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Notes for the mini course in Bucharest

This minicourse is supposed to be about contact geometry ,
which is a part of classical differential geometry. It is

a very down to Earth" subject at least in mathematical context. Contact structure is a typical example ofa

geometric structure
,
which usually consists of a manifold together withcome distinguished tensor field

e
.g.
Riemannian manifold ,

Poisson manifold or a manifold with some operations as a Lie group or

a die groupid. This time we call study a manifold together with a distinguished distribution
of a special kind

Before we give a formal definition ,
let us look at few canonical examples of a contact manifold :

s Let us take
any manifold Q and consider functions on Q as section of the trivial bundle pr QXIR-Q

First jet ofluch section at point qeQ consists of the differential of(q) and value f(q) .
In another

words31(QXIR) = T* Q IR .
It is again a bundle over a with the distinguished set of sections being

prolongation of functions ,
i. e. sections of the form q < (af(q) · f(q) .

Let I denote the distribution

spanned by vectors tapeut to graphs of prolongations. Let us use cordinates to see what kind of
rectors they are and what distribution they span. In T*QXIR we will use coordinates (qPj , 2) . Yet of a

function (q7+f(q") is given by

Gil So , G , fail) the liting from a to TQXID Weputpinj ↑ jchangingke it arbitrary
summarizing ,

2 = (e + Pic , c 7

X = (p , z) dim Ex = 2n (dimQ = m)
dim T

*QXIR = 2n + 1

As for the properties of 2,
let us note that TopicE] =- # 2 therefore I is not involutive

,

as a matter of fact it is the
very opposite of involtive

,
but this is something we will discuss in a while,

Before we pass to the second example ,
let us notice that 2 =

Kerry for ye(M) y = pida" - dz.

TheformisgloballydefineMOfcourse yotheron formfo everywhere



This means that
y

= O-dz is not only globally defined, but in this case
,

also distinguished.

2 The second example is in some sense simmilar to the first one : it is also about the

Lets of some sections
,
but there is one very important difference with respect to the first example.

Let B denote the Mobine band with the infinite ,
vertical direction" in a sense that B = 1RY/ where

& acts on IR2 according to the formula
k . (x , y) = (x +2

, (i) action is linear in y

The linearity of action in the second argument means that B < St is a vector (live) bundle. Probably
everybody knows that B as a manifold is not orientable. Again we consider M = >1(B) 1.

.
2

. jets
of sections. In cordinates then it will all look like in the first example , namely if (q , 2) are wording

tes in B and (9 , p, 2) are coordinates in J' then

2 =< +P dim 2x = 2 dim M =3.

To see the difference between this example and the previous one
,
let us go deeper into the structure.

The Mobius band B can be described by tro coordinate domains together with appropriate transition

maps. The same we can say about J1B. Pictures are about B
,
but we think about 71B.

q
=π &

8 * ⑫ U

- - T-
I

q= 2π

i "
dat I# · F

(r,p, 2) qeJ0,it Onl = Ev (qp, 2) geji, sit

2= (q +p In E In F 2= ( +peq=q , p =

p ,
z=z q = q+ 2 p= -pz= - z

In A the transformation In B the transformation

is identity so of course a +P= +pa + P= + (-P)() =-
is not identity but still

I is well defined I (given in coordinates) is

e = a +P = (+ ) = L+P > well defined



& Using coordinates we care write one forms as in exaccepte 1. In O we have Mp
= d2-poli,

-
inI we have Mu = dz-pldq. Using coordinate transformation we get that on On

El we can write

im E : Me = Yo but in F:

Mn=0 Yu
= d2- pdd = - dz +poq

10 = 02-poq
Since both forms aremouvanishing and have the came keomes they have to differ by

multiplication by non-vanishing function. This function must be 1 on E and-1 or F
,

Moreover J'B is

connected
.
Smooth function that has value 1 at some point and -1 or another point has to assume value O

somewhere on the
way

We have thererefore reached a contradiction.

The conclusion is that the distribution I is well defined on the whole JB
,
but it is not the kee of any

globally defined one form.

3 The third example,
or rather class of examples is IPT* Q

,
i
. e. projectivized cotangent bundle. Let us first take

Q = IR
, for simplicity -

M = ( T *1)
*

/ = 1 x (" 503)/1 where 19 . P; ) ~ (q.XP;) for some X + 0.

Now we will define I on M using local contact forms : Let UpcM denote an open subset of M given by
the following condition

Up = [[(giP; )] : PrtO3 < M We have of course U = M
.

