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Introduction

All civilizations have an origin myth.
We are the first to get it right.

David Tong

Drawing from observational data, it’s reasonable to conclude that the Universe
exhibits homogeneity and isotropy on large scales.

Figure: The anisotropies of the Cosmic microwave background (CMB) as observed by Planck. The
CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the Universe was
just 380 000 years old. It shows tiny temperature fluctuations that correspond to regions of slightly
different densities, representing the seeds of all future structure: the stars and galaxies of today.
Source: ESA and the Planck Collaboration
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The FLRW metric

A homogeneous & isotropic universe is described by the FLRW metric, first derived by
Friedmann in 1922:

ds2 = −dt2 + a2(t)(dx21 + dx22 + dx23 ) ,

where a(t) > 0 is the so-called scale factor, whose time evolution is determined by the
Einstein equations:

Rµν −
1

2
gµνR − Λgµν = 8πGTµν .

The 00 and 11 components of Einstein’s equation give the Friedmann equation:

H2(t)
def.
=

(
ȧ

a

)2

=
8πG

3
ρtot −

k

a2
,

with ρtot = ρm + ρrad + ρvac, and the equation:

2ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGp .

From Einstein’s equations one can also derive the First Law of Thermodynamics for
Cosmology:

d

dt
[ρ(t)a3(t)] = −p(t)

d

dt
[a3(t)] .
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Equations of state

Depending on the content of the Universe, one can approximate:

ρ ∼
1

a4
p =

ρ

3
(radiation domination)

ρ ∼
1

a3
p = 0 (matter domination)

ρ ∼ const p = −ρ (vacuum domination) .

Solving for these cases one finds:

Figure: Stages of evolution in a flat FLRW
model for Ωr = Ων = Ωm = 1

3 (source:
Hartle, J.B. (2021) Gravity: An Introduction
to Einstein’s General Relativity. Cambridge:
Cambridge University Press.)

a(t) ∼
√
t (radiation domination)

a(t) ∼ t2/3 (matter domination)

a(t) ∼ eHt (vacuum domination)
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Figure: A rough history of the universe according to standard Λ-CDM cosmology
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Multifield cosmology

Definition

A d-dimensional oriented scalar triple is an ordered system (M,G,V ), where:

(M,G) is a connected, oriented and borderless Riemannian manifold of
dimension d (called scalar manifold)

V ∈ C∞(M,R) is a smooth function (called scalar potential).

Assumptions

1 (M,G) is complete (this ensures conservation of energy)

2 V > 0 on M (this avoids technical problems but can be relaxed)

Each such triple defines a model of gravity coupled to d real scalar fields (“inflatons”)
on R4:

SM,G,V [g , φ] =

∫
R4

d4x
√

|g |
[
M2

2
R(g)−

1

2
Trgφ

∗(G)− V ◦ φ

]
where:

Trgφ
∗(G) def.

= gµνGij∂µφ
i∂νφ

j , µ, ν ∈ {0, .., 3} , i , j ∈ {1, d}

Define the rescaled Planck mass M0
def.
=

√
2
3
M, where M is the reduced Planck mass.

Take metric g to describe a spatially flat FLRW universe of scale factor a(t) and the
scalar fields φ : R4 → M to depend only on the cosmological time: φ = φ(t).
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The cosmological equation and geometric dynamical system

Define the Hubble parameter H(t)
def.
= ȧ(t)

a(t)
and the rescaled Hubble function:

H : TM → R>0 , H(u)
def.
=

1

M0

√
||u||2 + 2V (π(u)) ∀u ∈ TM ,

where ||u||2 def.
= Giju

iuj (squared norm of u) and π : TM → M (bundle projection).

Proposition

When H > 0, the equations of motion are equivalent with the cosmological equation:

∇t φ̇(t) +
1

M0
H(φ̇(t))φ̇(t) + (gradGV )(φ(t)) = 0 ,

together with the Hubble condition:

H(t) =
1

3M0
H(φ̇(t)) .

