Discrete integrable dynamical systems: geometry of invariants and symmetries

Adrian Stefan Carstea

April 8, 2024
Research Group on Geometry and Physics
(http://events.theory.nipne.ro/gap/)
NIPNE, Bucharest, Romania

- Motivation and what is integrability?
- Motivation and what is integrability?
- From discrete equations to surface theory
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Symmetries and deautonomisation
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Symmetries and deautonomisation
- Singular fibers; "phase transition" of symmetry groups
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Symmetries and deautonomisation
- Singular fibers; "phase transition" of symmetry groups
- Non-minimal surfaces and blowing-down structure
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Symmetries and deautonomisation
- Singular fibers; "phase transition" of symmetry groups
- Non-minimal surfaces and blowing-down structure
- Minimization of elliptic surfaces and higher order invariants
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Symmetries and deautonomisation
- Singular fibers; "phase transition" of symmetry groups
- Non-minimal surfaces and blowing-down structure
- Minimization of elliptic surfaces and higher order invariants
- Higher dimensional systems
- Motivation and what is integrability?
- From discrete equations to surface theory
- Singularity confinement and Painleve property (differential-discrete case)
- Elliptic surfaces
- Examples which exchange or preserve fibers
- Symmetries and deautonomisation
- Singular fibers; "phase transition" of symmetry groups
- Non-minimal surfaces and blowing-down structure
- Minimization of elliptic surfaces and higher order invariants
- Higher dimensional systems
- Complexity index and algebraic entropy; linearisable systems

What is integrability?

Well known fact:
Hamiltonian systems!
Definition:
Let M be a Poisson manifold (a manifold endowed with a bivector field - Poisson bracket) and $H \in C^{\infty}(M)$. A classical system is called integrable if the commutant of the hamiltonian H in the algebra of observables contains an abelian subalgebra of maximal possible rank.

What is integrability?

Well known fact:
Hamiltonian systems!
Definition:
Let M be a Poisson manifold (a manifold endowed with a bivector field - Poisson bracket) and $H \in C^{\infty}(M)$. A classical system is called integrable if the commutant of the hamiltonian H in the algebra of observables contains an abelian subalgebra of maximal possible rank.
All integrable systems can be directly formulated in this setting?

What is integrability?

Well known fact:
Hamiltonian systems!
Definition:
Let M be a Poisson manifold (a manifold endowed with a bivector field - Poisson bracket) and $H \in C^{\infty}(M)$. A classical system is called integrable if the commutant of the hamiltonian H in the algebra of observables contains an abelian subalgebra of maximal possible rank.
All integrable systems can be directly formulated in this setting?
NO! Examles:

- some non-autonomous systems (coming from isomonodromic deformations of linear opeartors
- some dissipative systems (Lorentz attractor-integrable case)
- some linearisable systems (Burgers equation which is also a dissipative PDE)
- discrete equations etc.

It was observed that various reductions and limits of completely integrable hamiltonian systems exhibit other interesting properties:

- existence of invariants (conservation laws) and symmetries
- existence of invariants (conservation laws) and symmetries
- hidden algebraic structure (algebraic integrable systems)
- existence of invariants (conservation laws) and symmetries
- hidden algebraic structure (algebraic integrable systems)
- specific structures of singularities in the complex domain
- existence of invariants (conservation laws) and symmetries
- hidden algebraic structure (algebraic integrable systems)
- specific structures of singularities in the complex domain
- they can be formulated as iso-spectral/iso-monodromy deformations of some linear operators (Lax operators)
- multi-hamiltonian structure (only for partial differential equations)
- existence of invariants (conservation laws) and symmetries
- hidden algebraic structure (algebraic integrable systems)
- specific structures of singularities in the complex domain
- they can be formulated as iso-spectral/iso-monodromy deformations of some linear operators (Lax operators)
- multi-hamiltonian structure (only for partial differential equations)
- specific complexity index and zero algebraic entropy (only for discrete and partial discrete equations)
- existence of multisoliton solution in Hirota bilinear formalsim (for partial differential/discrete equations)
- etc.

These aspects proved to be instrumental in alternative definitions of integrability for a larger class of dynamical systems.

- existence of invariants (conservation laws) and symmetries
- hidden algebraic structure (algebraic integrable systems)
- specific structures of singularities in the complex domain
- they can be formulated as iso-spectral/iso-monodromy deformations of some linear operators (Lax operators)
- multi-hamiltonian structure (only for partial differential equations)
- specific complexity index and zero algebraic entropy (only for discrete and partial discrete equations)
- existence of multisoliton solution in Hirota bilinear formalsim (for partial differential/discrete equations)
- etc.

These aspects proved to be instrumental in alternative definitions of integrability for a larger class of dynamical systems.
We focused mainly on direct approach to integrability, based on the study of singularities in the complex domain and systematic construction of invariants and symmetries.

- existence of invariants (conservation laws) and symmetries
- hidden algebraic structure (algebraic integrable systems)
- specific structures of singularities in the complex domain
- they can be formulated as iso-spectral/iso-monodromy deformations of some linear operators (Lax operators)
- multi-hamiltonian structure (only for partial differential equations)
- specific complexity index and zero algebraic entropy (only for discrete and partial discrete equations)
- existence of multisoliton solution in Hirota bilinear formalsim (for partial differential/discrete equations)
- etc.

