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Why multifield cosmology

String theory and supergravity compactifications typically produce many
moduli fields. These are scalar fields “living” on the uncompactified part
of spacetime, which are either real or can be decomposed into their real
components.

Such fields will generally be dynamical in the very early universe, which
therefore contains gravity and a finite number of scalar fields at energies
lower than the Planck and string scale but higher than the Hubble scale.

This leads one to consider multifield cosmological models.

Neglecting higher order corrections, such a model has canonical coupling
of the scalar fields to gravity. The target space of the scalar fields is a
manifold M whose dimension equals the number of those fields (target
manifold). This manifold need not be topologically trivial.

The kinetic term of the scalars is described a Riemannian metric G defined
on M (target space metric)

In general, the scalars interact though a nontrivial potential, which is
modeled by a function V : M → R (scalar potential).
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Two-field cosmological models with oriented target space

Definition

A two-dimensional oriented scalar triple is an ordered system (M,G,V ), where:

(M,G) is a connected, oriented and borderless Riemann surface (called
scalar manifold)

V ∈ C∞(M,R) is a smooth function (called scalar potential).

Assumptions

1 (M,G) is complete (this ensures conservation of energy)

2 V > 0 on M (this avoids technical problems but can be relaxed)

Each scalar triple defines a model of gravity coupled to scalar fields on R4:

SM,G,V [g , φ] =

∫
R4

d4x
√

|g |
[
M2

2
R(g)− 1

2
Trgφ

∗(G)− V ◦ φ
]

.

Define the rescaled Planck mass M0
def.
=

√
2
3
M, where M is the reduced Planck

mass. Take g to describe a spatially flat FLRW universe:

ds2g := −dt2 + a2(t)dx⃗2 (x0 = t , x⃗ = (x1, x2, x3) , a(t) > 0 ∀t)

and φ to depend only on the cosmological time: φ = φ(t).
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The cosmological equation and geometric dynamical system

Define the Hubble parameter H(t)
def.
= ȧ(t)

a(t)
and the rescaled Hubble function:

H : TM → R>0 , H(u)
def.
=

√
||u||2 + 2V (π(u)) ∀u ∈ TM ,

where π : TM → M is the bundle projection.

Proposition

When H > 0, the equations of motion are equivalent with the cosmological
equation:

∇t φ̇(t) +
1

M0
H(φ̇(t))φ̇(t) + (gradGV )(φ(t)) = 0 ,

together with the Hubble condition:

H(t) =
1

3M0
H(φ̇(t)) .

The solutions φ : I → M of the cosmological equation are called cosmological
curves. The cosmological equation defines an autonomous dissipative
geometric dynamical system on TM. Any cosmological curve φ defines a

cosmological orbit Oφ : I → TM given by Oφ(t)
def.
= (φ(t), φ̇(t)), which

describes the state evolution of this dynamical system.
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Reduced observables and functional conditions

Let jk(M) be the k-th jet bundle of curves in M; notice that j1(M) = TM.

Definition

A classical cosmological observable of order k is a function f : U → R, where U
is an open subset of jk(M). Observables of order 1 are called basic.

Any observable of order k can be reduced to a basic observable using the
cosmological equation (on-shell reduction of observables). In particular, slow
roll & turn parameters of various orders can be reduced on-shell to produce
basic observables. Thus local conditions on a cosmological curve which
constrain these parameters can be formulated as conditions on points in TM
(conditions on the state of the dynamical system).

Let f1, . . . , f4 : U ⊂ TM → R be smooth basic observables which are
functionally independent for generic model parameters (G,V ). Since
dimTM = 4, the simultaneous conditions

f1(u) = f2(u) = f3(u) = f4(u) = 0 (u ∈ U)
select a discrete set of points u in TM for generic (G,V ). Hence no
cosmological orbit O can satisfy these conditions unless G and V satisfy a
constraint (a differential equation) which renders the model non-generic. If we
require |fj | ≪ 1 instead, the same argument shows that G and V must
approximately satisfy a differential equation.

Calin Lazaroiu Towards testing quantum gravity using cosmological observations 6/23



The adiabatic and entropic equations

Let (T ,N) be the positive Frenet frame of a cosmological curve φ : I → M:

T (t)
def.
=

φ̇(t)

||φ̇(t)|| , N(t) = JT (t) ,

where J ∈ End(TM) is the complex structure determined on M by the
conformal class of G:

ω(u, v) = G(Ju, v) , where ω
def.
= volG

and let σ be an increasing proper length parameter for φ:

dσ = ||φ̇(t)||dt .