∇t φ̇
i = φ̈i + Γijk φ̇

j φ̇k

gradGV = G ij (∂jV )∂i , ∂i :=
∂

∂φi
.

The solutions φ : I → M of the cosmological equation are called cosmological curves.
The cosmological equation defines an autonomous dissipative geometric dynamical
system on TM.
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What has been done and future directions
For general multifield models

1 Dynamical renormalization and universality (scaling behavior of classical
multifield cosmological models by introducing a dynamical renormalization group
action which relates their UV and IR limits)

2 Natural observables and dynamical approximations (geometric construction of
certain first order natural dynamical observables)

3 Hesse manifolds and Hessian symmetries (Mathematical theory of Noether
symmetries which decompose into visible and Hessian (’hidden’) symmetries.

For two-field models

1 IR behavior in tame hyperbolizable two-field models

2 Generalized two-field α-attractor models from geometrically finite hyperbolic
surfaces (as well as) from hyperbolic triply-punctured sphere

3 Natural coordinates and horizontal approximations in two-field cosmological
model (natural local coordinate systems on phase space)

4 A differential consistency condition for slow-roll inflation with rapid-turn (SRRT).

Future prospects:
1 Classical dynamics

(a) Mean field theory for two field cosmological models
(b) IR and UV expansions in two field models

2 Quantum dynamics
(a) Geometric minisuperspace quantization of multifield cosmological models.
(b) Applications to two field models whose scalar manifold is a hyperbolic surface
(c) Applications to the mixed state formalism for minisuperspace.
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Two field cosmological models

Definition

A two-field cosmological model is a multifield model with d = 2, so the target space
M is a (generally non-compact) connected Riemann surface without boundary. We
assume that M is oriented for simplicity.

Slow roll and rapid turn (SRRT) conditions

For simplicity, we take M = 1 i.e. M0 =
√

2
3
. Let J be the complex structure

determined by G on M through the equation:

ω(u, v) = G(Ju, v) ∀(u, v) ∈ TM×M TM ,

where ω is the volume form of (M,G). Let M0
def.
= {m ∈ M | (dV )(m) ̸= 0} be the

complement of the critical locus.

Definition

The adapted frame of (M,G,V ) is the oriented orthonormal frame (n, τ) of M0

defined by the vector fields:

n
def.
=

gradV

||gradV ||
, τ = Jn .
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The SRRT equation

In the adapted frame (n, τ) of (M,G,V ):

Theorem (Anguelova & Lazaroiu, 2022)

A cosmological curve φ : I → M0 satisfies the sustained rapid turn conditions with
third order slow roll at cosmological time t ∈ I iff the following condition is satisfied at
the point m = φ(t) of M0:

V 2
nτVττ ≈ 3VV 2

nn .

Vij
def.
= HessV (∂i∂j ) = ∂i∂jV − Γkij∂kV

where HessV = ∇dV , ∇ = LC connection on M

Definition

The SRRT equation is the following condition which constrains the target space
metric G and scalar potential V on the noncritical submanifold M0:

V 2
nτVττ = 3VV 2

nn

A metric G on M0 which satisfies this equation for a fixed scalar potential V is called
an SRRT metric relative to V .

The SRRT equation can be written as a nonlinear differential equation for the pair
(G,V ) on M0. When G is fixed, it can be viewed as a nonlinear second order PDE for
V . When V is fixed, it can be viewed as a nonlinear first order PDE for G.
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Fixing the conformal class of G

Let S
def.
= Sym2(T∗M) and S+ ⊂ S be the fiber sub-bundle consisting of

positive-definite tensors. When V is fixed, the SRRT equation has the form:

F(j1(G)) = 0 ,

where F : j1(S+) → R is a smooth function which depends on V .
Let L = detT∗M = ∧2T∗M be the real determinant line bundle of M and L+ be its
sub-bundle of positive vectors. Fixing the complex structure J determined by G, the
map G → ω gives an isomorphism of fiber bundles S+

∼→ L+ which extends to an

isomorphism j1(S+)
∼→ j1(L+). Use this to transport F to a function

F := F J
V : j1(L+) → R. Then the SRRT equation becomes:

F (j1(ω)) = 0 .

