Consistency conditions for sustained rapid turn inflation in two-field cosmological models

Calin Lazaroiu
(with L. Anguelova)

NIPNE, Romania and UNED, Madrid
(1) Two-field cosmological models with oriented target space
(2) The adiabatic and entropic equations
(3) Kinematic parameters
(4) Slow roll and rapid turn regimes
(5) The adapted frame
(6) Natural local coordinates on the phase space
(7) Consistency conditions for sustained rapid turn with third order slow roll
(8) The SRRT equation

Definition

A two-dimensional oriented scalar triple is an ordered system $(\mathcal{M}, \mathcal{G}, V)$, where:

- $(\mathcal{M}, \mathcal{G})$ is a connected, oriented and borderless Riemann surface (called scalar manifold)
- $V \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R})$ is a smooth function (called scalar potential).

Assumptions

(1) $(\mathcal{M}, \mathcal{G})$ is complete (this ensures conservation of energy)
(2) $V>0$ on \mathcal{M} (this avoids technical problems but can be relaxed)

Each scalar triple defines a model of gravity coupled to scalar fields on \mathbb{R}^{4} :

$$
\mathcal{S}_{\mathcal{M}, \mathcal{G}, V}[g, \varphi]=\int_{\mathbb{R}^{4}} \mathrm{~d}^{4} x \sqrt{|g|}\left[\frac{M^{2}}{2} R(g)-\frac{1}{2} \operatorname{Tr}_{g} \varphi^{*}(\mathcal{G})-V \circ \varphi\right]
$$

Define the rescaled Planck mass $M_{0} \stackrel{\text { def. }}{=} \sqrt{\frac{2}{3}} M$, where M is the reduced Planck mass. Take g to describe a spatially flat FLRW universe:

$$
\mathrm{d} s_{g}^{2}:=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \vec{x}^{2} \quad\left(x^{0}=t \quad, \quad \vec{x}=\left(x^{1}, x^{2}, x^{3}\right) \quad, \quad a(t)>0 \forall t\right)
$$

and φ to depend only on the cosmological time: $\varphi=\varphi(t)$.

The cosmological equation and geometric dynamical system

Define the Hubble parameter $H(t) \stackrel{\text { def. }}{=} \frac{\partial(t)}{\partial(t)}$ and the rescaled Hubble function:

$$
\mathcal{H}: T \mathcal{M} \rightarrow \mathbb{R}_{>0}, \quad \mathcal{H}(u) \stackrel{\text { def. }}{=} \frac{1}{M_{0}} \sqrt{\|u\|^{2}+2 V(\pi(u))} \forall u \in T \mathcal{M},
$$

where $\pi: T \mathcal{M} \rightarrow \mathcal{M}$ is the bundle projection.

Proposition

When $\mathrm{H}>0$, the equations of motion are equivalent with the cosmological equation:

$$
\nabla_{t} \dot{\varphi}(t)+\frac{1}{M_{0}} \mathcal{H}(\dot{\varphi}(t)) \dot{\varphi}(t)+\left(\operatorname{grad}_{\mathcal{G}} V\right)(\varphi(t))=0
$$

together with the Hubble condition:

$$
H(t)=\frac{1}{3 M_{0}} \mathcal{H}(\dot{\varphi}(t)) .
$$

The solutions $\varphi: I \rightarrow \mathcal{M}$ of the cosmological equation are called cosmological curves. The cosmological equation defines an autonomous dissipative geometric dynamical system on $T \mathcal{M}$.

For simplicity, we take $M=1$ i.e. $M_{0}=\sqrt{\frac{2}{3}}$.