In UK we can introduce lock

wordinates (g ... T ... int) where)[(p() = qe([(qP1)= In these coordinates

we define I

=dag On MyMe we have PrtO and pe
= 0. The coordinate change

in part I
"

reads

j itthis form does not i = b

vanish on UK

==d
i =1

add here removing itl



We have gotM on Me where 0. Forms and have the soce kernel. Globallytyo

define a distribution of dimension In2 at each point of the manifold M of dimension In-1. This distribution
is another example of a contact distribution.
The same can be done for any manifolda replacing IR"

,
i. e. we can have M=T*Q =(*)Y

For the low dimensional example we can take Q = s? Then every fiber of
the projectivized tangent

bundle is a circle. We have then the budle of circles over so
.
It will be our task for the tutorial to

show that in fact

Todwhat weget leve is a contact structure on the total spacea

We have seen three examples of the pair (M, 2). Each time we had a manifold of od dimension

and a distribution of codimention one i.
.
e. in particular of even dimension. At least in two first

cases we have checked that this distribution was not integrable .

We did not check it in the third

example ,
but the situation is the same

. In one of the examples we have checked that the distribution cannot

be described as the kermel of a global one-form .
Local one forms with this property of course always

exist.

Now is the time for the definition of a contact structure

DEFINITION : A manifold M together with a regular distribution 2 of colimension 1 which is

ximallynon-integrable is called a contact manifold.

↓
maximal non-integrability is in some sense the oposite of integrability.

Our distribution I is of
codimension I

, therefore taking the quotient TM/C we obtain one dimensional vector bundle over M

(vector bundles with one dimensional fibers will be called line bundles). Let us denote by g
: TM <TM/

the projection associated to taking the quotient. Now I can define the following map :

v : 2 x 2 < TM/c UCGN) = g) [V, WJGN) where V and Wave any vector fields with
M

values in 2 and such that V(t() = 0,
W([(w)) = w



Let us first check that the definition does not depend on the choice of vector fields V and W
, provided

they have correct values- andw
.
For fe2M) we calculate

g) [V · fw]) = g(f [V,
w] + v (f)W)ffg)[v,w]) + V(f)y(w) = f g([v, w])

-

& is linear = O because W is in 2

The above calculationchows that g([v, w]) depends only on values of V and W at the point of M
-

no derivatives

involved. The map r is then an antisymmetric two-form on 2 with vedor values
·

Maximal Movintegra-
bility condition means that this form ismondegenerate. Note

,
that since it is a two-form , mondegeneracy

means that I must be of even dimension. This in turn means that M itself must be of old dimension.

contact forms : we have already stated that locally every contact distribution is given as a kernel of
some contact form . Sometimes this contact form can be globally defined ,

but even in those cases it is

not unique because multiplying it by a monvanishing function gives another, equally good contact

form. Nevertheless contact forms are very usefull
in practice ,

so let us look at their properties.

DEAO (catmonifoldAny locally defined one form on M uto the

Contact forms are obviously non-vanishing ,
since at each point the keine is supposed to be 2n-dimen-

sional. The condition of maximal monintegrability of 2 is expressed as follows

(x)y + (dy) = O which means that it is a volume form on the domain of y .
We can see now

that indeed o may
not be global : if M is not orientable then we do not have

a global volume form defined on it. The above condition means that dy is mondegenerate on

2
.
Let us now assume for a while that we have chosen an you some open

OcM
.
It spaces

an anihilator 2 ° T*M that can be viewed as a dual vector budle of TM/2 ·
Weleave there a

local section of 2% Using this section we define a two form on 2 by the following formula
exec(t, w)1 < <M , U) N)) @IR

On the other hand let us take any
V

,
WeSec(2) as previously ,

while defining y ,
and calculate

O

dy (V,w) = V< - <y ,
[V

,
W]) = <

y , r15,w1) up to a high by concedes with 5 where we



Trivialize both 20 and TM/2 using y - One care the see that the condition of maximal monintegrability
coincides with the condition of dy being mondegenerate on e which cau encoded indeed in ( *)

There are several useful motionsrelated to contact gamely that are traditionally defined in the language
of contact forms. Before we discuss ther wechoud probably write one important theorem

THEREM (abou thoveforcutformbeautform. Forevery pointxeM
Heits

As a consequence ,
there is also a normal form of a contact distribution

,
which in Darboux coordinates is

given as

2= + Piz, ) i
. e .

as on jet space.

Once we have a contact form we can define a Reeb retor field Ry .

It is uniquely defined by the following
two conditions

Rydy = O Ry = 1.
.

It is
every to see that in Dauboux coordinates Ry=

Using y and dy we can also define contact lamillarian rector fields ,
i. e. associate a vector field to

every
function on M: For

y defined on OCM and for He CO(0) we have XM = X (0) Lum that

XuJy = - lXu) dy = dl - Ry(H)y
An important property of a synptedic Mamiltonian vector field is that it preserves the structure it comes from
Let us then calculate Ex to see how things look in our case

xy = diy + i dy = - dll + dll-Ry(l)y = -R(ly
Contact Marilloman vector field does not conserve the contact form ,

however the change is proportional
to the contact form .