This is a contact Hamilton-Jacobi equation for ω ∈ Γ(L+) relative to the Cartan
contact structure of j1(L+). F restricts to a cubic polynomial function on the fibers of
the natural projection j1(L+) → L+.

In local isothermal coordinates (U, x1, x2) on M relative to J, we have:

ds2G = e2φ(dx21 + dx22 ) , ω = e2φdx1 ∧ dx2

and one can write the contact HJ equation as a nonlinear first order PDE for the
conformal factor φ, which is cubic in the partial derivatives ∂1φ and ∂2φ. A change of
local isothermal coordinates corresponds to a contact transformation.
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The contact Hamiltonian in isothermal Liouville coordinates

Let G0 be the locally-defined flat metric with squared line element ds20 = dx21 + dx22
and define the modified Euclidean gradient of V through:

gradJ0V
def.
= Jgrad0V ,

where grad0V = gradG0
V = ∂1V∂1 + ∂2V∂2 is the ordinary Euclidean gradient. Let ·

denote the Euclidean scalar product defined by G0, thus ∂i · ∂j = δij . Let:

H0 = Hess0(V )(grad0V , grad0V ) = ∂i∂jV∂iV∂jV ,

H̃0 = Hess0(V )(grad0V , Jgrad0V ) = −∂i∂jV∂iV εjk∂kV .

Let U0 ⊂ R2 be the image of U in the isothermal chart (U, x1, x2). The isothermal
Liouville coordinates (U, x1, x2, u, p1, p2) induce an isomorphism of fiber bundles
j1(L+)|U ≃ U0 × R× R2. Consider the smooth functions A,B : U0 × R2 → R defined
through:

A(x , p)
def.
= (∂iV )(x)pi , B(x , p)

def.
= −ϵij (∂jV )(x)pi .

The linear transformation R2 ∋ (p1, p2) → (A(x),B(x)) ∈ R2 is nondegenerate for
x ∈ U0, with inverse:

p1 =
∂1VA− ∂2VB

(∂1V )2 + (∂2V )2
, p2 =

∂2VA+ ∂1VB

(∂1V )2 + (∂2V )2
.
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The contact Hamiltonian in isothermal Liouville coordinates

Theorem

In isothermal Liouville coordinates (x1, x2, u, p1, p2) on j1(L+)|U , the contact
Hamiltonian is given by the smooth function F : U0 × R3 → R given by:

F (x, u, p)
def.
= [B(x) − H̃0(x)]

2[A(x, p) + (∆0V )(x) − H0(x)] − 3e2uV [A(x, p) − H0(x)]
2

and the contact Hamilton-Jacobi equation takes the form:

F (x1, x2, φ, ∂1φ, ∂2φ) = 0 .

Remark

The contact HJ equation can be solved locally through the method of
characteristics.

The contact Hamiltonian is regular in the sense that it depends monotonously on
u. Hence the Dirichlet problem can be approached globally using the theory of
viscosity solutions.

We have:
F = AB2 − 3Ve2uA2 + (∆0V − H0)B

2 − 2H̃0AB + (6Ve2uH0 + H̃2
0 )A + 2H̃0(H0 − ∆0V )B + F0 ,

where:
F0 = H̃2

0 [(∆0V ) − H0] − 3Ve2uH2
0 .

