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Two-field cosmological models with oriented target space

Definition

A two-dimensional oriented scalar triple is an ordered system (M,G,V ), where:

(M,G) is a connected, oriented and borderless Riemann surface (called
scalar manifold)

V ∈ C∞(M,R) is a smooth function (called scalar potential).

Assumptions

1 (M,G) is complete (this ensures conservation of energy)

2 V > 0 on M (this avoids technical problems but can be relaxed)

Each scalar triple defines a model of gravity coupled to scalar fields on R4:

SM,G,V [g , φ] =

∫
R4

d4x
√

|g |
[
M2

2
R(g)− 1

2
Trgφ

∗(G)− V ◦ φ
]

.

Define the rescaled Planck mass M0
def.
=

√
2
3
M, where M is the reduced Planck

mass. Take g to describe a spatially flat FLRW universe:

ds2g := −dt2 + a2(t)dx⃗2 (x0 = t , x⃗ = (x1, x2, x3) , a(t) > 0 ∀t)

and φ to depend only on the cosmological time: φ = φ(t).

Calin Lazaroiu Consistency conditions for rapid turn inflation 3/12



The cosmological equation and geometric dynamical system

Define the Hubble parameter H(t)
def.
= ȧ(t)

a(t)
and the rescaled Hubble function:

H : TM → R>0 , H(u)
def.
=

1

M0

√
||u||2 + 2V (π(u)) ∀u ∈ TM ,

where π : TM → M is the bundle projection.

Proposition

When H > 0, the equations of motion are equivalent with the cosmological
equation:

∇t φ̇(t) +
1

M0
H(φ̇(t))φ̇(t) + (gradGV )(φ(t)) = 0 ,

together with the Hubble condition:

H(t) =
1

3M0
H(φ̇(t)) .

The solutions φ : I → M of the cosmological equation are called cosmological
curves. The cosmological equation defines an autonomous dissipative
geometric dynamical system on TM.

For simplicity, we take M = 1 i.e. M0 =
√

2
3
.
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The adiabatic and enthropic equations

Let (T ,N) be the positive Frenet frame of a cosmological curve φ : I → M:

T (t)
def.
=

φ̇(t)

||φ̇(t)|| , N(t) = −JT (t) ,

where J ∈ End(TM) is the complex structure determined on M by the
conformal class of G:

ω(u, v) = G(u, Jv) , where ω
def.
= volG

and let σ be an increasing proper legth parameter for φ:

dσ = ||φ̇(t)||dt .

Projecting the cosmological equation along T and N gives repectively the
adiabatic and ethropic equations:

σ̈ +
1

M0
H(σ, σ̇)σ̇ + VT (σ) = 0 , Ω(σ) =

VN(σ)

σ̇
,

where
H(σ, σ̇) =

√
σ̇2 + 2V (σ) ,

VT (σ)
def.
= (dV )(φ(σ))(T (σ)) , VN(σ)

def.
= (dV )(φ(σ))(N(σ))

and we defined the signed turn rate of φ through:

Ω(t)
def.
= −G(N,∇tT ) .

Calin Lazaroiu Consistency conditions for rapid turn inflation 5/12



Kinematic parameters

Definition

Consider the following functions of t associated to the cosmological curve φ:

Define the first, second and third Hubble slow roll parameters:

ε = − Ḣ

H2
, η∥ = − σ̈

Hσ̇
, ξ =

...
σ

H2σ̇
.

The first and second turn parameters:

η⊥
def.
=

Ω

H
, ν

def.
=

˙η⊥
Hη⊥

.

The first IR parameter κ and the conservative parameter c:

κ
def.
=

σ̇2

2V
, c

def.
=

Hσ̇

||dV || .

Remark

The opposite relative acceleration vector η
def.
= − 1

Hσ̇
∇t φ̇ decomposes as

η = η∥T + η⊥N and we have:

ε =
3κ

1 + κ
.
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Slow roll and rapid turn conditions

Definition

The first, second and third slow roll conditions are the conditions ϵ ≪ 1,
|η∥| ≪ 1 and |ξ| ≪ 1.

The second order slow roll regime is defined by the joint conditions ϵ ≪ 1
and |η∥| ≪ 1.

The third order slow roll regime is defined by the joint conditions ϵ ≪ 1,
|η∥| ≪ 1 and |ξ| ≪ 1.

Definition

The rapid turn condition is the condition |η⊥| ≫ 1.

The sustained rapid turn regime is defined by the joint conditions
|η⊥| ≫ 1 and |ν| ≪ 1.

Proposition

Suppose that the second slow roll condition |η∥| ≪ 1 is satisfied. Then the
rapid turn condition |η⊥| ≫ 1 is equivalent with the conservative condition
c ≪ 1.
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The adapted frame

Let M0
def.
= {m ∈ M | (dV )(m) ̸= 0} be the complement of the critical locus

of V .