This shows that the such a field conserves the contact distribution

YeSec(e) ExY = [xn .
1] <Sec(2)

-> Y(H)
O

dy (xx . Y) = Xx(44) - Y<y , (a) - y([xm , Y]) = O

Il *M) = xxee) - <y , [xm , 4])

<dl
, 47

- R
y
(e)<4)



The problems we have with the definition of a contact Mamiltonian recor fields are the following :

I this definition is local ! What if
,

there are no global contact forms ? Call we have global contact rector

fields ? (YES!/

2 Do we get thecame recor field if we keep the homistonian and change y ? (No!) what
is the relation between Hamiltonians and vector fields with different contact forms ?

3 We have checked that EXY #0 ,
but Xe Preserves 2 . Since contact Hamillonian vector

fields are symmetries of the contact distribution and not contact form weshold be

able to define them comehow without many any contact forms. Com we do this ! (YES
!

)

The way to address these problems will be to look at there from a totally different point of view. To this

end I will introduce now a new concept and point out its relation to contact geometry.

DEFIN LedemultiplicativegroupofMoreove,pei
form defined on a total space of the total space of the bundle

POIRY M : R* P , P h P , P wer(P) w is mondegenerate and closed
Notation : TV

M h(t
,
h(s

, p))
=h(ts

,p)hhj = hts how = tw w is homogeneous of
order 1.

Example : We have seen our example of contact manifold being a projective cotaugent bundle. Our

associated example of a symplectic principal budle would be (T*Q) * =(T* Q) [0(Q1] i. e.

a cotrugent budle with zero section removed as a bundle over the projective cotaugent brudle.

As R* action we take just multiplication by non-zero reals. We can easily check that wa is

homogeneous :

+* Wa = d(tpi)1aqi = tdpindq" = twa

Looking at this example you probably can quen what to expect
- a sympleatic principal bundle structure

on P induces a contact structure on the base manifold. There is more -

every contact structure in

a sense (M , 2) has a symplectic principal budle associated.
It appears that they are in fact

equivalent motions! We will study this correspondence now.



Every contact (M, 2) defines (P, M,
T

,
h

, w)
The symplectic principal .

bundle corresponding to a given contact (M, 2) can be built with the ingredients
we already used. Let there M be of dimension 2n +1 and then 2 is of rank 2n. As previously we

consider 20 and denote P = (2% which is an anihilator of 2 with removed zero section.

It is acbmanifold of T*M ,
as a budle over M it is of rank one

,
as a submanifold it is of

dimension 2n + 2.
.

It is also invariant with respect to multiplication by non-zero real numbers

elements of P awe covectors
, therefore they can be mutiplied by numbers.

P= (2)x mutiplication. The element we do not have yet is a sympledic structure.->
PPIR* of To this end we have the following proposition :

↓
covectors

PROPOSITION : Pis a symplectic submanfold of of T * M.

πm/p M
PROOF : Restriction of On to P call be vieved as a pull-back
by the inclusion. Moreover

, locally we can choose a contact

form y and trivialize P over some open subset O of M.

We have thenIg : OxR = (x
,
s)1 < SyEPCT

*
M

.

Let us exacie Fy
*
Wh :

Mudegeneral we calculate

(wy(1n
+1

= (dsny + say)n
+ 1

= asny1(sdy)m
+

2(y)vn+= 3dsdy)1 + 0

= 8 -O because y
is contact.

We conclude that Wy is a symplecc form on OxIR"
.
It is a local expression of Wup inatrivialization providedby

y
.
This finishes the proof and the whole construction.

NoteHatit gistoundePeta



Every (P, M,
T

,
h

, w) defines (M ,
2)

Now we mas go the
other way round and look for a corn.structure associated to a given RY sympledic principal↓

bunolle.

Let D be a vertical vector field

D(p)= Ms(p)=help
Dis invariant with respect to h : D(h(p)=Ms (h(p))=hhs(p) =The

PROPOSITION W= do
,
i

. e. W is exactjoinhomogene
a

Proof We know that wis hourogeneous ,
which means hist=su Iph = w

homogeneous
w= ty = (i) +i = d(0) =

Now let us choose a local section of PF<M. It provides P with a localtrivialization ["(2) = ux1R
+

and a local vertical coordinates . Wing this cordinate we can write
-"(x) P *(p) =& .