Define P1
def.
= A− H0 and P2 = B − H̃0, which are related to p1 and p2 by an

x-dependent affine transformation. Then F can be written as:

F = P1P
2
2 − 3Ve2uP2

1 + (∆0V )P2
2 .
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The momentum curve

The momentum curve is the curve Cx,u defined by the condition F (x , u, p) = 0 in the
p-plane. This curve passes through the origin of P-plane, i.e. through the point with
coordinates:

p1 := p01
def.
= −

gradV · (−H0, H̃0)

||dV ||2
=

∂1VH0 − ∂2VH̃0

(∂1V )2 + (∂2V )2

p2 := p02
def.
=

gradJV · (−H0, H̃0)

||dV ||2
=

∂2VH0 + ∂1VH̃0

(∂1V )2 + (∂2V )2

in the p-plane. The singular points of the momentum curve coincide with the
characteristic points of the contact HJ equation.

Proposition

The origin of the P-plane is the only singular point of the momentum curve. When
(∆0V )(x) = 0, the curve is reducible and F factorizes as:

F = P1(P
2
2 − 3Ve2uP1) .

The curve is symmetric under reflection in the P1-axis. When (∆0V )(x) > 0, it is
connected and contained in the half-space P1 ≥ −(∆V )(x), being the union of two
embedded curves which intersect each other at the origin of the P-plane. When
(∆0V )(x) < 0, it has three connected components, namely the origin of the
(P1,P2)-plane (which is its only singular point) and two connected components which
are nonsingular and contained in the half-space P1 > −(∆0V )(x).
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The momentum curve
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Figure: The momentum curve for V (x)e2u(x) = 1 in the cases (∆0V )(x) = −1, 0, 1. The singular
point of the curve is shown as a black dot.

() Quadratic potential V with principal
values λ1 = 1, λ2 = −2.

() Numerical solution φ for this quadratic potential.
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Quasilinear approximation near an isolated critical point

Let c ∈ U0 be an isolated critical point of V and λ1, λ2 be the principal values of
Hess(V )(c). In principal isothermal coordinates centered at c, we have:

V (x) = V (c) +
1

2
(∂i∂jV )(c)x i x j + O(||x||30) = V (c) +

1

2
(λ1x

2
1 + λ2x

2
2 ) + O(||x||30) .

Consider the following homogeneous polynomial functions of degree two in the
variables x1 and x2, where k ∈ Z>0:

sk (x)
def.
= λk

1x
2
1 + λk

2x
2
2 .

Proposition

We have:

F (x, u, p) =
a1(x, u)x

1p1 + a2(x)x
2p2 − b(x, u)

s2(x)3
+ O(||x||20) ,

where ai and b are homogeneous polynomial functions of degree six in x1 and x2
(whose coefficients depend on u) given by:

ai (x, u) = λi s2(x)
[
ti (x) + 6V (c)e2us2(x)s3(x)

]
with:

t1(x) = λ1λ
2
2(λ1 − λ2)x

2
2 [s2(x) − 3λ2s1(x)]

t2(x) = λ2λ
2
1(λ2 − λ1)x

2
1 [s2(x) − 3λ1s1(x)] .

and:
b(x, u) = −λ

3
1λ

3
2(λ1 − λ2)

2x21 x
2
2 s1(x) + 3V (c)e2us2(x)s3(x)

2
.
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Solutions which blow up at an isolated critical point

Corollary

The contact HJ equation is approximated to first order in ||x ||0 by the following
quasilinear first order PDE:

a1(x , φ)x
1∂1φ+ a2(x , φ)x

2∂2φ = b(x , φ) . (1)

This quasilinear PDE can be studied by the Lagrange-Charpit method. Its
scale-invariant solutions can be studied by reduction to a nonlinear ODE for a function
defined on the unit circle.

Proposition

Suppose that φ satisfies the quasilinear equation (1) and that we have φ(x) ≫ 1.
Then φ is an approximate solution of the following linear first order PDE:

2s2(x)λix
i∂iφ = s3(x) , (2)

which it satisfies up to corrections of order O
(

e−2φ

3V (c)

)
.
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Solutions which blow up at an isolated critical point

Consider the polar coordinate system (r , θ) defined though:

x1 = r cos θ , x2 = r sin θ .