The adiabatic and enthropic equations
Let (T, N) be the positive Frenet frame of a cosmological curve $\varphi: I \rightarrow \mathcal{M}$:

$$
T(t) \stackrel{\text { def. }}{=} \frac{\dot{\varphi}(t)}{\|\dot{\varphi}(t)\|} \quad, \quad N(t)=-J T(t)
$$

where $J \in \operatorname{End}(T \mathcal{M})$ is the complex structure determined on \mathcal{M} by the conformal class of \mathcal{G} :

$$
\omega(u, v)=\mathcal{G}(u, J v), \quad \text { where } \omega \stackrel{\text { def. }}{=} \operatorname{vol}_{\mathcal{G}}
$$

and let σ be an increasing proper legth parameter for φ :

$$
\mathrm{d} \sigma=\|\dot{\varphi}(t)\| \mathrm{d} t
$$

Projecting the cosmological equation along T and N gives repectively the adiabatic and ethropic equations:

$$
\ddot{\sigma}+\frac{1}{M_{0}} \mathcal{H}(\sigma, \dot{\sigma}) \dot{\sigma}+V_{T}(\sigma)=0 \quad, \quad \Omega(\sigma)=\frac{V_{N}(\sigma)}{\dot{\sigma}}
$$

where

$$
\begin{gathered}
\mathcal{H}(\sigma, \dot{\sigma})=\sqrt{\dot{\sigma}^{2}+2 V(\sigma)} \\
V_{T}(\sigma) \stackrel{\text { def. }}{=}(\mathrm{d} V)(\varphi(\sigma))(T(\sigma)), \quad V_{N}(\sigma) \stackrel{\text { def. }}{=}(\mathrm{d} V)(\varphi(\sigma))(N(\sigma))
\end{gathered}
$$

and we defined the signed turn rate of φ through:

$$
\Omega(t) \stackrel{\text { def. }}{=}-\mathcal{G}\left(N, \nabla_{t} T\right)
$$

Kinematic parameters

Definition

Consider the following functions of t associated to the cosmological curve φ :

- Define the first, second and third Hubble slow roll parameters:

$$
\varepsilon=-\frac{\dot{H}}{H^{2}} \quad, \quad \eta_{\|}=-\frac{\ddot{\sigma}}{H \dot{\sigma}} \quad, \quad \xi=\frac{\dddot{\sigma}}{H^{2} \dot{\sigma}} .
$$

- The first and second turn parameters:

$$
\eta_{\perp} \stackrel{\text { def. }}{=} \frac{\Omega}{H} \quad, \quad \nu \stackrel{\text { def. }}{=} \frac{\dot{\eta_{\perp}}}{H \eta_{\perp}} .
$$

- The first IR parameter κ and the conservative parameter c :

$$
\kappa \stackrel{\text { def. }}{=} \frac{\dot{\sigma}^{2}}{2 V}, \quad c \stackrel{\text { def. }}{=} \frac{H \dot{\sigma}}{\|\mathrm{~d} V\|}
$$

Remark

The opposite relative acceleration vector $\eta \stackrel{\text { def. }}{=}-\frac{1}{H \dot{\sigma}} \nabla_{t} \dot{\varphi}$ decomposes as $\eta=\eta_{\|} T+\eta_{\perp} N$ and we have:

$$
\varepsilon=\frac{3 \kappa}{1+\kappa}
$$

Definition

- The first, second and third slow roll conditions are the conditions $\epsilon \ll 1$, $\left|\eta_{\|}\right| \ll 1$ and $|\xi| \ll 1$.
- The second order slow roll regime is defined by the joint conditions $\epsilon \ll 1$ and $\left|\eta_{\|}\right| \ll 1$.
- The third order slow roll regime is defined by the joint conditions $\epsilon \ll 1$, $\left|\eta_{\|}\right| \ll 1$ and $|\xi| \ll 1$.

Definition

- The rapid turn condition is the condition $\left|\eta_{\perp}\right| \gg 1$.
- The sustained rapid turn regime is defined by the joint conditions $\left|\eta_{\perp}\right| \gg 1$ and $|\nu| \ll 1$.