We can also define a one form 0/S. Since O is homogeneous

Fit
...

we know that Ols is invariant
.
It means that it is a pull-back of some one form

from the base :

10 = = *

y , y +e(u)
-------

I o I Proposition y is a local contact form.
PROOF :

① M giveslocalrivialization
of P : :x(sx)l(l

Fr
* (w) = Ic

*(d() = d(sy) = asny + say
Now we use the mondegeneracy augument the other way round

:
wr(n+)

#O because wis symplectic. If is a differ
morphism therefore Of(dsy + say)

~In+ 1)
= Sudd therefore y

is a contact form.



Our comidateforisnow Kerry ,
but tobe sure that we have a well defined global distributiona

PROPOSITION : Let
y, be defined as above with the use of a section 5 Kerry does not depend

on the choice of T.

PROOF : Let us examine the difference between ur and yo. We have

-"(x) P [
*

y
= 10 =

*

+
= 50 and < (x) = f(x) +(*) for come monvanishing

# /function I defined on the intersection

of the domains ofa and+
S(p) = f(t(p))s'(p)

j-
- - - - - - -

- - Since 50=0=15,0 we have that yo:y+ or Fy =

Mr. It is then

clead that both forms define the came distribution 2
. I

① M

We can look at 2 as a projection of the Kernel of 0.

It contains a vertical direction i.
.
e. <T(P)) ,

moreover
,

since

O is homogeneous ,
the Kernel is invariant

.

It can then be projected to a constant rank distribution on

M. The fact that this distribution is contact follows from the local considerations above.

For the completness of our presentation weshould nat look for the I symplectic principal bundle in our

examples .
We have seem already that in Example 3 We have just P=(T*Q) over M = (T**)

*

/2. Both other

examples wethall treat together by showing that there is a comonical contact structure on the total space
of a first jet budle of a live bundle. Examples 1 and 2 both belong to this category.

32*

Let now g
:L -> M denote a live bundle

,
which is a rank one vector bundle over a manifold M. By L *

we shall denote

the dual line bundle and by 1- 1 with zero section removed. Note that is an IR* principal bundle
with respect to multiplication by reals "borrowed" from the underlying rector bundle.

-

...
-



Our main object of interest will now be T** We will show that it is a principal IR
*

symplectic bundle with~

the underlying contact geomely being that of J1L*. To clarify matters we shall need local coordinates.

Let then (xt) be adapted coordinates on L with t being a fibre linear coordinate. The same coordinates

can be used in with the condition to. Then we proceed with constructing coordinates (xt, xi , t)
in Th

. If we remove zero section from L we obtain
,
instead of a line bundle

, an IR principal bundle
with an action denoted by My ,

sto

(xi
, t)0kj = (xi , st)

This action can be lifted to TLY and T* LX. The lift to TL is just a target map :

(xit
,
xi

, E)0Ths = (xi
,
st

, xist)
since hy is a diffeomorphism ,

we can consider T*h
,

as a map. The adapted coordinates on T** are

(x * t, Pj , 2) .

We have then

(xt , Pjz)oTths = (x", t, pj , 52) and for 1 (xit, Pj, 2) T
*

h
= (xist

, Pi . 2)
The action we shall actually need is T*h composed with multiplication by s in the bandle T***.

The resulting map will be denoted by dyxMs

(xYt , pj, z)0 . d
+ hs

= (xi , st
, spi ,z)(d++h) = ST*

ht
We have now the action dith on T**

.

We can easily check
,
that the canonical symplectic form w which is there

,
because

it is a cotangent bundle is actualy hourogeneous with respect to this action. The easiest way is to check it in conimates :

Wx = dpjndq" + dandt (d+hs)
*

(x
= d(spi)-dq" + dz1d(st) = s(dpinda" + dzndt) = Swi

The same thing may of course be done globally : we can use the definition of the Lionville form B and show that

it is homogeneous. Then wa = dRX is also homogeneous. Now we have the following ingredients :

(T** ?, ?, oth ,wit the homogenes sympledic form What is missing is a base manifold and projection .

y ↑ Since the title of this paragraph is J*
we chal

the total space
the IR* action now argue that

of a bundle
T* [Y *

=J



PROPOSITION : T* L*

/R * =L
*

Let us consider the natural correspondence between sections of L
*
and homogeneous functions on L :

ON L* ON L* AND T* L *

L* To every (local) section of L *
->M there correspons a homogeneous

ijr function fr om L
*

M
fr(e) = ( + ( + + (e)) , e)

J'L*: If the two sectionsis , a have

the came jet at xeM it Taly) = x (y) Ta(y) f -(e) = <Tz(y) ,
e) = <x(y)a(y) ,e) = x(y)fr(e)

means that they differ by
multiplication by a function fre = Xfra
X : M > R such that dx(x) = 0,

X(x) = 1 For
any I over we get

jtTf(x) = juE(x)()Tz(y) = x(y)ta(y) offr
,
(e) = of(xfr)(x) = fr(e)+ (e) = of()

for y around

Moreover ohs(offf(es) = off (bs(es) which means that

(2) every homogeneous function corresponds there is a map from 31 * to**/.
to some section --

