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Lecture 3:  
Neutrino mass. 

Weak lensing and 3x2 cosmology. 



Overview of this lecture

•Aimed with the basics of P(k), plus BAO and RSD probes, 
and having discussed how they are sensitive to dark 
matter and dark energy - what next? 

•This lecture, we 1) review the physics in LSS of massive 
neutrinos, and 2) briefly review weak gravitational lensing 
(or “cosmic shear”)



Linear galaxy power spectrum 𝛥g2(k)

Δ2
g(k, a) ≡

k3Pg(k)
2π2

Principal sensitivity to cosmo parameters comes from: 

•growth function  (D is linear growth, g 
is growth suppression, i.e. value relative to EdS) 

•transfer function T(k) 

•(for non-Gaussianity only): galaxy bias b 

•[Also anisotropic power spectrum, not shown above, with 
RSD]
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Transfer function
BAOs barely visible

small-scale 
suppression 
in some DM 
models

Main feature 
is transition 
scale 
from RD to 
MD



Neutrino Mass



Neutrino basics

(Δm2)sol ≃ 8×10−5 eV2  

(Δm2)atm ≃ 3×10−3 eV2 

•Three neutrino flavors (e, mu, tau) 
•Definitely massive (neutrino oscillations detected) 

•  

•Cosmology largely sensitive to  
•Cosmological upper bound:  (or so) 

Ωνh2 =
∑i mν,i

94eV
,

∑ mν,i

∑ mν,i < 0.15 eV

From the oscillation constraints,

∑mi = 0.06 eV*  (normal)} ∑mi = 0.11 eV*  (inverted)
*(assuming m3=0)

vs.

we conclude:

So the goal is to  
1. distinguish ∑mi of 0.06 eV from 0.11 eV 
2. distinguish ∑mi of 0.06 eV from zero eV



Are neutrinos relativistic??
Well, it depends: they are relativistic at redshift higher than

znr ≃ 1890 ( mν

eV ) ≃ 100 for mν ≃ 0.05 eV

ρν(z ≫ znr) = Neff
7π2

120
T4

ν,0(1 + z)4

ρν(z ≪ znr) =
∑ mν

93 eV
3H2

0

8πG
(1 + z)3

scales like radiation

scales like matter

The neutrinos affect the expansion rate as 

H2(z) = H2
0 [Ωcb(1 + z)3 + Ωr(1 + z)4 + Ων

ρν(z)
ρν,0

+ Ωde
ρde(z)
ρde,0 ]

where



λFS ≃ 300 ( 1eV
mν ) Mpc; kFS ≡

2π
λFS

≃ 0.02 ( mν

1eV ) Mpc−1,

δP
P

≃ − 8fν

Neutrino free-streaming leaves 
signatures in P(k)



Neutrino masses: prospects

•Neutrino masses are in principle output of a standard 
P(k) full-shape analysis (with or without the RSD) 

•However, theoretically modeling the impact of neutrinos 
is famously challenging — need Nbody simulations, 
tricky to get sufficient precision 

•Recent progress appears to have largely solved the above 
challenge 

•Specific predictions of the effect of mν  on observables 
make these tests highly physics-y. Cosmology tests of mν: 
a great (and correspondingly cheap) complement to 
particle-physics experiments



Weak gravitational lensing



bending angle = 4GΜ/b
(point mass)

Strong (not weak!) gravitational lensing



ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Strong lensing: multiple images are formed



Image credit: Colombi & Mellier

Weak lensing: no multiple images



Weak Gravitational Lensing

Key advantage: measures distribution of matter, not light

Credit: NASA, ESA and  
R. Massey (Caltech)

http://www.lsst.org
http://www.lsst.org


Weak Grav. Lensing (a.k.a. “cosmic shear”) 
by large-scale structure

Credit: Colombi & Mellier

http://www.lsst.org


Weak Lensing and Dark Matter/Energy

• Probes integrated matter density; also sensitive to 
DM/DE through distance, volume factors

distance, 
volume factors 

(theory→DM,DE)

(dark) matter 
clustering 

(theory→DM,DE)

WL measures integral over the line of sight:

Pshear ≃

∫
∞

0

W (r)Pmatter(r)dr

galaxy shear 
clustering 
(measure)



More precisely: shear power spectrum

Pκ(ℓ) = ∫
∞

0
dz

W2(z)
r(z)2 H(z)

P( ℓ
r(z)

, z)
where k=l/r (Limber approximation).