Definition

The adapted frame of (M,G,V ) is the oriented orthonormal frame (n, τ) of
M0 defined by the vector fields:

n
def.
=

gradV

||gradV || , τ = −Jn .

Definition

The characteristic angle θ ∈ (−π, π] of φ is the angle of rotation from the
adapted frame (n, τ) to the Frenet frame (T ,N):

T = n cos θ + τ sin θ , N = −n sin θ + τ cos θ .

The sign factor s
def.
= sign(sin θ) ∈ {−1, 0, 1} is called the characteristic sign of

φ.

Proposition

We have:

η∥ = 3 +
cos θ

c
, η⊥ = − sin θ

c
.
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Natural local coordinates on the phase space

For any vector fields X ,Y , we use the notation:

VXY
def.
= Hess(V )(X ,Y ) ,

where Hess(V )
def.
= ∇dV is the Riemannian Hessian of V .

Definition

The nondegenerate locus of M is the following subset of M0:

U def.
= {m ∈ M0 | Φnτ (m) ̸= 0}

The scalar triple (M,G,V ) is called nondegenerate if U ̸= ∅.

Theorem

Suppose that (M,G,Φ) is nondegenerate. Then there exist basic natural
observables ε̂, η̂∥, ĉ, θ̂ : ṪU → R associated to ε, η∥, c and θ which provide

local coordinates on a small enough neighborhood of each point of ṪU .
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Consistency conditions for sustained rapid turn with third order slow roll

Proposition

We have:

VTT

3H2
=

Ω2

3H2
+ ε+ η∥ − ξ

3
VTN

H2
=

Ω

H

(
3− ε− 2η∥ + ν

)
.

Theorem

Suppose that the third order slow roll conditions ε ≪ 1, |η∥| ≪ 1 and |ξ| ≪ 1
as well as the small rate of turn condition |ν| ≪ 1 are satisfied. In this case, we
have cos θ ≈ −3c, sin θ ≈ s

√
1− 9c2 and:

V 2
TN ≈ 3VVTT

VTT ≈ 9c2Vnn − 6sc
√

1− 9c2Vnτ + (1− 9c2)Vττ

VTN ≈ −3sc
√

1− 9c2(Vττ − Vnn)− (1− 18c2)Vnτ .

These equations admit a solution c with c ≪ 1 iff:

V 2
nτVττ ≈ 3VV 2

nn

up to corrections of order one in ε, η∥, ξ and κ.
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The SRRT equation

Corollary

The cosmological curve φ satisfies the sustained rapid turn conditions with
third order slow roll at cosmological time t iff the following condition is
satisfied at the point m = φ(t) of M0:

V 2
nτVττ ≈ 3VV 2

nn .

In particular, such cosmological curves can be found only in regions of M0

where this condition is satisfied.

Definition

The SRRT equation is the following condition which constrains target space
metric G and scalar potential V of the model on the noncritical submanifold
M0:

V 2
nτVττ = 3VV 2

nn

The SRRT equation can be written as nonlinear differential equation for the
pair (G,V ) of M0. When G is fixed, it can be viewed as a nonlinear second
order PDE for V . When V is fixed, it can be viewed as a nonlinear first order
PDE for the metric G. Using isothermal coordinates, the latter can be writted
as a contact Hamilton-Jacobi equation for the conformal factor of the metric G.
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Let S
def.
= Sym2(T ∗M) and S+ ⊂ S be the fiber sub-bundle consisting of

positive-definite tensors. When V is fixed, the SRRT equation has the form:

F(j1(G)) = 0 ,

where F : j1(S)+ → R is a smooth function which depends on V .
Let L = detT ∗M = ∧2T ∗M be the real determinant line bundle of M and L+

be its sub-bundles of positive vectors. Fixing the complex structure J
determined by G, the map G → ω gives an isomorphism of fiber bundles
S+

∼→ L+ which extends to an isomorphism j1(S)+
∼→ j1(L+). Use this to

transport F to a function H := HJ
V : j1(L+) → R. Then the SRRT equation

becomes:
H(j1(ω)) = 0 .

This is a contact Hamilton-Jacobi equation for ω ∈ Γ(L+) relative to the
Cartan contact structure of j1(L+). H restricts to a cubic polynomial function
on the fibers of the natural projection j1(L+) → L+.
In local isothermal coordinates (x1, x2) on M relative to J, we have:

ds2G = e2φ(dx2
1 + dx2

2 )

and one can write this contact HJ equation as a nonlinear first order PDE for
the conformal factor φ, which is cubic in the partial derivatives ∂1φ and ∂2φ.
The equation can be solved locally through the method of characteristics, while
the Cauchy boundary value problem can be approached using the theory of
viscosity solutions.
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