This map is one-to-one
,

because (1) every covector at T** is a

differential of a homogeneous function :

x(x
, to) = didx" + adtf(xit) = t((xi-x) + x)

↳ Y
g

& (xo ,
to) = of (Xo , to)

I



CONTACT HAMILTONIAN MECHANICS

The idea of using contact structure in mechanics goes back
to Gustav Hergloz (1881-1953) and was recently extensively

developed by theSpanish geonemic mechanics group. It was devised to deal with dissipative systems which des

not fit into the scheme of symplectic mechanics where a Hamiltonian is allways construct on hajectories,
therefore , if lamitorian represents the energy ,

there cannot be any dissipation. On the other hand,
Hamiltonian mechanics have

many advantages : the fact that a certain differential equation has
symplectic Mamiltonian origin allows for gaining some knowledge about the solutions even if we are

not able to solve the equations explicitly. One may also use the so called synpedic integrators to

numerically solve equations with bounded numerical error even in long time solutions.
The idea of looking for another geometric structure that can be appropriate for wider class of system is not so

stupiol then
,

even if in principle we came write down equations using the concept of an external force.

As we have mentioned before ,
contact Hamiltonian mechanics is expressed in teams of contact forms

and Reed vector fields. Let us spell out the equations and properties once more and then
,

as usual
,
look

for probleces :

Let (M, 2) be a contact Manifold with a contact form y .

We can then define a Reel Vector field Ry
associated tom by the following conditions :

RyJdy = 0
, Rydy = 1

.

As
you causes Reel recor field does not belong to 2.

.

The definition strongly
depends on

y . One can ever find ,
that for every rector Jetm , if2

we can find a local contact form y such that Ryk = 0
. Changing 7

means dramatically changing the Reeb vector field. If we use Dawboux cordinates for y ,
i. e

. y = 02-pidg"

then R we can define the Hamiltonian recor field for every sooth function Mon M :

U : M < R
, XeX(n) : Xisay = dl-RyCH)y Xisy = -H

Let us calculate the Manitorian contact vector field X for a given Hamiltonian function in Darbox
coordinates :

y
= dz-pida , R=, Miz) X=D



y
= dz-pida , R=, Miz) X=D

dy = dqindp ; Xu y
= D -pit" = -l

* Jay = Adp-Bjdg=dpd-pd
Ai= B +pD =p =U

xi +(p -u)
g
=

As we care see
,

ifI does not depend on z
,

we get usual Hamilton 2 =pi -U
equations forqand p plus something we can solve for
z provided the previous two are solved.

For M = T*QXIR this

gives a resonable generalization of the symplectic case. In this case we have the projection from
M to T* Q

, therefore we can get back the physical dynamics once we have solved the equations.
Real mechanical applications always live on T*QXIR

,
at least to my knowledge . Since

y
is in this

case global ,
then also Xi is global . In general however we have the following problems with Hamillo-

niau contact dynamics :

(1) Manitorian contact recor fields are local (as defined here) (2) There is difficult relationship between
Hamiltoniances and rector fields : if we want to keep the field fixed but change the form by metiplying
it by a nonvanishing function , we have to multiply the Hamiltonian by the same function. It may
not be seem as aprobes but (2a) on non-orientable manifolds there may not be a global hamilto
viau for a given recor field that is locally Hamiltonian (26) Try to prove (2) by direct calculations

and you will be buried under cheets of paper. This is because the nice formula we have forI depend
on Darbax coordinates. If we change y ,

we have to change coordinates and everything gets messy. We
cal avoid using coordinates and do it , but still in traditional language it is an unpleasant job that

you
would rather delegate to students then do by yourself. (3) From the point of view of numerical methods

this whole job of contact Mamitarian mechanics does not seem useful , because neither Hamiltonian
nor contact form are not conserved along the trajectory , therefore on the first right we have nothing
to build our geometric integrator on

.

Geometric integrators are usually based on the idea that some

grometric structure do not change along thesolution. (4) Contact Mamiltonian recor fields do
preserve



do preserve a contact structure
,

which can be seem in the following way
: locally 2 =

Kery .
Let us then take

YeSec(Y)
,

then <y,
4) = 0 therefore Ex <g, 7) = 0

0 = Ex (y ,7)=y ,
3) + <y , [x ,

Y]) = <y ,
[

,
y]) = [x ,

43c2

-y4 = 0

This shows that contact Marittonian recor fields are proper symmetries of the contact structure therefore there would be

a possibility to queserate them somehow using global objects related to 2
.

We shall now approach contact hamat

torian vector fields from the point of view of principal symplectic IR *-bundles.