These aspects proved to be instrumental in alternative definitions of integrability for a larger class of dynamical systems.
We focused mainly on direct approach to integrability, based on the study of singularities in the complex domain and systematic construction of invariants and symmetries.

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question! Is there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically?

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question! Is there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities = roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities $=$ roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities = roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+a / x_{n}=-f-\epsilon-\frac{a}{\epsilon}=\infty$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities $=$ roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+a / x_{n}=-f-\epsilon-\frac{a}{\epsilon}=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+a / x_{n+1}=-\infty-\epsilon-\frac{a}{\infty}=-\infty$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question! Is there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities $=$ roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+a / x_{n}=-f-\epsilon-\frac{a}{\epsilon}=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+a / x_{n+1}=-\infty-\epsilon-\frac{a}{\infty}=-\infty$
- $x_{n+3}=-x_{n+2}-x_{n+1}+a / x_{n+2}=\infty-\infty-\left.\frac{a}{\infty}\right|_{\epsilon \rightarrow 0} \rightarrow 0$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question!ls there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities $=$ roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+a / x_{n}=-f-\epsilon-\frac{a}{\epsilon}=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+a / x_{n+1}=-\infty-\epsilon-\frac{a}{\infty}=-\infty$
- $x_{n+3}=-x_{n+2}-x_{n+1}+a / x_{n+2}=\infty-\infty-\left.\frac{a}{\infty}\right|_{\epsilon \rightarrow 0} \rightarrow 0$
- $x_{n+4}=-x_{n+3}-x_{n+2}+a / x_{n+3}=-f$

From nonlinear discrete equations(mappings) to surface theory

The main motivation! Extend the singularity analysis to discrete equations Example:

$$
E(n) \equiv x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}
$$

Integrability here \equiv internal symmetry, existence of invariants.
Question! Is there any invariant $K_{n} \equiv K\left(x_{n}, x_{n-1}\right)$ (i.e.... $K_{n-1}=K_{n}=K_{n+1}=\ldots$)? If yes can it be computed algorithmically? Main difficulty: the discrete character because the equation is on the lattice (not local) and generic initial conditions may lead after some iterations to singularities. We look for possible sources of singularities $=$ roots of denominator. Suppose that starting from an initial condition $x_{n-1}=f$ we get $x_{n}=\epsilon \rightarrow 0$.
Iterating:

- $x_{n+1}=-x_{n}-x_{n-1}+a / x_{n}=-f-\epsilon-\frac{a}{\epsilon}=\infty$
- $x_{n+2}=-x_{n+1}-x_{n}+a / x_{n+1}=-\infty-\epsilon-\frac{a}{\infty}=-\infty$
- $x_{n+3}=-x_{n+2}-x_{n+1}+a / x_{n+2}=\infty-\infty-\left.\frac{a}{\infty}\right|_{\epsilon \rightarrow 0} \rightarrow 0$
- $x_{n+4}=-x_{n+3}-x_{n+2}+a / x_{n+3}=-f$

Singularity pattern ($f, 0, \infty, \infty, 0,-f$). So after a finite number of steps the singularities are confined and initial information is recovered- singularity confinement criterion

Singularity confinement useful for getting exact solutions of the equation: The pattern suggests the following substitution:

$$
x_{n}=\frac{F_{n-1} F_{n+2}}{F_{n} F_{n+1}}
$$

Singularity confinement useful for getting exact solutions of the equation: The pattern suggests the following substitution:

$$
x_{n}=\frac{F_{n-1} F_{n+2}}{F_{n} F_{n+1}}
$$

Introducing in the discrete derivative of the mapping we get the follwing quadrilinear expression:

$$
E(n+1)-E(n) \equiv F_{n-1}\left(F_{n+4} F_{n}-a F_{n+2}^{2}\right)-F_{n+3}\left(F_{n+2} F_{n-2}-a F_{n}^{2}\right)=0
$$

giving the following bilinear form:

$$
F_{n+2} F_{n-2}-a F_{n}^{2}-F_{n+1} F_{n-1}=0
$$

solvable in terms of Riemann theta functions (particular form of Fay identity). This aspect is extremely useful even in the case of partial differential-difference systems since it blends the confining singularities with Painleve property

Singularity Confinement-Painleve property

Question: how do we study these types of equations? They are differential-difference form and hard to apply methods of hamiltonian mechanics (to get invariants for example).
In order to avoid butterfly effect on the Riemann sheets of some branch points of the solutions we impose that in t the singular part to be at most poles
On the other hand the equations are discrete. It means that we have iterations. If the iterations does not develop indeterminacies and after a finite number of iterations the singular behaviour is confined then we are in a situation of a possible non-chaotic equation which obey the singularity confining criterion.

