


The Perceptron: first example of a neural network 
(in the 60s…totally useless)





• WE HAVE SEEN THAT NEURAL NETWORKS CAN REPRESENT 
COMPLEX  FUNCTIONS, BUT ARE THERE LIMITATIONS ON 
WHAT A NEURAL NETWORK CAN EXPRESS? 

• THEOREM: 

• FOR ANY CONTINUOUS FUNCTION F DEFINED ON A 
BOUNDED DOMAIN, WE CAN FIND A NEURAL NETWORK 
THAT APPROXIMATES F WITH AN ARBITRARY DEGREE OF 
ACCURACY. 

One hidden layer is enough to represent an approximation of any function to an 
arbitrary degree of accuracy.

So why deeper?



•

Neural networks can learn useful representations for the problem. This is another 
reason why they can be so powerful!



MOTIVATION
IN EVERY CORNER OF SCIENCE, DYNAMICS AND RELATIONSHIPS ARE DESCRIBED WITH (PARTIAL) 
DIFFERENTIAL EQUATIONS. 

ONLY DATA SCIENCE/AI IS IGNORING THIS FACT.  

HOLOGRAPHY ADS-CFT CORRESPONDENCE



𝐷𝑢 + ℎ 𝑥 𝑔(𝑢) = 𝑓 𝑥

Independent variable, 𝒙

Dependent variable, 
𝒖:

what we are looking 
for

Forcing function, 𝑓

Differential 
operator:

$
!"#

$

𝜃!
𝑑(!)

𝑑𝑥(!)

The order of DE is 
determined by k.	
𝜃!	are the parameters 
of the DE

Any function of 𝒖:
Special case linear 
DE 𝒈 𝒖 = 𝒖



𝐷𝒖 + 𝒉 𝑥 𝑔(𝒖) = 𝑓 𝑥

Differential 
operator is a 
matrix:

$
!"#

$

𝚯!
𝑑(!)

𝑑𝑥(!)

Dependent 
variables: 𝒖 ∈ 𝑹𝒎



𝐷𝑢 + ℎ 𝒙 𝑔(𝑢) = 𝑓 𝒙

Differential 
operator:

$
!"#

$

𝜃!
𝜕(!)

𝜕𝑥(!)

Independent variables, 𝒙 ∈ 𝑹𝐝



𝐷𝒖 + 𝒉 𝒙 𝑔(𝒖) = 𝑓 𝒙

Differential 
operator:

$
!"#

$

𝜃!
𝜕(!)

𝜕𝑥(!) Independent variables, 𝒙 ∈ 𝑹𝐝

Dependent 
variables: 𝒖 ∈ 𝑹𝒎



𝐷𝑢 + ℎ 𝑥 𝑔(𝑢) = 𝑓 𝑥

𝑢 𝑥 = 𝑡 = 0 = 𝑢!

Initial Conditions are referring to when 𝑥 is time, 𝑡:

Boundary Conditions are referring to when 𝑥 is anything else:

𝑢 𝑥 = 𝑥! = 𝑢" Dirichlet boundary condition

.
𝑑𝑢
𝑑𝑥 #$#!

= 𝑢" Neumann boundary condition



NEURAL NETWORK EDITION



Neural 
Network W𝑥 𝑢%%

𝐷𝒖𝑵𝑵 + 𝒉 𝒙 𝑔 𝒖𝑵𝑵 𝑓 𝒙=

How about 
this?



Neural 
Network W𝑥 𝑢%%

ℒ = ℛ'
( +ℛ)

(

ℛ' =

ℛ) = 𝑢%% t = 0 − 𝑢*
Residuals

Loss function:

𝐷𝒖𝑵𝑵 + 𝒉 𝒙 𝑔 𝒖𝑵𝑵 𝑓 𝒙−



Neural 
Network W𝑥 𝑢%%

ℒ = ℛ'
( +ℛ)

( +ℛ+
(

ℛ) = 𝑢%% t = 0 − 𝑢*
If we have solution 
or measurements 
we include them

ℛ" = 𝑢##(x") − 𝑢" 𝑥"

ℛ' = 𝑓 𝒙−𝐷𝒖𝑵𝑵 + 𝒉 𝒙 𝑔 𝒖𝑵𝑵



Neural 
Network W𝑥 𝑢%%

ℒ = ℛ'
( +ℛ)

(



𝑥 𝑢%%

ℒ = ℛ'
( +ℛ)

(

Find W that minimize the loss by backprop  

𝑊∗ = argmin
-

ℒ

Neural 
Network W



𝑥 𝑢%%

ℒ = ℛ'
( +ℛ)

(

𝑊∗ = argmin
-

ℒ

Choose x ∈ 𝑋 and minimize the loss. 

Choose	x	in regular intervals, or randomly. Randomly works 
better, eliminates trapped in trivial solutions. No meaning of 
epochs here (infinite data set)

Neural 
Network W







neurodiffeq is a package for solving differential equations with neural networks.

Github page: https://github.com/NeuroDiffGym/neurodiffeq

Extended documentation and examples: https://neurodiffeq.readthedocs.io/en/latest/intro.html

https://github.com/NeuroDiffGym/neurodiffeq
https://neurodiffeq.readthedocs.io/en/latest/intro.html
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[LIGO & VIRGO C. 2016]

• Strong regime of General Relativity

• Properties of strong-interacting quantum matter
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Neutron star mergers
SM matter

Phase transition early Universe
BSM matter

Strongly couple Quantum matter + Out of 
Equilibrium



1.
2.

3/17



1.
2.
3.
4.

3/17



1.
2.
3.
4.

3/17



5/17

QFT in flat 
spacetime
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Boundary

Bulk

A
dS in 5D
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Add temperature to 
the QFT

Add a Black hole 
with 
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Scalar field with
potential 

Phase transitions
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1. Construct different black brane solutions

2. Solve the EE+KG

3. Read off the thermodynamics as  b.c.
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??



12

Weights
Inputs

Bias

Activation

Output
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• Use a NN for each unknown 

function

• BC fulfilled by construction

• Train for different BC at once

• PINNs loss function is defined as 

the residuals of the differential 

equations.

[Dissanayake, M and 
Phan-Thien, N. 1994]

[Lagaris et al. 1997]

[Chen et al. 2020]
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Direct problem
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Inverse problem
PINNs
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Inverse problem
PINNs

Direct problem
Compare S(T)
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Crossover Second Order First Order
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Crossover Second Order First Order
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Crossover Second Order First Order



16/17

Crossover
Second Order

First Order