Since (P, w) is a sympletic manifold there is there of course the procedure of generaling Hamiltonian rector fields
there

.
The point is now to use homogeneous Hamiltonians.

D
H : P < IR homogeneous ,

which means U(h(p) = sM(p)
T

* P > TP

di

7

Yo

7

jw(Xy .. ) = ol Hamitorian vector fields for homogenedes Hamiltonians
V

are invariant with resped to hy , therefore they are projectable
P it homogeneous homogenedes on M

.

Let us check how they are related to Namil-

invaciaut
,

i . e. projectable tonian contact vector fields on M.

T
V Xi ~

M >TM

For that we need a picture we have already had ,
which is a local section- of P and the #associated vertical coordinates

.
We then know that the symplectic form w can be

expressed as

w= dsey + say 101
Any homogeneous Hamiltonian can then be written as M(s ,x) = SH(x) for H() =M(5()·
Let us now look for Xp in this setting :

· M

all = H(x)ds + soH(x) = w(Xu , )
=

Th is invariant
, therefore it is of the form Xq = SF(x)2 + Y(x)

1 as 1

a function on M
S la vector field on M



dM = H(x)ds + SPH = w(M
+ i)

=

SF(x)y
-

<y ,
y)ds + siydy = -

<y ,
Y)ds + s)F(x)y + iydy)

comparing terms with the same colour we get the following <yY)
= - H

, jjoy = PH-F(x)y .

Function F can be

found by contracting both sides with Reel Vector field Ry :

dyRy) =

Ry(H)-AC)YRg = F = RH
Summarizing,

conditions for Yare <y,
4) = -H

, iysdy = dH-RH)y
whichquepreciselythe cuitousfor thecutefieldforMiltoniandefinedforthefora
miltonians. In terms of doing numerical calculation it is a very good message

- it means that we have to transform
the contact Hamiltonian problem to a symplectic one

, upstairs" ,
solve the equation using our favorite symplectic

integrators and there just forget the unnecessary part of thesolution. There are also warp
to write this problem in a

variational way and use variational integrators .

Let us now speed a few moments on the subject of generaling
objects of contact Hamiltonian rector fields.

If we are happy enough with a function which is defined on an-principal bundle as a generating object for a hamitorian contact recor

field we may leave it at that. For the purposes of building a Lagrangian approach to contact dynamics we might want to know a genera-

tiny object which
,
lives" down on the contact manifold itself. We have already discussed the passage from line bundles to

principal bundles that was the following
L

starting from a live bunde -y we build an IRX-principal bundle by removing the zero section : P
.

We need also the deal bundle
M M

because then we can have a correspondence between homogeneous functions on P= L
-

and sections of L*
>M. Our generating object for

for a Hamiltonian contact verlor field would then be a section of the appropriate live bundle .
It would be the useful to

know how to build this bundle
, provided we know p

,
i. e., how to stick in the missing zero. The answer is relatively simple :

one has to use the associated budle construction :

From P--M we pass to Lp = PX/pX using the following action s . (p , r) = (h,(p) , 5) .
The dual Lp

*
can also be vived

as an associated bundle by the action sp, 2) = (hs(p) , S2) .

There is a canonical identification of Lp
*

with P.

The image of the zero section is composed ·of equivalence classes of the form [Cp, 0] = <(p,0) : <(p) =(p)].
In each equivalence class different from the zero section there is a representative with second element equal to 1.

T

We have then the map P-p1 > [p , 1)]elp. The action of IRT on (p
- reads S . [Spin)] = [Chs(p) , r)] = [p ,

SN)]·
Let now piq be elements of P over the same point xeM . Then there exists so such that p = hs(q) .

The evaluation between

[(p , r)] and [(Q,2)] reads then :

< [(9 ,
2)]

, [(p, r)]) = INSo

= (g) WELL DEFI

-

S



<[(q ,2)]
, s[(p , r1]) = < [( , 21]

, [(p, srl]) = zsNso = S(zeso).

EXAMPLE : Let us now analyze the passage from homogeneous Hamiltonian and its recor field and a contact Maritanian

and a contact Hamiltonian vector field in case of a mechanical example ,
i
. e. M = 11* or even more precisely

M = T*

QX ,
which is alway a local picture of wax

T
*
P > TP The general picture, specified for 3* is the

T* T** > TTX

7 1 7

del
7

Xe
following. dA

V

Xa
~

V We shall work with the assumption that
T* LX

P L = QXIR .