Singularity Confinement-Painleve property

Question: how do we study these types of equations? They are differential-difference form and hard to apply methods of hamiltonian mechanics (to get invariants for example).
In order to avoid butterfly effect on the Riemann sheets of some branch points of the solutions we impose that in t the singular part to be at most poles
On the other hand the equations are discrete. It means that we have iterations. If the iterations does not develop indeterminacies and after a finite number of iterations the singular behaviour is confined then we are in a situation of a possible non-chaotic equation which obey the singularity confining criterion. To ilustrate this let us consider,

$$
\dot{u}_{n}=u_{n}\left(u_{n+1}-u_{n-1}\right)
$$

Singularity Confinement-Painleve property

Question: how do we study these types of equations? They are differential-difference form and hard to apply methods of hamiltonian mechanics (to get invariants for example).
In order to avoid butterfly effect on the Riemann sheets of some branch points of the solutions we impose that in t the singular part to be at most poles
On the other hand the equations are discrete. It means that we have iterations. If the iterations does not develop indeterminacies and after a finite number of iterations the singular behaviour is confined then we are in a situation of a possible non-chaotic equation which obey the singularity confining criterion. To ilustrate this let us consider,

$$
\dot{u}_{n}=u_{n}\left(u_{n+1}-u_{n-1}\right)
$$

which can be written as a 2-point mapping,

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \ni\left(u_{n}, v_{n}\right) \rightarrow\left(u_{n+1}, v_{n+1}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

whose points are depeding on t :

$$
\begin{gather*}
u_{n+1}=v_{n} \tag{1}\\
v_{n+1}=\frac{\dot{v}_{n}}{v_{n}}+u_{n} \tag{2}
\end{gather*}
$$

It is obvious that if $\left(u_{n}, v_{n}\right)$ have no movable critical singularities, then the same will be true for $\left(u_{n+1}, v_{n+1}\right)$. Let us consider the simplest case, in a neighbourhood of t, to have a simple zero for v_{n} and regular u_{n}. Thus the curve $\left(u_{n}, 0\right)$ goes to a point $(0, \infty)$ which means loosing a degree of freedom (curve blow-down process). More precisely, starting as above from $\left(\tau=t-t_{0}\right)$,

$$
u_{n}=a_{0}+a_{1} \tau+O\left(\tau^{2}\right), v_{n}=\alpha \tau+\beta \tau^{2}+O\left(\tau^{3}\right)
$$

It is obvious that if $\left(u_{n}, v_{n}\right)$ have no movable critical singularities, then the same will be true for $\left(u_{n+1}, v_{n+1}\right)$. Let us consider the simplest case, in a neighbourhood of t, to have a simple zero for v_{n} and regular u_{n}. Thus the curve $\left(u_{n}, 0\right)$ goes to a point $(0, \infty)$ which means loosing a degree of freedom (curve blow-down process). More precisely, starting as above from $\left(\tau=t-t_{0}\right)$,

$$
\begin{gathered}
u_{n}=a_{0}+a_{1} \tau+O\left(\tau^{2}\right), v_{n}=\alpha \tau+\beta \tau^{2}+O\left(\tau^{3}\right) \\
\binom{a_{0}}{\alpha \tau+\ldots} \rightarrow\binom{\alpha \tau+\ldots}{\tau^{-1}+\beta / \alpha+a_{0}+\ldots} \rightarrow \\
\rightarrow\binom{\tau^{-1}+\beta / \alpha+a_{0}+\ldots}{-\tau^{-1}+\beta / \alpha+a_{0}+\ldots} \rightarrow\binom{-\tau^{-1}+\beta / \alpha+a_{0}+\ldots}{\gamma\left(a_{0}, \alpha, \beta\right) \tau+\ldots} \rightarrow\binom{\gamma\left(a_{0}, \alpha, \beta\right) \tau+\ldots}{f\left(a_{0}, \alpha, \beta\right)+\ldots}
\end{gathered}
$$

where γ, f are some finite expressions containing the parameters a_{0}, α, β etc. So in a small neighbourhood of t_{0} (where $\tau \approx 0$) we can write

It is obvious that if $\left(u_{n}, v_{n}\right)$ have no movable critical singularities, then the same will be true for $\left(u_{n+1}, v_{n+1}\right)$. Let us consider the simplest case, in a neighbourhood of t, to have a simple zero for v_{n} and regular u_{n}. Thus the curve $\left(u_{n}, 0\right)$ goes to a point $(0, \infty)$ which means loosing a degree of freedom (curve blow-down process). More precisely, starting as above from $\left(\tau=t-t_{0}\right)$,

$$
u_{n}=a_{0}+a_{1} \tau+O\left(\tau^{2}\right), v_{n}=\alpha \tau+\beta \tau^{2}+O\left(\tau^{3}\right)
$$

$$
\begin{gathered}
\binom{a_{0}}{\alpha \tau+\ldots} \rightarrow\binom{\alpha \tau+\ldots}{\tau^{-1}+\beta / \alpha+a_{0}+\ldots} \rightarrow \\
\rightarrow\binom{\tau^{-1}+\beta / \alpha+a_{0}+\ldots}{-\tau^{-1}+\beta / \alpha+a_{0}+\ldots} \rightarrow\binom{-\tau^{-1}+\beta / \alpha+a_{0}+\ldots}{\gamma\left(a_{0}, \alpha, \beta\right) \tau+\ldots} \rightarrow\binom{\gamma\left(a_{0}, \alpha, \beta\right) \tau+\ldots}{f\left(a_{0}, \alpha, \beta\right)+\ldots}
\end{gathered}
$$

where γ, f are some finite expressions containing the parameters a_{0}, α, β etc. So in a small neighbourhood of t_{0} (where $\tau \approx 0$) we can write
$\ldots \rightarrow$ regular $\rightarrow\binom{a_{0}}{0} \rightarrow\binom{0}{\infty} \rightarrow\binom{\infty}{-\infty} \rightarrow\binom{-\infty}{0} \rightarrow\binom{0}{f\left(a_{0}, \alpha, \beta\right)} \rightarrow \operatorname{reg}$
So the initial curve blows down to three points and then blows up to another curve containing initial parameters. In this way the singularity confinement is satisfied.