Proposition

Suppose that λ1 ̸= λ2. Then the general smooth solution of the linear equation (2) is:

φ(r, θ) = φ0(θ) + Q0

(
λ2 − λ1

λ1λ2

log r +
1

λ1

log | cos θ| −
1

λ2

log | sin θ|
)

, (3)

where:

φ0(θ) =
1

4
log(λ2

1 cos2 θ + λ
2
2 sin2 θ) −

1

2

λ2 log | cos θ| − λ1 log | sin θ|
λ2 − λ1

and Q0 is an arbitrary smooth function of a single variable.

Proposition

Suppose that λ1 = λ2 := λ. Then the linear equation (2) reduces to:

x i∂iφ =
1

2
,

whose general solution is:

φ(r, θ) =
1

2
log r + Q0(θ) , (4)

where Q0 ∈ C∞(S1) is an arbitrary smooth function.
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Solutions which blow up at an isolated critical point

Suppose that λ1 ̸= λ2. Defining Q(w) = Q0(
λ2−λ1
λ1λ2

w), the general solution (3) reads:

φ(r, θ) = φ0(θ) + Q

(
log r +

λ2 log | cos θ| − λ1 log | sin θ|
λ2 − λ1

)
and satisfies limr→0 φ(r , θ) = +∞ iff limw→−∞ Q(w) = +∞. In this case, we have:

φ ≈ Q(log r) for r ≪ 1 ,

so φ is rotationally-invariant near c. The corresponding SRRT metric is
asymptotically rotationally-invariant at c, with Gaussian curvature:

K ≈ −e−2φ∆φ ≈ −e−2Q(log r)Q′′(log r) for r ≪ 1 .

Requiring K = Kc for some constant Kc gives:

e−2Q(w)Q′′(w) = Kc .

Also require that G is geodesically complete at c. For Kc = 0, we can take
Q(w) = −w , which gives φ(r , θ) ≈r≪1 − log r and:

ds2 ≈r≪1
1

r2
(dr2 + r2dθ2) = dρ2 + dθ2 , where ρ

def.
= log r .

so G asymptotes at c to the metric on a flat cylinder. For Kc = −1, the SRRT metric
G asymptotes to the hyperbolic cusp metric at c:

ds2 ≈
1

(r log r)2
(dr2 + r2dθ2) for r ≪ 1 .
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Axion Cosmology
Multifield cosmological models whose target space M is a d-dimensional torus Td can
be obtained from orientifold compactifications of IIB string theory. When d = 2, the
target space becomes a smooth elliptic curve E = (T2, J) when endowed with the
complex structure J determined by the conformal class of the target space metric G.
We have E = C/Λ for some full lattice Λ ⊂ C and hence E admits a periodic complex
coordinate induced by the complex coordinate z of C, subject to identifications given
by Λ-translations. The scalar potential lifts to a real and Λ-periodic function which
has a Fourier expansion of the form:

V (z, z̄) = Re
∑
q∈Λ∗

Vqe
2πi(q,z) =

∑
q∈Λ∗

Aq cos(2π[(q, z) + αq ]) =

= A0 +
∑

q∈Λ∗\{0}
Aq cos(2π[(q, z)αq ]) , with Aq ∈ R ,

where Λ∗ ⊂ C is the dual lattice. The condition that V is positive amounts to:

A0 > −
∑

q∈Λ∗\{0}
Aq cos(2π[(q, z) + αq ]).

In lattice-adapted coordinates θ1, θ2 determined by a basis (e1, e2) of Λ, the expansion
above reads:

V (z, z̄) =
∑
q∈Λ∗

Aq cos(2π[q1θ
1 + q2θ

2 + αq ])

and the metric G takes the form:

ds2 = f (θ)[|e1|2dθ21 + |e2|2dθ22 + (e1ē2 + e2ē1)dθ1dθ2].
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