Projecting the cosmological equation along T and N gives respectively the
adiabatic and entropic equations:

σ̈ +
1

M0
H(σ, σ̇)σ̇ + VT (σ) = 0 , Ω(σ) =

VN(σ)

σ̇
,

where
H(σ, σ̇) =

√
σ̇2 + 2V (σ) ,

VT (σ)
def.
= (dV )(φ(σ))(T (σ)) , VN(σ)

def.
= (dV )(φ(σ))(N(σ))

and we defined the signed turn rate of φ through:

Ω(t)
def.
= −G(N,∇tT ) .
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Kinematic parameters

Definition

Consider the following functions of t associated to the cosmological curve φ:

The first, second and third Hubble slow roll parameters:

ε = − Ḣ

H2
, η∥ = − σ̈

Hσ̇
, ξ =

...
σ

H2σ̇
.

The first and second turn parameters:

η⊥
def.
=

Ω

H
, ν

def.
=

˙η⊥
Hη⊥

.

The first IR parameter κ and the conservative parameter c:

κ
def.
=

σ̇2

2V
, c

def.
=

Hσ̇

||dV || .

Remark

The opposite relative acceleration vector η
def.
= − 1

Hσ̇
∇t φ̇ decomposes as

η = η∥T + η⊥N and we have:

ε =
3κ

1 + κ
.
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Slow roll and rapid turn conditions

For simplicity, we take M = 1 i.e. M0 =
√

2
3
.

Definition

The first, second and third slow roll conditions are the conditions ϵ ≪ 1,
|η∥| ≪ 1 and |ξ| ≪ 1.

The second order slow roll regime is defined by the joint conditions ϵ ≪ 1
and |η∥| ≪ 1.

The third order slow roll regime is defined by the joint conditions ϵ ≪ 1,
|η∥| ≪ 1 and |ξ| ≪ 1.

Definition

The rapid turn condition is the condition |η⊥| ≫ 1.

The sustained rapid turn regime is defined by the joint conditions
|η⊥| ≫ 1 and |ν| ≪ 1.

Proposition

Suppose that the second slow roll condition |η∥| ≪ 1 is satisfied. Then the
rapid turn condition |η⊥| ≫ 1 is equivalent with the conservative condition
c ≪ 1.
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The adapted frame

Let M0
def.
= {m ∈ M | (dV )(m) ̸= 0} be the complement of the critical locus.

Definition

The adapted frame of (M,G,V ) is the oriented orthonormal frame (n, τ) of
M0 defined by the vector fields:

n
def.
=

gradV

||gradV || , τ = Jn .

Definition

The characteristic angle θ ∈ (−π, π] of φ is the angle of rotation from the
adapted frame (n, τ) to the Frenet frame (T ,N):

T = n cos θ + τ sin θ , N = −n sin θ + τ cos θ .

The quantity s
def.
= sign(sin θ) ∈ {−1, 0, 1} is called the characteristic sign of φ.

Proposition

We have:

η∥ = 3 +
cos θ

c
, η⊥ = − sin θ

c
.
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Consistency conditions for sustained rapid turn with third order slow roll

For any vector fields X ,Y , we use the notation VXY
def.
= Hess(V )(X ,Y ), where

Hess(V )
def.
= ∇dV is the Riemannian Hessian of V .

Proposition

VTT

3H2
=

Ω2

3H2
+ ε+ η∥ − ξ

3
VTN

H2
=

Ω

H

(
3− ε− 2η∥ + ν

)
.

Theorem

Suppose that the third order slow roll conditions ε ≪ 1, |η∥| ≪ 1 and |ξ| ≪ 1
as well as the small rate of turn condition |ν| ≪ 1 are satisfied. In this case, we
have cos θ ≈ −3c, sin θ ≈ s

√
1− 9c2 and:

V 2
TN ≈ 3VVTT

VTT ≈ 9c2Vnn − 6sc
√

1− 9c2Vnτ + (1− 9c2)Vττ

VTN ≈ −3sc
√

1− 9c2(Vττ − Vnn)− (1− 18c2)Vnτ .