In the following we shall introduce

coordinates
,
IR* action and all the elements ~

V

i V of the structure :

71*
Xi

>Tjx> TM

L = QX(q =, t)(" = M + 1
* (q", t) + +0

(* = qx12
* (qi , z)

T+ x = T* (Q + 1
*) = T*Qx1

*
- 1

* (q5j , t
,z)(x = dandj + dt1dz = dqd(tpi) + at 1dz =

(qi , t)0hj = (gi , st)
= dgin (pidt + tapi) + at 1dz =

(q
, 5j ,

t
, z) o d

+xhs = (qi, S5j , st
, z)

=

atr(pid)+
31(* = +* QX1(qi , Pjz)

projection T** <J*
reads in coordinates (a Piz)ot = (q , 2)

The relation between the homogeneous
Namitarian and the Hamiltonian

On M :

XPj

OUT*Q*IR X=(
M(q ,

T
, jj , z) = H(q , z)
t On T X=(T+ (x = T * QX 1

* x IR T+ QXIR



There are two practical examples we may want to play with :

PRACTICAL EXAMPLE : VISCOSITY FORCE PRACTICAL EXAMPLE : PARACHUTE EQUATION

y =(p -Uz)
M= T*

QX1Ry = dz - GaH(p ,
z) = Ho(p) - xz

p= - "
== (p - uz) -
-Xi > L(y , j) = mij + Vjz -V(y)

i = S ij -Umi+ g = 0

pj= + Xpj

z = pito-Ho
The Herglo Lagrangian M(y ,Pi)=(p-rz) + V(y) Vy)= (euy-1)

um

Lo

Gustav Hergla
1881 - 1953



CONTACT HAMILTON-JACOBI THEORY

Hamilton-Jacobi equation is a classical part of symplectic mechanics. Before we pass to the contact case
,
I would

like us to review the symplectic version from the geometric point of view. We may look at the relation between a

Mauritan-Jacobi equation and a Maritan equation in two warp : 1 We may want to solve a partial differential equation
of the first order by means of a certain ordinary differential equation on the other

way
round :2 we may want to

solve a difficult ordinary differential equation using possibly simpler partial differential equation. Disregarding
technical difficulty for a while

,
wechall look at the gamely of both problems.

1 From a PDE to a lamiltonian ODE

Using a symplectic structure we can deal with a special kind of a partial differential equations of a first order-namely
those that do not involve values of unknown function. In traditional notation such a PDE for one function n of

several variables (q ... q") can be written as F(qi, Mil = 0 where midenotes a partial derivative enlagi. In more

geometric language we would understand this equation as a condition for the differential of a function .

This came be formulated for any manifold Q.
.

We define a submanifold KCT* Q by the condition K = F"(d)

for a certain F : T*Q < IR and say
that ne21(a) is asolution of the equation if at each point du(q)K.

Note that K
,

as a lubmanifold of codimension 1 (there are conditions for A of course) is a coisotropic submanifold
of T*Q.

.
This means that it couvier a one-dimensional dravacteristic distribution

.

Characteristic distributions of cisotropic
submanifolds are involutive

. Here it is of course automatic since the distribution is one dimensional
.

This means that K

foliated by one dimensional momanifolds called characteristics. The characteristic distribution is spanned by the Mamil-

tonian vector field XF of a function defining K
.

Now
, if u is a solution of the equation then the image du (a)

is a submanifold in K .
Moreover ,

it is a Lagrangian submanifold of T*Q
, therefore it must be composed of

leaves of the characteristic foliation. Assuming we can find the trajectories of XF we may solve the PDE in the

following way :

Our boundary conditionsshould consists of value of n on alubmanifold NCQ of

codimension 1 and a value of differentials at points of J. Then werau

calculate characteristics starting from boundary values and get the

so itsean a

-



2. From Hamitorian ODE to PDE.

Now we are looking for the solutions of Hamiltonian equations for a given Hamiltonian M : T *Q <IR
.

Let us

assume that we can find a solution of the Maison-Jacobi equation ll(dS) = E
.

In coordinates we have

U(q) = E
.

The image dS(Q) is a Lagrangian submanifold contained in a coisdropic submanifold "(E)
In particular the Mamitranian vector field is targent to dS(Q) . Knowing as we can consider a vector field

Xp defined on Q and succe that it isds-related with Xp ,
:

. e.

Tas(Xa(q) = Xu(dS(q) This way we have to integrate a rector field XQ with half the variables we

initially had
.

Thesolutions may then be lifted to T* Q by means of aS.

Both procedures are based on symplectic Hamitan-Jacobi theorem that can be formulated as follows :

THEOREM Let (P
, w) be a sympledic manifold I: P > R be a sudh function and LCP be a Lagrangian

submanifold .

Then Xa is tangent to L if and only if His (locally) constant on L

The procedures 1. anda from the Hamilton- Jacobi story are just dever applications of this quite simple symplectic theorem.