The backward evolution shows exactly regular evolution. Namely if

$$
\begin{gather*}
u_{n-1}=v_{n}-\frac{\dot{u}_{n}}{u_{n}} \tag{3}\\
v_{n-1}=u_{n} \tag{4}
\end{gather*}
$$

then

$$
\ldots \rightarrow \text { regular } \rightarrow \text { regular } \rightarrow\binom{a_{0}}{0} \rightarrow \ldots
$$

For higher order starting singularities $v \sim \alpha_{0} \tau^{2}$ we have bigger length:

$$
\binom{a_{0}}{0} \rightarrow\binom{0}{\infty} \rightarrow\binom{\infty}{\infty} \rightarrow\binom{\infty}{\infty} \rightarrow\binom{\infty}{\infty} \rightarrow\binom{\infty}{0} \rightarrow\binom{0^{2}}{*}
$$

This singularity pattern is crucial. It helps us to find a substitution which solves explicitly the equation
Indeed one can see immediately that for both u_{n}, v_{n} the orbit pattern is

$$
\begin{gathered}
u_{n}(t): \text {...regular } \rightarrow 0 \rightarrow \infty \rightarrow \infty \rightarrow 0 \rightarrow \text { regular... } \\
v_{n-1}(t): \ldots \text { regular } \rightarrow 0 \rightarrow \infty \rightarrow \infty \rightarrow 0 \rightarrow \text { regular... }
\end{gathered}
$$

This singularity pattern is crucial. It helps us to find a substitution which solves explicitly the equation
Indeed one can see immediately that for both u_{n}, v_{n} the orbit pattern is

$$
\begin{gathered}
u_{n}(t): \text {...regular } \rightarrow 0 \rightarrow \infty \rightarrow \infty \rightarrow 0 \rightarrow \text { regular... } \\
v_{n-1}(t): \ldots \text { regular } \rightarrow 0 \rightarrow \infty \rightarrow \infty \rightarrow 0 \rightarrow \text { regular... }
\end{gathered}
$$

So exist a function F_{n} which is holomorphic and u_{n}, v_{n} are expressed as ratios of products of such functions. Hence let us consider that u_{n} has a function F_{n} in the numerator and this F_{n} passes through 0 , so $u_{n}=0$. Because u_{n+1}, u_{n+2} are infinite then the denominator of u_{n} must have F_{n-1}, F_{n-2}. Then $u_{n+3}=0$ so at the numerator we have F_{n-3}. Accordingly one can write

$$
u_{n}=\frac{F_{n} F_{n-3}}{F_{n-1} F_{n-2}}
$$

and introducing in the equation we find the bilinear form:

$$
\left(\partial_{t} F_{n-1}\right) F_{n-2}-F_{n-1}\left(\partial_{t} F_{n-2}\right)-F_{n} F_{n-3}+F_{n-1} F_{n-2}=0
$$

which admits general multi-soliton solution i.e. general multiple collision of arbitrary solitons
and has the form:

$$
\begin{equation*}
F_{n}(t)=\sum_{\mu_{1}, \ldots, \mu_{M} \in\{0,1\}} \exp \left(\sum_{i=1}^{M} \mu_{i}\left(k_{i} n+\omega_{i} t\right)+\sum_{i<j}^{M} A_{i j} \mu_{i} \mu_{j}\right) \tag{5}
\end{equation*}
$$

and has the form:

$$
\begin{equation*}
F_{n}(t)=\sum_{\mu_{1}, \ldots, \mu_{M} \in\{0,1\}} \exp \left(\sum_{i=1}^{M} \mu_{i}\left(k_{i} n+\omega_{i} t\right)+\sum_{i<j}^{M} A_{i j} \mu_{i} \mu_{j}\right) \tag{5}
\end{equation*}
$$

with the dispersion relation and interaction phase given by

$$
\begin{gathered}
\omega_{i} \equiv \omega\left(k_{i}\right)=2 \sinh \left(k_{i}\right) \\
\exp A_{i j}=\frac{-\cosh \left(\left(k_{i}-k_{j}\right) / 2\right)+\cosh \left(3 / 2\left(k_{i}-k_{j}\right)\right)+\left(-\omega_{i}+\omega_{j}\right) \sinh \left(\left(k_{i}-k_{j}\right) / 2\right)}{\cosh \left(\left(k_{i}+k_{j}\right) / 2\right)-\cosh \left(3 / 2\left(k_{i}+k_{j}\right)\right)+\left(\omega_{i}+\omega_{j}\right) \sinh \left(\left(k_{i}+k_{j}\right) / 2\right)}
\end{gathered}
$$