These equations admit a solution c with c ≪ 1 iff:

V 2
nτVττ ≈ 3VV 2

nn

up to corrections of order one in ε, η∥, ξ and κ.
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The SRRT equation

Corollary

The cosmological curve φ satisfies the sustained rapid turn conditions with
third order slow roll at cosmological time t iff the following condition is
satisfied at the point m = φ(t) of M0:

V 2
nτVττ ≈ 3VV 2

nn .

Definition

The SRRT equation is the following condition which constrains the target
space metric G and scalar potential V on the noncritical submanifold M0:

V 2
nτVττ = 3VV 2

nn

A metric G on M0 which satisfies this equation for a fixed scalar potential V is
called an SRRT metric relative to V .

The SRRT equation can be written as a nonlinear differential equation for the
pair (G,V ) on M0. When G is fixed, it can be viewed as a nonlinear second
order PDE for V . When V is fixed, it can be viewed as a nonlinear first order
PDE for G.
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Fixing the conformal class of G
Let S

def.
= Sym2(T ∗M) and S+ ⊂ S be the fiber sub-bundle consisting of

positive-definite tensors. When V is fixed, the SRRT equation has the form:

F(j1(G)) = 0 ,

where F : j1(S+) → R is a smooth function which depends on V .
Let L = detT ∗M = ∧2T ∗M be the real determinant line bundle of M and L+

be its sub-bundle of positive vectors. Fixing the complex structure J
determined by G, the map G → ω gives an isomorphism of fiber bundles
S+

∼→ L+ which induces an isomorphism j1(S+)
∼→ j1(L+). Use this to transport

F to a function F := F J
V : j1(L+) → R. Then the SRRT equation becomes:

F (j1(ω)) = 0 .

This is a contact Hamilton-Jacobi equation for ω ∈ Γ(L+) relative to the
Cartan contact structure of j1(L+). F restricts to a cubic polynomial function
on the fibers of the natural projection j1(L+) → L+.

In local isothermal coordinates (U, x1, x2) on M relative to J, we have:

ds2G = e2ϕ(dx2
1 + dx2

2 ) , ω = e2ϕdx1 ∧ dx2

and one can write the contact HJ equation as a nonlinear first order PDE for
the conformal exponent ϕ, which is cubic in the partial derivatives ∂1ϕ and
∂2ϕ. A change of local isothermal coordinates corresponds to a contact
transformation.
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The contact Hamiltonian in isothermal Liouville coordinates

Let G0 be the locally-defined flat metric with squared line element
ds20 = dx2

1 + dx2
2 and define the modified Euclidean gradient of V through:

gradJ
0V

def.
= Jgrad0V ,

where grad0V = gradG0
V = ∂1V∂1 + ∂2V∂2 is the ordinary Euclidean gradient.

Let · denote the Euclidean scalar product defined by G0, thus ∂i · ∂j = δij . Let:

H0 = Hess0(V )(grad0V , grad0V ) = ∂i∂jV∂iV∂jV ,

H̃0 = Hess0(V )(grad0V , Jgrad0V ) = −∂i∂jV∂iV εjk∂kV .

Let U ⊂ M0 and U0 ⊂ R2 be the image of U in the isothermal chart
(U, x1, x2). The isothermal Liouville coordinates (U, x1, x2, u, p1, p2) induce an
isomorphism of fiber bundles j1(L+)|U ≃ U0 × R× R2. Consider the smooth
functions A,B : U0 × R2 → R defined through:

A(x , p)
def.
= (∂iV )(x)pi , B(x , p)

def.
= −ϵij(∂jV )(x)pi .

The linear transformation R2 ∋ (p1, p2) → (A(x),B(x)) ∈ R2 is nondegenerate
for x ∈ U0, with inverse:

p1 =
∂1VA− ∂2VB

(∂1V )2 + (∂2V )2
, p2 =

∂2VA+ ∂1VB

(∂1V )2 + (∂2V )2
.

Calin Lazaroiu Towards testing quantum gravity using cosmological observations 14/23



The contact Hamiltonian in isothermal Liouville coordinates

Theorem

In isothermal Liouville coordinates (x1, x2, u, p1, p2) on j1(L+)|U , the contact
Hamiltonian is given by the smooth function F : U0 × R3 → R given by:

F (x, u, p)
def.
= −[B(x) − H̃0(x)]

2[A(x, p) + (∆0V )(x) − H0(x)] − 3e2uV [A(x, p) − H0(x)]
2

and the contact Hamilton-Jacobi equation takes the form:

F (x1, x2, ϕ, ∂1ϕ, ∂2ϕ) = 0 .