Proposition

Suppose that the second slow roll condition $\left|\eta_{\|}\right| \ll 1$ is satisfied. Then the rapid turn condition $\left|\eta_{\perp}\right| \gg 1$ is equivalent with the conservative condition $c \ll 1$.

The adapted frame
Let $\mathcal{M}_{0} \stackrel{\text { def. }}{=}\{m \in \mathcal{M} \mid(\mathrm{d} V)(m) \neq 0\}$ be the complement of the critical locus of V.

Definition

The adapted frame of $(\mathcal{M}, \mathcal{G}, V)$ is the oriented orthonormal frame (n, τ) of \mathcal{M}_{0} defined by the vector fields:

$$
n \stackrel{\text { def. }}{=} \frac{\operatorname{grad} V}{\|\operatorname{grad} V\|}, \tau=-J n .
$$

Definition

The characteristic angle $\theta \in(-\pi, \pi]$ of φ is the angle of rotation from the adapted frame (n, τ) to the Frenet frame (T, N):

$$
T=n \cos \theta+\tau \sin \theta \quad, \quad N=-n \sin \theta+\tau \cos \theta
$$

The sign factor $s \stackrel{\text { def. }}{=} \operatorname{sign}(\sin \theta) \in\{-1,0,1\}$ is called the characteristic sign of φ.

Proposition

We have:

$$
\eta_{\|}=3+\frac{\cos \theta}{c}, \quad \eta_{\perp}=-\frac{\sin \theta}{c} .
$$

For any vector fields X, Y, we use the notation:

$$
V_{X Y} \stackrel{\text { def. }}{=} \operatorname{Hess}(V)(X, Y)
$$

where $\operatorname{Hess}(V) \stackrel{\text { def. }}{=} \nabla \mathrm{d} V$ is the Riemannian Hessian of V.

Definition

The nondegenerate locus of \mathcal{M} is the following subset of \mathcal{M}_{0} :

$$
\mathcal{U} \stackrel{\text { def. }}{=}\left\{m \in \mathcal{M}_{0} \mid \Phi_{n \tau}(m) \neq 0\right\}
$$

The scalar triple $(\mathcal{M}, \mathcal{G}, V)$ is called nondegenerate if $\mathcal{U} \neq \emptyset$.

Theorem

Suppose that $(\mathcal{M}, \mathcal{G}, \Phi)$ is nondegenerate. Then there exist basic natural observables $\hat{\varepsilon}, \hat{\eta}_{\|}, \hat{c}, \hat{\theta}: \dot{T} \mathcal{U} \rightarrow \mathbb{R}$ associated to $\varepsilon, \eta_{\|}, c$ and θ which provide local coordinates on a small enough neighborhood of each point of $\dot{T} \mathcal{U}$.

Proposition

We have:

$$
\begin{aligned}
& \frac{V_{T T}}{3 H^{2}}=\frac{\Omega^{2}}{3 H^{2}}+\varepsilon+\eta_{\|}-\frac{\xi}{3} \\
& \frac{V_{T N}}{H^{2}}=\frac{\Omega}{H}\left(3-\varepsilon-2 \eta_{\|}+\nu\right) .
\end{aligned}
$$

Theorem

Suppose that the third order slow roll conditions $\varepsilon \ll 1,\left|\eta_{\|}\right| \ll 1$ and $|\xi| \ll 1$ as well as the small rate of turn condition $|\nu| \ll 1$ are satisfied. In this case, we have $\cos \theta \approx-3 c, \sin \theta \approx s \sqrt{1-9 c^{2}}$ and:

$$
\begin{aligned}
& V_{T N}^{2} \approx 3 V V_{T T} \\
& V_{T T} \approx 9 c^{2} V_{n n}-6 s c \sqrt{1-9 c^{2}} V_{n \tau}+\left(1-9 c^{2}\right) V_{\tau \tau} \\
& V_{T N} \approx-3 s c \sqrt{1-9 c^{2}}\left(V_{\tau \tau}-V_{n n}\right)-\left(1-18 c^{2}\right) V_{n \tau}
\end{aligned}
$$

These equations admit a solution c with $c \ll 1$ iff:

$$
V_{n \tau}^{2} V_{\tau \tau} \approx 3 V V_{n n}^{2}
$$

up to corrections of order one in $\varepsilon, \eta_{\|}, \xi$ and κ.

