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LRKS AS UNIVERSAL

S WE HAVE SEEN THAT NEURAL NETWORKS CAN REPRESENT
COMPLEX FUNCTIONS, BUT ARE THERE LIMITATIONS ON
WHAT A NEURAL NETWORK CAN EXPRESS<¢

 FOR ANY CONTINUOUS FUNCTION F DEFINED ON A
BOUNDED DOMAIN, WE CAN FIND A NEURAL NETWORK
THAT APPROXIMATES F WITH AN ARBITRARY DEGREE OF

, , ACCURACY. . ,
One hidden layer is enough to represent an approximation of any function to an

arbitrary degree of accuracy.



WHY LAYERS?
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Neural networks ca}\% learn useful representations for the problem. This is another

reason why they can be so powerful!



IN EVERY CORNER OF SCIENCE, DYNAMICS AND RELATIONSHIPS ARE DESCRIBED WITH (PARTIAL)
DIFFERENTIAL EQUATIONS.

ONLY DATA SCIENCE/AI IS IGNORING THIS FACT.

QUANTUM MECHANICS: SCHRODINGER’S EQUATION
FLUIDS: NAVIER STOKES EQUATION
ELECTROMAGNETISM: MAXWELL'S EQUATIONS
GRAVITY: EINSTEIN'S EQUATIONS;

FINANCIAL MARKETS: BLACK SCHOLES EQUATION

EPIDEMIOLOGY: SIR (SUSCEPTIBLE, INFECTED, RECOVERED)



FORMULATION: ORDINARY DE (ODE)

Differential
operator: I /
: i
Yol T Dut k@) = ()
X l
1=1

The order of DE Is
determined by 4.
8; are the parameters
of the DE




FORMULATION: SYSTEM OF ODE
Du + h(x)g(w) = f(x)

/

Differential
operator is a
matrix:

g
2 % 70
=1




FORMULATION: PARTIAL DIFFERENTIAL EQUATION (PDE)

Du + h(x)g(u) = f(x)

Differential l \

operator:

KW
2 % dx®
=1




FORMULATION: SYSTEM OF PARTIAL DIFFERENTIAL
EQUATION (PDE)

Du+ h(x)g(u) = f(x)

/

Differential
operator:

NP0
2 % dx®
=1




FORMULATION: INITIAL AND BOUNDARY
CONDITIONS  Du+ h(x)g(u) = f(x)

Initial Conditions are referring to when x is fime, t:

u(x=t=0) =y

Boundary Condifions are referring to when x is anything else:

’LL(.X' — xo) = Uy Dirichlet boundary condition
du \ bound
- = Uy eumann boundary
dx

X=X,



NEURAL NETWORK EDITION



FORMALISM

X

DuMN + h(x)g(u¥V) = f(x)



FORMALISM

Rp = DuMN + h(x)g(u’V) — f(x)

Residuals
R =uM(t=0)—u

Loss function: L =R5+ Rs



FORMALISM X -

Rp = DuMN + h(x)g(uN) — f(x)

Rg =uN(t=0)—u

If we have solution
or measurements Rq = uMV(x4) — ud(x?)
we Include them

L=R:+ R+ RS

NN



FORMALISM
X

L=Rj+Rp

NN



FORMALISM

L=Rj+Rp

FiInd W that minimize the loss by backprop

W* = argmin L
74



FORMALISM

L=Rp+Rg
W* = argmin L
7%

Choose x € X and minimize the loss.

Choose xin , Or . Randomly works
better, eliminates frapped in frivial solutions. No meaning of
epochs here (infinite data set)



FORMULATION: EXAMPLES

Equation Class Order Linear
:c( )+ z(t) =0 ODE 1% Yes
t) +z(t) =0 ODE 2u Yes
i(t) + 2B (t) + w?z(t) + ¢x(t)® + ex(t)> =0 ODE 2™ No

Z(t) = —ty ODE 1 Yes
(t) =tz

Y
S(t) =-BIF)S(t)/N
I(t) =pI(t)S(t)/N —~I(t) ODE 13t No
R(t) =~I(t)

t(t) =pa

y(t) =

pz(t) =

py(t) =

POS  wuzp +uyy =22(y—1)(y — 2+ zy + 2)e” Y
HEA Ut = KUy

WAV Ut = CUgpy

BUR U + UUy — Vg, = 0

ACA Up — €Ugy — U+ ud =0




FORMULATION: EXAMPLES

—0.50  —0.25

(a) Damped Nonlinear Oscillator (NLO)

2.5 5.0

(c) Burgers’ Equation (BUR)

le++00
9e-01
8e-01
6e-01
5e-01
3e-01
2e-01
0e+00

(b) Coupled Oscillators (COO)

T

(d) Allen-Cahn Equation (ACA)




NEURODIFFGYM/NEURODIFFEQ

neurodiffeqis a package for solving differential equations with neural networks.