Remark

The contact HJ equation can be solved locally through the method of
characteristics.

The contact Hamiltonian is proper in the sense of Crandall & Lyons, i.e. is
nondecreasing in u. Hence the Dirichlet problem can be approached
globally using the theory of viscosity solutions.

We have:
−F = AB2 −3Ve2uA2 +(∆0V −H0)B

2 −2H̃0AB+(6Ve2uH0 + H̃2
0 )A+2H̃0(H0 −∆0V )B−F0 ,

where:
F0 = −H̃2

0 [(∆0V ) − H0] + 3Ve2uH2
0 .

Define:
P1

def.
= A− H0 , P2 = B − H̃0 ,

which are related to p1 and p2 by an x-dependent affine transformation. Then
F can be written as:

F = P1P
2
2 − 3Ve2uP2

1 + (∆0V )P2
2 .
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The momentum curve
The momentum curve is the curve Cx,u defined by the condition F (x , u, p) = 0
in the p-plane. This curve passes through the origin of P-plane, i.e. through
the point with coordinates:

p1 := p01
def.
= −

gradV · (−H0, H̃0)

||dV ||2
=

∂1VH0 − ∂2VH̃0

(∂1V )2 + (∂2V )2

p2 := p02
def.
=

gradJV · (−H0, H̃0)

||dV ||2
=

∂2VH0 + ∂1V H̃0

(∂1V )2 + (∂2V )2

in the p-plane. The singular points of the momentum curve coincide with the
characteristic points of the contact HJ equation.

Proposition

The origin of the P-plane is the only singular point of the momentum curve.
When (∆0V )(x) = 0, the curve is reducible and F factorizes as:

F = P1(P
2
2 − 3Ve2uP1) .

The curve is symmetric under reflection in the P1-axis. When (∆0V )(x) > 0, it
is connected and contained in the half-space P1 ≥ −(∆V )(x), being the union
of two embedded curves which intersect each other at the origin of the
P-plane. When (∆0V )(x) < 0, it has three connected components, namely the
origin of the (P1,P2)-plane (which is its only singular point) and two connected
components which are nonsingular and contained in the half-space
P1 > −(∆0V )(x).
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The momentum curve
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Figure: The momentum curve for V (x)e2u(x) = 1 in the cases (∆0V )(x) = −1, 0, 1.
The singular point of the curve is shown as a black dot.

Figure: The potential V (x1, x2) =
1
18

+ 1
2
(x22 − x21 ) and viscosity approximants of the

solution of the corresponding contact Hamilton-Jacobi equation with Dirichlet
boundary condition ϕ = − log[R log(1/R)] imposed on the circle of radius R = 1

20
centered at the origin. We show three viscosity approximants of the viscosity solution
of this boundary value problem in the exterior of the disk which bounds this circle, for
viscosity parameters c = e−2i with i = 2, 3, 4. The solutions with larger viscosity
coefficient are shown with higher transparency.
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Quasilinear approximation near an isolated critical point
Let c ∈ U0 be an isolated critical point of V and λ1, λ2 be the principal values
of Hess(V )(c). In principal isothermal coordinates centered at c, we have:

V (x) = V (c) +
1

2
(λ1x

2
1 + λ2x

2
2 ) + O(||x||30) .

Consider the following homogeneous polynomial functions of degree two in the
variables x1 and x2, where k ∈ Z>0:

sk(x)
def.
= λk

1x
2
1 + λk

2x
2
2 .