More general in the case of periodic solutions we have expressed using again Riemann Theta function (the so called g-phase solution)

$$
F_{n}(t)=\Theta\left(k_{1} n+\omega_{1} t, \ldots, k_{g} n+\omega_{g} t \mid \mathbb{B}\right)
$$

with the disperion relation given by

$$
\omega_{i}=\omega\left(k_{i}\right)=\frac{\Theta[1,1]\left(k_{i} \mid \mathbb{B}\right)}{\partial_{k_{i}} \Theta[1,1](0 \mid \mathbb{B})}
$$

The matrix \mathbb{B} has a more complicated structure, being the period matrix for a suitable Riemann surface of genus g

Let us go back to our 2-dimensional example. It can be written as:

$$
\phi:\left\{\begin{array}{lll}
x_{n+1} & =y_{n} \tag{6}\\
y_{n+1} & = & -x_{n}-y_{n}+\frac{a}{y_{n}}
\end{array}\right.
$$

seen as a chain of birational mappings $\ldots \rightarrow(\underline{x}, \underline{y}) \rightarrow(x, y) \rightarrow(\bar{x}, \bar{y}) \rightarrow \ldots$ where $\underline{x}=x_{n-1}, x=x_{n}, \bar{x}=x_{n+1}$ and so on.
Each step is an automorphism of the field of rational functions $\mathbb{C}(x, y)$

Let us go back to our 2-dimensional example. It can be written as:

$$
\phi:\left\{\begin{array}{lll}
x_{n+1} & =y_{n} \tag{6}\\
y_{n+1} & = & -x_{n}-y_{n}+\frac{a}{y_{n}}
\end{array}\right.
$$

seen as a chain of birational mappings $\ldots \rightarrow(\underline{x}, \underline{y}) \rightarrow(x, y) \rightarrow(\bar{x}, \bar{y}) \rightarrow \ldots$ where $\underline{x}=x_{n-1}, x=x_{n}, \bar{x}=x_{n+1}$ and so on.
Each step is an automorphism of the field of rational functions $\mathbb{C}(x, y)$
Singularity confinement:

$$
\underbrace{(f, 0)}_{\left(x_{0}, y_{0}\right)} \rightarrow \underbrace{(0, \infty)}_{\left(x_{1}, y_{1}\right)} \rightarrow \underbrace{(\infty,-\infty)}_{\left(x_{2}, y_{2}\right)} \rightarrow \underbrace{(-\infty, 0)}_{\left(x_{3}, y_{3}\right)} \rightarrow \underbrace{(0,-f)}_{\left(x_{4}, y_{4}\right)}
$$

and the mechanism is the follwing:
If $\left(x_{0}, y_{0}\right)=(f, \epsilon)$ then the following products are finite

$$
x_{1} y_{1}=a+O(\epsilon), \quad \frac{x_{2}}{y_{2}}=-1+O(\epsilon), \quad x_{3} y_{3}=-a+O(\epsilon)
$$

So lets construct a surface by glueing

$$
\mathbb{C}^{2} \cup \mathbb{C}^{2}=\left(\frac{1}{x_{2}}, \frac{x_{2}}{y_{2}}\right) \cup\left(\frac{y_{2}}{x_{2}}, \frac{1}{y_{2}}\right)
$$

So lets construct a surface by glueing

$$
\mathbb{C}^{2} \cup \mathbb{C}^{2}=\left(\frac{1}{x_{2}}, \frac{x_{2}}{y_{2}}\right) \cup\left(\frac{y_{2}}{x_{2}}, \frac{1}{y_{2}}\right)
$$

But this is nothing but blow up of the affine space $\operatorname{Spec} \mathbb{C}[X, Y]$ with the center $(X, Y)=(0,0)$ which gives the surface $(Y=1 / y, X=1 / x)$:

$$
\begin{gathered}
\mathcal{X}=\left\{\left(X, Y,\left[z_{0}: z_{1}\right]\right) \in \operatorname{Spec} \mathbb{C}[X, Y] \times \mathbb{P}^{1} \mid X_{z_{0}}=Y z_{1}\right\}= \\
=\operatorname{Spec} \mathbb{C}[1 / x, x / y] \cup \operatorname{Spec} \mathbb{C}[1 / y, y / x]
\end{gathered}
$$

So lets construct a surface by glueing

$$
\mathbb{C}^{2} \cup \mathbb{C}^{2}=\left(\frac{1}{x_{2}}, \frac{x_{2}}{y_{2}}\right) \cup\left(\frac{y_{2}}{x_{2}}, \frac{1}{y_{2}}\right)
$$

But this is nothing but blow up of the affine space $\operatorname{Spec} \mathbb{C}[X, Y]$ with the center $(X, Y)=(0,0)$ which gives the surface $(Y=1 / y, X=1 / x)$:

$$
\begin{gathered}
\mathcal{X}=\left\{\left(X, Y,\left[z_{0}: z_{1}\right]\right) \in \operatorname{Spec} \mathbb{C}[X, Y] \times \mathbb{P}^{1} \mid X_{z_{0}}=Y z_{1}\right\}= \\
=\operatorname{Spec} \mathbb{C}[1 / x, x / y] \cup \operatorname{Spec} \mathbb{C}[1 / y, y / x]
\end{gathered}
$$