Github page: hitps://qithub.com/NeuroDiffGym/neurodiffeq

Extended documentation and examples: hitps://neurodiffeg.readthedocs.io/en/latest/intro.html

2 NeuroDiffGym / neurodiffeq - pubic
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https://github.com/NeuroDiffGym/neurodiffeq
https://neurodiffeq.readthedocs.io/en/latest/intro.html
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NEW WINDOWS TO THE UNIVERSE

RS . - Strong regime of General Relativity
\\ \\\\
X
| o R . P.a » Properties of strong-interacting quantum matter
> A <~
P N
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RELEVANT SCENARIOS

Neutron star mergers Phase transition early Universe
SM matter BSM matter

St I le Quant tfter + Out of
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OUTLINE

1. THINGS WE HAVE DONE THAT WORKED.
2. THINGS THAT WE WANT NOW TO EXPLORE.
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OUTLINE

1. HOLOGRAPHY IN A NUTSHELL: PRESENTING THE MODEL
2. PHYSICS INFORMED NEURAL NETWORKS (PINNS)

3. RESULTS

4. THINGS THAT WE WANT NOW TO EXPLORE

3/17



OUTLINE

1. HOLOGRAPHY IN A NUTSHELL: PRESENTING THE MODEL
2. PHYSICS INFORMED NEURAL NETWORKS (PINNS)

3. RESULTS

4. CONCLUSIONS AND FUTURE DIRECTIONS

3/17



HOLOGRAPHY IN A NUTSHELL

QFT in flat
spacetime




HOLOGRAPHY IN A NUTSHELL

Boundary

Bulk




HOLOGRAPHY IN A NUTSHELL

Add temperature to
the QFT

Add a Black hole
with TH =y




HOLOGRAPHY IN A NUTSHELL

Phase fransitions

Scalar field with
potential V(¢)




HOLOGRAPHY IN A NUTSHELL

1. Construct different black brane solutions

2. Solve the EE+KG

3. Read off the thermodynamics as b.c.
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HOLOGRAPHY IN A NUTSHELL




HOLOGRAPHY IN A NUTSHELL

S




HOLOGRAPHY IN A NUTSHELL

S
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HOLOGRAPHY IN A NUTSHELL

" USE NEURAL NETWORKS

_‘_____) T >




PHYSICS INFORMED NEURAL NETWORKS
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PHYSICS INFORMED NEURAL NETWORKS
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PHYSICS INFORMED NEURAL NETWORKS




PHYSICS INFORMED NEURAL NETWORKS

Use a NN for each unknown
function

BC fulfilled by consfruction
Train for different BC at once
PINNs loss function is defined as
the residuals of the differential

equations.
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RESULTS

Direct problem

——- ¢y=1.08
—= $y=5.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
¢
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RESULTS

Inverse problem
PINNs

——— ¢u=1.08
—= $u=5.00

0.00 0.25 0.50 0.75 1.00 1.25 150 1.75
¢

12/17



RESULTS

Inverse problem
PINNs

Direct problem
Compare S(T)

——— ¢u=1.08
—= $u=5.00

0.00 0.25 0.50 0.75 1.00 1.25 150 1.75
¢
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RESULTS

Crossover Second Order First Order
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RESULTS

—— Best run
== == Theory
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RESULTS

Crossover Second Order First Order

== == Theory
—— NN
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RESULTS

— ¢ =1.00,rms=1.05%
~== ¢y =1.08,rms=1.78%
—:= ¢y =5.00,rms=0.27%

| — ¢u=1.00,rms=024% First Order
~== ¢ =1.08,rms=0.41%

—— ¢u=5.00,rms=0.13%  Crossover

04 0.6 0.8 1.0 1.2

¢
B Vcheory(CD) — VPINN(¢) N Tinput(S) — TPINN(S) 1617
|5V(¢)‘ - V:cheory(gb) ‘6T(S>| - ﬂnput(s)