The symplectic constructions repeated above may be generalized to the case where our partial differential equation depends on values of
function. The equation itself is then a cubmanifold in 11(QXIR) = T*QXIR

, usually given as a level set of some function. In coordinates

or just in case we have a =~ we have F(q,
u

, uj) = 0 .

T*QXR is a contact manifold with global contact form .

The whole

isotropic, coisotropic and Lagrangiam submanifold business can be queralized to the contact context. For example we would call

a submanifold K < M coisotropic when T,knex is a cisotropic mospace of 2 with respect to the two form o for dy if we have

chosen the contact form) The same about Lagrangian and isotropic.

We may also show that the level set of a regular function is a

coisotropic subranifold of M while
,

in case M = T*QXR or more general M = J1( *, a jet prolongation of a section/function)
is a Legendre submanifold of M

. Lequare submanifold is a wisotropic name for Lagralgiam submanifold in sympledic case,

i
. e.

maximal isotropic.

Now we can repeat the whole procedure of passing from a partial differential equation of the form F(q, n
, 4j) = 0 to the ordinary

differential equation of the form... this is the point where wenight want to do some calculations in coordinates to see what is

what : The geometric background is as it was before :"(O) is a coisotropic submanifold therefore it has a characteristic foliation
by one dimensionalcbmanifolds called characteristics

. Any Legendre submanifold contained in it is always composed of these

characteristics. Let us now find an equation for characteristics of K = F"(0) .

We will work in coordinates (q , P,
z).

An element ai +bjp+ belongs to The if

+=0 and pa The sympleic aihilator in C is the spanned by vectors of the fora



-this is a value of the contact Manitoria vector fields at points

Let us now formulate the contact Mamilton Jacobi theory in the language of symplectic IR principal bundles. The origi
nat definition of Legendre snomanifold that says is Legendre when it is maximal and isotropic ,

i. e. When it is of
dimension n and TLCC can be replaced by the following :

PROPOSITION LCM is a Legendre submanifold if and only if T"(L) <P is a Lagrangian submanifold of (P, c)
PROOF : if the dimention of M is 2n+ 1

,
then the dimention of TCL) must be not if TCP) is Lagrangian .

Since +"(4)

is a union of fibres ,
I must be of dimension m

,
which is a correct dimension for 1

. If we droose a vertical coordinates then

the symplectic form can be written as w= dsny + soy with
y being a local contact form .

Let VETT"(1) .

The vertical vector also belongs
↓ TIt(1) .

We have then

0 =( , v) = < M,
v) It means that It(r) &2

, therefore (is isotropic.

Since P is symplectic we cal use the symplectic property and state that Xn is taugent to

-"(L) if and only ifI is constant on
"

(2)
.

ButH is supposed to be homogeneous while

- I"(L) is supposed to be union of fibers of IR* action. This means that this construct must be 0.

But there also Xp'i target to Land H vanishes on L

Il We have there the contact Mamilton Jacobi theorem for free :

E THEOREM : Let L be a Legendre submanifold of M
.

Then XP is toget to L if and only ifI vanishes on L

Let us now look at this in more
, mechanical" way,

i
. e. explore the theore for

the case of M= T*QXIR and M= J1L *

M= T*Q + 12 = (p, z)(s = js(a) = ((dS(q)
, S(q) : g + a}

P = T* (Q + 1RX) = T*QX(
* x(R = (5

,
t

, z)

[ : (5,
=

, 2)1 < (E , 2)
S : P <IR reads M(5,

5
, 2) = THE, 2) for H:M 111

ContactHamilton-Jacobi equation is H(dS(q), S(q) = 0 in cordinates H(q , s(a)) = 0 (*)



Let us denote by
w the projection N=pop :

T* QXIR--Q
.
If S is a solution of Marilan-Jacobi equation (*) then trajectories of Xp with

initial conditions onIs can be obtained from trajectories of the vector field N*(X/j's(a)) ,
which again cuts the number of

degrees of freedom by half.

M = 3*

What will be the ingredents of a llamiton-Tacti theorem ? We start with a line bundle L>Q and its duol L
* <Q. The volution of

aMamison-Jacobi theorene is now a section S of L*Q.
.

The homogeneou Hamiltonian leves on an appropriate
symplectic principal bundle which we determined to be T*LX

.
What is then the corresponding contact lamitorian ? It is

a section of Lp *. The question is now what is Lp
*

for P = T* L?

PROPOSITION : For P = T** We get Lp =J** L
, Lp
*= S*** L*

A section of Lp* >I* car there be identified with the map a : JSL*L*

covering the identity on Q.
.

The Mamilton-Jati

equation now reads +(j1s) = 0. If S is a solution of this equation then trajectories of Xf with initial conditions on jS(Q)
can be obtained from trajectories of a rector field on Q which is a projection of Xu/jsca) on Q.