So by blowing up \mathbb{C}^{2} in the points
$\left(x_{1}, y_{1}\right)=(0, \infty),\left(x_{2}, y_{2}\right)=(\infty, \infty),\left(x_{3}, y_{3}\right)=(\infty, 0)$ the equation then make sense on this new surface.
Accordingly we do analize any discrete order two nonlinear equation by identifying the singularities and blow them up.
From now on we shall replace \mathbb{C}^{2} with $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and any nonlinear equation will be a birational mapping $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ After blowing up the singular points we get a surface X and our mapping is lifted to a regular mapping:

$$
\varphi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above
- integrability $=$ Weyl group of affine type (and S is a rational elliptic surface)

Algorithm for analysing mappings

- check if $\varphi: X \rightarrow X$ is free from singularities. If no, then do another series of blow ups and so on, until we get finally a new final surface S and the final mapping $\varphi: S \rightarrow S$ without any singularity
- from the nonlinear mapping we go to the induced bundle mapping $\varphi_{*}: \operatorname{Pic}(S) \rightarrow \operatorname{Pic}(S)$ whose action on the Picard group is linear.
- in the $\operatorname{Pic}(S)$ where the dynamics is linear one can find invariants, type of surface, and Weyl group (as the orthogonal complement of the surface Dynkin diagram)
- back to the nonlinear world, by computing the real invariants as proper transforms of the those found above
- integrability $=$ Weyl group of affine type (and S is a rational elliptic surface)
- linearisability $=$ infinite number of blow ups, analytical stability, ruled surface S

Rational elliptic surface:

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves (self-intersection $=-1$).

Rational elliptic surface:

A complex surface X is called a rational elliptic surface if there exists a fibration given by the morphism: $\pi: X \rightarrow \mathbb{P}^{1}$ such that:

- for all but finitely many points $k \in \mathbb{P}^{1}$ the fibre $\pi^{-1}(k)$ is an elliptic curve
- π is not birational to the projection : $E \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ for any curve E
- no fibers contains exceptional curves (self-intersection $=-1$).

Halphen surface of index m: A rational surface X is called a Halphen surface of index m if the anticanonical divisor class $-K_{X}$ is decomposed into prime divisors as $\left[-K_{X}\right]=D=\sum m_{i} D_{i}\left(m_{i} \geq 1\right)$ such that $D_{i} \cdot K_{X}=0$ Halphen surfaces can be obtained from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by succesive 8 blow-ups. In addition the dimension of the linear system $\left|-k K_{X}\right|$ is zero for $k=1, \ldots, m-1$ and 1 for $k=m$. Here, the linear system $\left|-m K_{X}\right|$ is the set of curves on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of degree $(2 m, 2 m)$ passing through each point of blow-up with multiplicity m.

Singularities, surfaces and invariants

Basic example:

$$
\begin{equation*}
x_{n+1}=-x_{n-1} \frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)}{\left(x_{n}+a\right)\left(x_{n}+1 / a\right)} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=y \\
& \bar{y}=-x \frac{(y-a)(y-1 / a)}{(y+a)(y+1 / a)} \tag{8}
\end{align*}
$$

Singularities, surfaces and invariants

Basic example:

$$
\begin{equation*}
x_{n+1}=-x_{n-1} \frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)}{\left(x_{n}+a\right)\left(x_{n}+1 / a\right)} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=y \\
& \bar{y}=-x \frac{(y-a)(y-1 / a)}{(y+a)(y+1 / a)} \tag{8}
\end{align*}
$$

Indeterminate points for ϕ and ϕ^{-1} :

$$
\begin{array}{rc}
E_{1}:(x, y)=(0,-a), & E_{2}:(x, y)=(0,-1 / a) \\
E_{3}:(X, y)=(0, a), & E_{4}:(X, y)=(0,1 / a) \\
E_{5}:(x, y)=(a, 0), & E_{6}:(x, y)=(1 / a, 0) \\
E_{7}:(x, Y)=(-a, 0), & E_{8}:(x, Y)=(-1 / a, 0)
\end{array}
$$

Figure: Space of initial conditions and orthogonal complement

Blow up $\left.(x, y)\right|_{E_{1}=(0,-a)} \leftarrow(x,(y+a) / x) \cup(x /(y+a), y+a):=\left(u_{1}, v_{1}\right) \cup\left(U_{1}, V_{1}\right)$ The exceptional divizor E_{1} is given by the equation $u_{1}=0$ or $V_{1}=0$

The Picard group of \mathcal{X} is a \mathbb{Z}-module

$$
\operatorname{Pic}(\mathcal{X})=\mathbb{Z} \mathcal{H}_{x} \oplus \mathbb{Z} \mathcal{H}_{y} \oplus \bigoplus_{i=1}^{8} \mathbb{Z} \mathcal{E}_{i}
$$

$\mathcal{H}_{x}, \mathcal{H}_{y}$ are divizzor classes of horizontal and vertical lines $x=$ const., $y=$ const. \mathcal{E}_{i} is the class of the exceptional divizor. Elements of the divizor classes are written with normal characters e.g. $H_{x=0} \in \mathcal{H}_{x}$ is the total transform of the line $x=0$ The intersection form:

$$
\mathcal{H}_{x} \cdot \mathcal{H}_{y}=1, \quad \mathcal{E}_{i} \cdot \mathcal{E}_{j}=-\delta_{i j}, \quad \mathcal{H}_{x} \cdot \mathcal{E}_{k}=\mathcal{H}_{y} \cdot \mathcal{E}_{k}=\mathcal{H}_{x} \cdot \mathcal{H}_{x}=0
$$