Corollary

The cosmological curve φ satisfies the sustained rapid turn conditions with third order slow roll at cosmological time t iff the following condition is satisfied at the point $m=\varphi(t)$ of \mathcal{M}_{0} :

$$
V_{n \tau}^{2} V_{\tau \tau} \approx 3 V V_{n n}^{2} .
$$

In particular, such cosmological curves can be found only in regions of \mathcal{M}_{0} where this condition is satisfied.

Definition

The SRRT equation is the following condition which constrains target space metric \mathcal{G} and scalar potential V of the model on the noncritical submanifold \mathcal{M}_{0} :

$$
V_{n \tau}^{2} V_{\tau \tau}=3 V V_{n n}^{2}
$$

The SRRT equation can be written as nonlinear differential equation for the pair (\mathcal{G}, V) of \mathcal{M}_{0}. When \mathcal{G} is fixed, it can be viewed as a nonlinear second order PDE for V. When V is fixed, it can be viewed as a nonlinear first order PDE for the metric \mathcal{G}. Using isothermal coordinates, the latter can be writted as a contact Hamilton-Jacobi equation for the conformal factor of the metric \mathcal{G}.

Let $S \stackrel{\text { def. }}{=} \operatorname{Sym}^{2}\left(T^{*} \mathcal{M}\right)$ and $S_{+} \subset S$ be the fiber sub-bundle consisting of positive-definite tensors. When V is fixed, the SRRT equation has the form:

$$
\mathcal{F}\left(j^{1}(\mathcal{G})\right)=0,
$$

where $\mathcal{F}: j^{1}(S)_{+} \rightarrow \mathbb{R}$ is a smooth function which depends on V.
Let $L=\operatorname{det} T^{*} \mathcal{M}=\wedge^{2} T^{*} \mathcal{M}$ be the real determinant line bundle of \mathcal{M} and L_{+} be its sub-bundles of positive vectors. Fixing the complex structure J determined by \mathcal{G}, the map $\mathcal{G} \rightarrow \omega$ gives an isomorphism of fiber bundles $S_{+} \xrightarrow{\sim} L_{+}$which extends to an isomorphism $j^{1}(S)_{+} \xrightarrow{\sim} j^{1}\left(L_{+}\right)$. Use this to transport \mathcal{F} to a function $H:=H_{V}^{J}: j^{1}\left(L_{+}\right) \rightarrow \mathbb{R}$. Then the SRRT equation becomes:

$$
H\left(j^{1}(\omega)\right)=0
$$

This is a contact Hamilton-Jacobi equation for $\omega \in \Gamma\left(L_{+}\right)$relative to the Cartan contact structure of $j^{1}\left(L_{+}\right)$. H restricts to a cubic polynomial function on the fibers of the natural projection $j^{1}\left(L_{+}\right) \rightarrow L_{+}$.
In local isothermal coordinates $\left(x^{1}, x^{2}\right)$ on \mathcal{M} relative to J, we have:

$$
\mathrm{d} s_{\mathcal{G}}^{2}=e^{2 \varphi}\left(\mathrm{~d} x_{1}^{2}+\mathrm{d} x_{2}^{2}\right)
$$

and one can write this contact HJ equation as a nonlinear first order PDE for the conformal factor φ, which is cubic in the partial derivatives $\partial_{1} \varphi$ and $\partial_{2} \varphi$. The equation can be solved locally through the method of characteristics, while the Cauchy boundary value problem can be approached using the theory of viscosity solutions.