With tomography (splitting into z bins)

Pκ
ij(ℓ) = ∫

∞

0
dz

Wi(z) Wj(z)
r(z)2 H(z)

P( ℓ
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Secco et al (2022)

Weak lensing from DES Y3 (4 tomographic bins)

ξij
±(θ) =

1
2π ∫

∞

0
Pκ

ij(ℓ)J0,4(ℓθ)ℓdℓ

In configuration space



Weak lensing summary:

•History: 
•Proposed in 1960s 
•First detected in year 2000 (four teams!) 
•New era with DES, KiDS, HSC 
•Bright future with LSST, Euclid, Roman 

•Pros: 
•Sensitive to ALL matter, including dark matter! 
•No bias! (recall Pg = b2Pm; measures Pm, not Pg) 
•Sensitive to both geometry (distances) and growth of 
structure 

•Cons: 
•Lots of systematics! atmospheric distortions and 
“rounding” of shapes; intrinsic alignments, etc etc.	 	



“3x2” cosmology

Can correlate: 
1. galaxy position with 

galaxy position (galaxy 
clustering) 

2. galaxy shape with 
galaxy shape (weak 
lensing) 

3. galaxy position with 
galaxy shape (galaxy-
galaxy lensing)

gg  gs
gs  ss[ [

g

s
(shear of

background galaxies;
5 redshift bins)

(positions of
foreground galaxies;

5 redshift bins)

“3x2 (point-function)” 
clustering measurements:

image: LSST science book 3x2 analysis
in a picture



3x2 cosmology
9

FIG. 5. Multi-probe
correlation matrix
for a joint data
vector of cosmic
shear, galaxy–galaxy
lensing, and galaxy
clustering including
the non-Gaussian
terms, with the
same ordering as the
data vector shown in
Fig. 3. The upper left
triangle shows the
correlation matrix
obtained from 1200
lognormal realiza-
tions (see Sect. III B
for details), the lower
right shows the cor-
relation matrix of the
non-Gaussian halo
model covariance
(see Sect. III A).
We recommend a
zoom factor of ∼ 5
to inspect structures
within the matrix.

A. Halo Model Covariances

The covariance of two angular two-point functions
Ξ,Θ ∈ {w, γt, ξ+, ξ−} is related to the covariance of the
angular power spectra by

Cov
(
Ξij(θ), Θkm(θ′)

)
=

∫
dl l

2π
Jn(Ξ)(lθ)

∫
dl′ l′

2π
Jn(Θ)(l

′θ′)
[
CovG

(
Cij

Θ (l), Ckm
Ξ (l′)

)
+CovNG

(
Cij

Θ (l), Ckm
Ξ (l′)

)]
,

(15)

with Cξ+ ≡ Cξ− ≡ Cκκ, Cγt ≡ Cδgκ and Cw ≡ Cδgδg
in the notation of Eqs. (5), and where the order of the
Bessel function is given by n = 0 for ξ+, w, n = 2
for γt, and n = 4 for ξ−. We calculate the covariance

of the angular power spectra Cov
(
Cij

Θ (l), Ckm
Ξ (l′)

)
as

the sum on Gaussian CovG and non-Gaussian covariance
CovNG, which includes super-sample variance [73], as de-
tailed in Krause and Eifler [21], using the halo model to
compute the higher-order matter correlation functions.
Equation 15 gives the covariance of two-point functions
at angles θ and θ′, and does not account for the finite
width of angular bins. In practice, the covariance of two-
point functions in angular bins is often evaluated at rep-
resentative angles for each bin, assuming that the covari-
ance varies only slowly across angular bins (called the

narrow-bin approximation). The harmonic transform of
the Gaussian contribution in Eq. (15) reduces to a sin-
gle integral as different harmonic modes are uncorrelated
in the Gaussian covariance approximation. In the eval-
uation of the Gaussian covariance we split off the pure
white noise terms and transform these terms analytically
[68].

B. Covariance Validation

Most analytic models for the covariance of two-point
functions in configuration space are assume the narrow-
bin approximation, and that the maximum angular
scales are much smaller than the survey diameter [e.g.
67, 74, 75]. In the context of harmonic space correla-

Krause, Eifler et al (2017)  
[3x3 Cov for DES]

Covariance is non-trivial to calculate…

shear (WL) gal-gal lensing gal clust



DES Y3 constraints from 3x2 cosmology:

Abbott et al, 2022

Galaxy clustering
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DES Y3 constraints from 3x2 cosmology:

Abbott et al, 2022
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DES Y3 constraints from 3x2 cosmology:

Abbott et al, 2022

Galaxy-shear cross-corr
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DES Y3 constraints from 3x2 cosmology:

Abbott et al, 2022
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Yes, it’s a bit messy, and shapes of galaxies are hard 
to measure, but:  

No dependence on galaxy bias:  

 

makes it a powerful probe of DM and DE. 

Principal upcoming surveys with weak lensing: 
Euclid; LSST on Rubin Observatory; Nancy Roman 
Space Telescope.

Pshear ≃

∫
∞

0

W (r)Pmatter(r)dr

Weak lensing (“cosmic shear”) summary