. Anti-canonical divisor of X (the pole-divisor of invariant symplectic form $\omega=d x \wedge d y / x y)$:

$$
-K_{\mathcal{X}}=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}-\sum_{i=1}^{8} \mathcal{E}_{i}
$$

Singularity confining:

$$
\begin{aligned}
(f, a) \rightarrow(a, 0) & \rightarrow(0,-a) \rightarrow(-a, f) \Longleftrightarrow H_{y}-E_{3} \rightarrow E_{5} \rightarrow E_{1} \rightarrow H_{x}-E_{7} \\
(f, 1 / a) \rightarrow(1 / a, 0) & \rightarrow(0,-1 / a) \rightarrow(-1 / a, f) \Longleftrightarrow H_{y}-E_{4} \rightarrow E_{6} \rightarrow E_{2} \rightarrow H_{x}-E_{8}
\end{aligned}
$$

On the Picard lattice $\operatorname{Pic}(\mathcal{X})$ of the surface, $\operatorname{Pic}(\mathcal{X})=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right\}$, the push-forward and the pull-back actions of the mapping are given by (here $\left.\phi_{*}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}(\overline{\mathcal{X}}), \phi^{*}: \operatorname{Pic}(\overline{\mathcal{X}}) \rightarrow \operatorname{Pic}(\mathcal{X})\right)$

$$
\begin{array}{ll}
& \mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{y}, \quad \mathcal{H}_{y} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}-\overline{\mathcal{E}}_{2}-\overline{\mathcal{E}}_{5}-\overline{\mathcal{E}}_{6}, \\
\varphi_{*}: & \mathcal{E}_{1} \mapsto \overline{\mathcal{E}}_{4}, \quad \mathcal{E}_{2} \mapsto \overline{\mathcal{E}}_{3}, \quad \mathcal{E}_{3} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}, \quad \mathcal{E}_{4} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{2}, \\
& \mathcal{E}_{5} \mapsto \overline{\mathcal{E}}_{8}, \quad \mathcal{E}_{6} \mapsto \overline{\mathcal{E}}_{7}, \quad \mathcal{E}_{7} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{5}, \quad \mathcal{E}_{8} \mapsto \overline{\mathcal{H}}_{y} \\
& \\
& \overline{\mathcal{H}}_{x} \mapsto 2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7}-\mathcal{E}_{8}, \quad \overline{\mathcal{H}}_{y} \mapsto \mathcal{H}_{x} \tag{10}\\
\varphi^{*}: & \overline{\mathcal{E}}_{1} \mapsto \mathcal{H}_{x}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{2} \mapsto \mathcal{H}_{x}-\mathcal{E}_{4}, \quad \quad \overline{\mathcal{E}}_{3} \mapsto \mathcal{E}_{2}, \quad \quad \overline{\mathcal{E}}_{4} \mapsto \mathcal{E}_{1} \\
& \overline{\mathcal{E}}_{5} \mapsto \mathcal{H}_{x}-\mathcal{E}_{7}, \quad \overline{\mathcal{E}}_{6} \mapsto \mathcal{H}_{x}-\mathcal{E}_{8}, \quad \quad \overline{\mathcal{E}}_{7} \mapsto \mathcal{E}_{6}, \quad \overline{\mathcal{E}}_{8} \mapsto \mathcal{E}_{5} .
\end{array}
$$

On the Picard lattice $\operatorname{Pic}(\mathcal{X})$ of the surface, $\operatorname{Pic}(\mathcal{X})=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right\}$, the push-forward and the pull-back actions of the mapping are given by (here $\left.\phi_{*}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}(\overline{\mathcal{X}}), \phi^{*}: \operatorname{Pic}(\overline{\mathcal{X}}) \rightarrow \operatorname{Pic}(\mathcal{X})\right)$

$$
\begin{array}{ll}
& \mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{y}, \quad \mathcal{H}_{y} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}-\overline{\mathcal{E}}_{2}-\overline{\mathcal{E}}_{5}-\overline{\mathcal{E}}_{6}, \\
\varphi_{*}: & \mathcal{E}_{1} \mapsto \overline{\mathcal{E}}_{4}, \quad \mathcal{E}_{2} \mapsto \overline{\mathcal{E}}_{3}, \quad \mathcal{E}_{3} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}, \quad \mathcal{E}_{4} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{2}, \\
& \mathcal{E}_{5} \mapsto \overline{\mathcal{E}}_{8}, \quad \mathcal{E}_{6} \mapsto \overline{\mathcal{E}}_{7}, \quad \mathcal{E}_{7} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{5}, \quad \overline{\mathcal{E}}_{8} \mapsto \overline{\mathcal{E}}_{y} \\
& \\
& \overline{\mathcal{H}}_{x} \mapsto 2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7}-\overline{\mathcal{E}}_{8}, \quad \overline{\mathcal{H}}_{y} \mapsto \mathcal{H}_{x} \tag{10}\\
\varphi^{*}: & \overline{\mathcal{E}}_{1} \mapsto \mathcal{H}_{x}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{2} \mapsto \mathcal{H}_{x}-\mathcal{E}_{4}, \quad \quad \overline{\mathcal{E}} 3 \mapsto \mathcal{E}_{2}, \quad \quad \overline{\mathcal{E}}_{4} \mapsto \mathcal{E}_{1} \\
& \overline{\mathcal{E}}_{5} \mapsto \mathcal{H}_{x}-\mathcal{E}_{7}, \quad \overline{\mathcal{E}}_{6} \mapsto \mathcal{H}_{x}-\mathcal{E}_{8}, \quad \quad \overline{\mathcal{E}}_{7} \mapsto \mathcal{E}_{6}, \quad \overline{\mathcal{E}}_{8} \mapsto \mathcal{E}_{5} .
\end{array}
$$

