

The Perceptron: first example of a neural network
(in the 60s…totally useless)

• WE HAVE SEEN THAT NEURAL NETWORKS CAN REPRESENT
COMPLEX FUNCTIONS, BUT ARE THERE LIMITATIONS ON
WHAT A NEURAL NETWORK CAN EXPRESS?

• THEOREM:

• FOR ANY CONTINUOUS FUNCTION F DEFINED ON A
BOUNDED DOMAIN, WE CAN FIND A NEURAL NETWORK
THAT APPROXIMATES F WITH AN ARBITRARY DEGREE OF
ACCURACY.

One hidden layer is enough to represent an approximation of any function to an
arbitrary degree of accuracy.

So why deeper?

•

Neural networks can learn useful representations for the problem. This is another
reason why they can be so powerful!

MOTIVATION
IN EVERY CORNER OF SCIENCE, DYNAMICS AND RELATIONSHIPS ARE DESCRIBED WITH (PARTIAL)
DIFFERENTIAL EQUATIONS.

ONLY DATA SCIENCE/AI IS IGNORING THIS FACT.

HOLOGRAPHY ADS-CFT CORRESPONDENCE

𝐷𝑢 + ℎ 𝑥 𝑔(𝑢) = 𝑓 𝑥

Independent variable, 𝒙

Dependent variable,
𝒖:

what we are looking
for

Forcing function, 𝑓

Differential
operator:

$
!"#

$

𝜃!
𝑑(!)

𝑑𝑥(!)

The order of DE is
determined by k.	
𝜃!	are the parameters
of the DE

Any function of 𝒖:
Special case linear
DE 𝒈 𝒖 = 𝒖

𝐷𝒖 + 𝒉 𝑥 𝑔(𝒖) = 𝑓 𝑥

Differential
operator is a
matrix:

$
!"#

$

𝚯!
𝑑(!)

𝑑𝑥(!)

Dependent
variables: 𝒖 ∈ 𝑹𝒎

𝐷𝑢 + ℎ 𝒙 𝑔(𝑢) = 𝑓 𝒙

Differential
operator:

$
!"#

$

𝜃!
𝜕(!)

𝜕𝑥(!)

Independent variables, 𝒙 ∈ 𝑹𝐝

𝐷𝒖 + 𝒉 𝒙 𝑔(𝒖) = 𝑓 𝒙

Differential
operator:

$
!"#

$

𝜃!
𝜕(!)

𝜕𝑥(!) Independent variables, 𝒙 ∈ 𝑹𝐝

Dependent
variables: 𝒖 ∈ 𝑹𝒎

𝐷𝑢 + ℎ 𝑥 𝑔(𝑢) = 𝑓 𝑥

𝑢 𝑥 = 𝑡 = 0 = 𝑢!

Initial Conditions are referring to when 𝑥 is time, 𝑡:

Boundary Conditions are referring to when 𝑥 is anything else:

𝑢 𝑥 = 𝑥! = 𝑢" Dirichlet boundary condition

.
𝑑𝑢
𝑑𝑥 #$#!

= 𝑢" Neumann boundary condition

NEURAL NETWORK EDITION

Neural
Network W𝑥 𝑢%%

𝐷𝒖𝑵𝑵 + 𝒉 𝒙 𝑔 𝒖𝑵𝑵 𝑓 𝒙=

How about
this?

Neural
Network W𝑥 𝑢%%

ℒ = ℛ'
(+ℛ)

(

ℛ' =

ℛ) = 𝑢%% t = 0 − 𝑢*
Residuals

Loss function:

𝐷𝒖𝑵𝑵 + 𝒉 𝒙 𝑔 𝒖𝑵𝑵 𝑓 𝒙−

Neural
Network W𝑥 𝑢%%

ℒ = ℛ'
(+ℛ)

(+ℛ+
(

ℛ) = 𝑢%% t = 0 − 𝑢*
If we have solution
or measurements
we include them

ℛ" = 𝑢##(x") − 𝑢" 𝑥"

ℛ' = 𝑓 𝒙−𝐷𝒖𝑵𝑵 + 𝒉 𝒙 𝑔 𝒖𝑵𝑵

Neural
Network W𝑥 𝑢%%

ℒ = ℛ'
(+ℛ)

(

𝑥 𝑢%%

ℒ = ℛ'
(+ℛ)

(

Find W that minimize the loss by backprop

𝑊∗ = argmin
-

ℒ

Neural
Network W

𝑥 𝑢%%

ℒ = ℛ'
(+ℛ)

(

𝑊∗ = argmin
-

ℒ

Choose x ∈ 𝑋 and minimize the loss.

Choose	x	in regular intervals, or randomly. Randomly works
better, eliminates trapped in trivial solutions. No meaning of
epochs here (infinite data set)

Neural
Network W

neurodiffeq is a package for solving differential equations with neural networks.

Github page: https://github.com/NeuroDiffGym/neurodiffeq

Extended documentation and examples: https://neurodiffeq.readthedocs.io/en/latest/intro.html

https://github.com/NeuroDiffGym/neurodiffeq
https://neurodiffeq.readthedocs.io/en/latest/intro.html

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Computational Physics 378
(2019), pp. 686–707

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. “Artificial neural networks
for solving ordinary and partial differential equations”. In: IEEE transactions on neural
networks 9.5 (1998), pp. 987–1000

Kevin Stanley McFall and James Robert Mahan. “Artificial neural network method
for solution of boundary value problems with exact satisfaction of arbitrary boundary
conditions”. In: IEEE Transactions on Neural Networks 20.8 (2009), pp. 1221–1233

N Sukumar and Ankit Srivastava. “Exact imposition of boundary conditions with
distance functions in physics-informed deep neural networks”. In: arXiv preprint
arXiv:2104.08426 (2021).

Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learning algorithm
for solving partial differential equations”. In: Journal of computational physics 375
(2018), pp. 1339–1364.

1/17

[LIGO & VIRGO C. 2016]

• Strong regime of General Relativity

• Properties of strong-interacting quantum matter

2/17

Neutron star mergers
SM matter

Phase transition early Universe
BSM matter

Strongly couple Quantum matter + Out of
Equilibrium

1.
2.

3/17

1.
2.
3.
4.

3/17

1.
2.
3.
4.

3/17

5/17

QFT in flat
spacetime

6/17

Boundary

Bulk

A
dS in 5D

7/17

Add temperature to
the QFT

Add a Black hole
with

7/17

Scalar field with
potential

Phase transitions

8/17

1. Construct different black brane solutions

2. Solve the EE+KG

3. Read off the thermodynamics as b.c.

8/17

8/17

8/17

9/17

??

12

Weights
Inputs

Bias

Activation

Output

10/17

10/17

10/17

• Use a NN for each unknown

function

• BC fulfilled by construction

• Train for different BC at once

• PINNs loss function is defined as

the residuals of the differential

equations.

[Dissanayake, M and
Phan-Thien, N. 1994]

[Lagaris et al. 1997]

[Chen et al. 2020]

11/17

Direct problem

12/17

Inverse problem
PINNs

12/17

Inverse problem
PINNs

Direct problem
Compare S(T)

13/17

Crossover Second Order First Order

14/17

Crossover Second Order First Order

15/17

Crossover Second Order First Order

16/17

Crossover
Second Order

First Order