Proposition

We have:

F (x, u, p) = −
a1(x, u)x

1p1 + a2(x)x
2p2 − b(x, u)

s2(x)3
+ O(||x||20) ,

where ai and b are homogeneous polynomial functions of degree six in x1 and
x2 (whose coefficients depend on u) given by:

ai (x, u) = λi s2(x)
[
ti (x) + 6V (c)e2us2(x)s3(x)

]
with:

t1(x) = λ1λ
2
2(λ1 − λ2)x

2
2 [s2(x) − 3λ2s1(x)]

t2(x) = λ2λ
2
1(λ2 − λ1)x

2
1 [s2(x) − 3λ1s1(x)] .

and:
b(x, u) = −λ

3
1λ

3
2(λ1 − λ2)

2x2
1 x

2
2 s1(x) + 3V (c)e2us2(x)s3(x)

2
.
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Solutions which blow up at an isolated critical point

Corollary

The contact HJ equation is approximated to first order in ||x ||0 by the following
quasilinear first order PDE:

a1(x , ϕ)x
1∂1ϕ+ a2(x , ϕ)x

2∂2ϕ = b(x , ϕ) . (1)

This quasilinear PDE can be studied by the Lagrange-Charpit method. Its
scale-invariant solutions can be studied by reduction to a nonlinear ODE for a
function defined on the unit circle.

Proposition

Suppose that ϕ satisfies the quasilinear equation (1) and that we have
φ(x) ≫ 1. Then ϕ is an approximate solution of the following linear first order
PDE:

2s2(x)λix
i∂iϕ = s3(x) , (2)

which it satisfies up to corrections of order O
(

e−2ϕ

3V (c)

)
.
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Solutions which blow up at an isolated critical point

Consider the polar coordinate system (r , θ) defined though:

x1 = r cos θ , x2 = r sin θ . (3)

Proposition

Suppose that λ1 ̸= λ2. Then the general smooth solution of the linear equation
(2) is:

ϕ(r , θ) = ϕ0(θ) + Q0

(
λ2 − λ1

λ1λ2
log r +

1

λ1
log | cos θ| −

1

λ2
log | sin θ|

)
, (4)

where:

ϕ0(θ) =
1

4
log(λ2

1 cos
2
θ + λ

2
2 sin

2
θ) −

1

2

λ2 log | cos θ| − λ1 log | sin θ|
λ2 − λ1

(5)

and Q0 is an arbitrary smooth function of a single variable.

Proposition

Suppose that λ1 = λ2 := λ. Then the linear equation (2) reduces to:

x i
∂iϕ =

1

2
, (6)

whose general solution is:

ϕ(r , θ) =
1

2
log r + Q0(θ) , (7)

where Q0 ∈ C∞(S1) is an arbitrary smooth function.
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Solutions which blow up at an isolated critical point
Suppose that λ1 ̸= λ2. The general solution (4) reads:

ϕ(r , θ) = ϕ0(θ) + Q

(
log r +

λ2 log | cos θ| − λ1 log | sin θ|
λ2 − λ1

)
and satisfies limr→0 ϕ(r , θ) = +∞ iff limw→−∞ Q(w) = +∞. In this case, we
have:

ϕ ≈ Q(log r) for r ≪ 1 ,

so ϕ is rotationally-invariant near c. The corresponding SRRT metric is
asymptotically rotationally-invariant at c, with Gaussian curvature:

K ≈ −e−2ϕ∆ϕ ≈ −e−2Q(log r)Q′′(log r) for r ≪ 1 .

Requiring K = Kc for some constant Kc gives:

e−2Q(w)Q ′′(w) = Kc .

Also require that G is geodesically complete at c. For Kc = 0, we can take
Q(w) = −w , which gives ϕ(r , θ) ≈r≪1 − log r and:

ds2 ≈r≪1
1

r 2
(dr 2 + r 2dθ2) = dρ2 + dθ2 , where ρ

def.
= log r .

so G asymptotes at c to the metric on a flat cylinder. For Kc = −1, the SRRT
metric G asymptotes to the hyperbolic cusp metric at c:

ds2 ≈ 1

(r log r)2
(dr 2 + r 2dθ2) for r ≪ 1 . (8)
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A natural Cauchy problem

Consider a circle CR ⊂ U0 of radius R < 1 centered at 0 ∈ U0 and the b.c.:

ϕ|CR = − log[R log(1/R)] .
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Figure: The potential, projected characteristics and a viscosity approximant of the
solution of the Dirichlet problem for the contact Hamilton-Jacobi equation for
Vc = 1/90 and λ1 = −1/5, λ2 = 1 with R = 1/20.
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Figure: The potential, projected characteristics and a viscosity approximant of the
solution of the Dirichlet problem for Vc = 1/18 and λ1 = −1, λ2 = 1 with R = 1/20.
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