : I × Σ → Σ is the canonical projection.

Remark

These assumptions are more restrictive than they might appear. For example,
they preclude a wide class of four-manifold topologies which would otherwise
be allowed for spacetimes in general relativity. Moreover, it is unclear how to
justify the global hyperbolicity requirement, since the spacetime metrics
considered are supposed to be used in path integrals etc. and hence are not
assumed to satisfy the Einstein equations at the outset. A proper path integral
formulation would allow at least nowhere-differentiable objects N,N⃗ and h.
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The ADM formalism

For simplicity, set 8πG = 1. We consider the action of gravity coupled to
unspecified matter and with cosological constant Λ:

S = Smatter +
1

2

∫
M

d4x [
√
g(R − 2Λ) + S∂ ] ,

where S∂ is a boundary term which determines the boundary conditions to be
imposed on the model leaf Σ. Plugging in the ADM form of the metric and
using the Gauss-Codazzi relation between extrinsic and total curvature, one can
write the action as:

S = Smatter +
1

2

∫
I

dt

∫
Σ

d3xN
√
h
[
KijK

ij − (K i
i )

2 + R(h)− 2Λ
]

where R(h) is the scalar curvature of h, K i
i

def.
= hijKji and K is the extrinsic

curvature of Σt in (M, g):

Kij =
1

2N

[
−ḣij + 2∇h

(iNj)

]
,

where ˙
def.
= ∂t . The system has gauge symmetries coming from diffeomorphisms

of Σ and of the interval I . Hence the Hamiltonian formulation is constrained.
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The ADM formalism

The parameterized Hamiltonian form of the action obatined by ADM is:

S =

∫
I

dt

∫
Σ

d3x
[
ḣijπ

ij − NH− N iHi

]
,

where:

πij def.
=

δL
ḣij

= −
√
h

2
(K ij − hijK l

l )

are the momenta conjugate to hij and:

H def.
= 2Gijklπ

ijπkl − 1

2

√
h(R(h)− 2Λ) +Hmatter

Hi
def.
= −2∇h

j π
ij +Hi

matter .

Here:

Gijkl
def.
=

1

2
√
h
[hikhjl + hilhjk − hijhkl ]

is the de Witt metric (a.k.a. “supermetric”), which can be viewed as an
indefinite metric on the bundle Sym2(TΣ). It induces a metric on Sym2(T ∗Σ)
via the musical isomorphism. In turn, the latter induces a metric defined on the
space of all Riemannian metrics defined on Σ (which was historically called
“superspace” – no connection to the notion of superspace used in
supersymmetry !).
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The ADM formalism

In the parameterized Hamiltonian form of the action, the shift and lapse
functions appear as Lagrange multipliers which impose the momentum
constraints Hi ≈ 0 and the Hamiltonian constraint H ≈ 0 through their
equations of motion. These constraints are equivalent with the 0i and 00
components of the Einstein equations. The parameterized Hamiltonian is:

H = Hmatter +

∫
Σ

d3x(πij ḣij − Lgrav ) = Hmatter +

∫
Σ

d3x(NH+ N iHi ) .

Remark

To pass from the parameterized Hamiltonian to the canonical one, we have to
solve the momentum and Hamiltonian constraints and impose coordinate
conditions which eliminate the reparameterization freedom along Σ and I . This
has been done explicitly only in very particular cases — though it can always be
achieved formally.
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The Wheeler-DeWitt equation

The formal canonical quantization procedure replaces hij and πij by the
operators:

hij −→ hij ·

πij −→ −i
δ

δhij

and similarly for the matter fields and their conjugate momenta. This produces
the quantum momentum constraints:

ĤiΨ =

[
2i∇h

j
δ

δhij
+ Ĥ i

matter

]
Ψ = 0

and the Wheeler-DeWitt equation:

ĤΨ =

[
−Gijkl

δ

δhij

δ

δhkl
−

√
h(R(h)− 2Λ) + Ĥmatter

]
Ψ = 0 ,

where Ĥmatter is the quantum Hamiltonian of matter fields. Here Ψ is the
“wavefunction of the universe”, which is a functional Ψ(hij ,Φ) of the
Riemannian metric h ∈ Met(Σ) and the matter fields Φ defined on Σ. The
momentum constraints implement diffeomorphism invariance along Σ while the
Wheeler-DeWitt equation implements diffeomorphism invariance along I .
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Mathematical remarks about the Wheeler-DeWitt equation

To make mathematical sense of the Wheeler-De Witt equation is a highly
nontrivial task, since Ψ is a functional of field configurations:

One has an ordering ambiguity when interpreting the Wheeler=DeWitt
D’Alembertian:

∇WDW
def.
= Gijkl

δ

δhij

δ

δhkl
,

which is compounded by the fact that this is a functional version of the
D’Alembert operator
One has the usual problems of constructing an appropriate Hilbert space
for field-theoretical wave-functionals Ψ
One has the added complication of having to deal with gauge invariance
under reparameterization, which can be eased by using the BV-BRST
approach
The fact that the de Witt metric G is not positive-definite produces
difficulties with the probabilistic interpretation of the theory, some of
which are already familiar from the Klein-Gordon equation.

These problems remain unsolved in general. The physics literature is concerned
almost exclusively with very special examples, usually related to highly
symmetric models (e.g. the “minisuperspace approximation” used in quantum
cosmology). Experience with functional analysis suggests that the correct
formulation is through scattering theory on manifolds (Melrose). In general,
this has to be done in an infinite-dimensional setting, which requires new ideas
and techniques.
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What is “quantum cosmology” ?

“Quantum cosmology” is an attempt to build a Hilbert space interpretation of
canonical quantization of gravity following the old ideas of ADM. At present, it
suffers from many problems due to poor understanding of its mathematical
foundations, and it is mosty limited to semiclassical considerations and the
study of simple examples. Some ideas and directions:

The Hartle-Hawking “no boundary proposal” for the “wave function of the
universe”

Complex solutions of the Einstein equations and various notions of the
space of “complexified metrics” and “choices of integration contours” in a
putative “path integral over metrics” (which is understood only in simple
cases and though leading orders of the saddle point approximation).

Applications of Picard-Lefschetz theory to saddle point expansions; the
Stokes phenomenon.

Connections to the Schwinger-Keldish (“in-in”) formalism.

Connections to cosmological perturbation theory.

Connections to scattering theory on manifolds (poorly understood).

The BV-BRST approach to pre-quantisation of canonical gravity.

Attempts to deal with various issues though loop quantum gravity.

Connections to secondary calculus ?
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Related topics in geometric analysis and operator theory

The proper formulation of initial value problems in GR in various spacetime
dimensions, with various kinds of fields and in various supergravity theories
(starting with the work of Y. Choquet-Bruhat on the gravity-Yang-Mills
system and latter). Quite a few prpblems are still open in the presense of
spinor fields and for various extended supergravity in higher dimensions.

Well-posedness of initial value problems in GR (Sergiu Klainerman et al)

Infra-red regularization for non-compact spatial section and topological
aspects

Summing over three-manifold topolgies in the “no-boundary proposal of
Hartle and Hawking”.

Open problems in cosmological perturbation theory: the proper meaning
of the “adiabatic approximation” and the “cosmological effective actions”;
a systematic and more geometric treatment that would allow going beyong
second order in the cosmological effective action; dealing correctly with
spinor matter; the proper treatment of graviton loops and loop corrections
in general; the role of the “Bunch-Davis” conditions and how they could
be relaxed; alpha-vacua and related topics in algebraic QFT on curved
spacetimes.

Dynamical systems aspects; the role played by the WKB approximation
and decoherence in quantum cosmology; inertial manifolds.
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