One can see that both φ^{*} and φ_{*} are linear mappings on the divisor classes. So, the eigenvector with eigenvalue 1 , will be the divisor corresponding to a conservation law (only if its dimension in NOT zero). Indeed one can see imediately that:

$$
2 \bar{H}_{x}+2 \bar{H}_{y}-\sum_{i=1}^{8} \bar{E}_{i}=2 H_{x}+2 H_{y}-\sum_{i=1}^{8} E_{i} \equiv-K_{\mathcal{X}}
$$

It preserves a decomposition of $-K_{X}=\sum_{i=0}^{3} D_{i}$ (which is not unique):

$$
\begin{aligned}
& D_{0}=H_{x}-E_{1}-E_{2}, D_{1}=H_{y}-E_{5}-E_{6} \\
& D_{2}=H_{x}-E_{3}-E_{4}, D_{3}=H_{y}-E_{7}-E_{8}
\end{aligned}
$$

there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any $k=\alpha /$ beta).

$$
\begin{aligned}
F \equiv & \alpha x y+\beta a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 \\
& \Leftrightarrow k x y+a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0
\end{aligned}
$$

there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any $k=\alpha /$ beta).

$$
\begin{aligned}
F \equiv & \alpha x y+\beta a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 \\
& \Leftrightarrow k x y+a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 .
\end{aligned}
$$

- this family of curves defines an invariant elliptic fibration $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$ (a rational elliptic surface).
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any $k=\alpha /$ beta).

$$
\begin{aligned}
F \equiv & \alpha x y+\beta a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 \\
& \Leftrightarrow k x y+a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 .
\end{aligned}
$$

- this family of curves defines an invariant elliptic fibration $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$ (a rational elliptic surface).
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchanges fibers of the elliptic fibration)
there are many elliptic curves corresponding to the this anti-canonical class (these curves pass through all E_{i} for any $k=\alpha /$ beta).

$$
\begin{aligned}
F \equiv & \alpha x y+\beta a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 \\
& \Leftrightarrow k x y+a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0 .
\end{aligned}
$$

- this family of curves defines an invariant elliptic fibration $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$ (a rational elliptic surface).
- anti-canonical class is preserved by the mapping, the linear system is not. More precisely the action changes k in $-k$ (the mapping exchanges fibers of the elliptic fibration)
So the conservation law will be:

$$
I=\left(\frac{a^{-1}(a x y+x+y-a)(x y+a x+a y-1)}{x y}\right)^{2}
$$

The curve F can be transformed to a Weierstrass form and from the zeros of elliptic discriminant we get the singular fibers. From them one can write various decompositions of anti-canonical divisor. THis is used for deautonomisation.

Symmetries

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i}, \quad<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
$$

Symmetries

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i}, \quad<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
$$

which have 6-generators:

$$
\begin{gathered}
<D>^{\perp}=<\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}>_{\mathbb{Z}} \\
\alpha_{0}=E_{4}-E_{3}, \alpha_{1}=E_{1}-E_{2}, \alpha_{2}=H_{1}-E_{1}-E_{5} \\
\alpha_{3}=H_{0}-E_{3}-E_{7}, \alpha_{4}=E_{5}-E_{6}, \alpha_{5}=E_{8}-E_{7}
\end{gathered}
$$

Symmetries

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i}, \quad<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
$$

which have 6-generators:

$$
\begin{gathered}
<D>^{\perp}=<\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}>_{\mathbb{Z}} \\
\alpha_{0}=E_{4}-E_{3}, \alpha_{1}=E_{1}-E_{2}, \alpha_{2}=H_{1}-E_{1}-E_{5} \\
\alpha_{3}=H_{0}-E_{3}-E_{7}, \alpha_{4}=E_{5}-E_{6}, \alpha_{5}=E_{8}-E_{7}
\end{gathered}
$$

Lattice $\langle D\rangle$ is called surface sub-lattice and $<D\rangle^{\perp}$ is called symmetry sub-lattice. With respect to intersection form the symmetry sub-lattice can be viewed as a Weyl group with the roots α_{i} and Cartan matrix $c_{j i}=2\left(\alpha_{j} \cdot \alpha_{i}\right) /\left(\alpha_{i} \cdot \alpha_{i}\right)$. Elementary reflections:

$$
\begin{gathered}
w_{i}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}(\mathcal{X}), w_{i}\left(\alpha_{j}\right)=\alpha_{j}-c_{i j} \alpha_{i} \\
w_{i}(D)=\alpha_{j}-2\left(D \cdot \alpha_{i}\right) \alpha_{i} /\left(\alpha_{i} \cdot \alpha_{i}\right)=D
\end{gathered}
$$

Symmetries

$$
\operatorname{rankPic}(X)=\operatorname{rank}<H_{0}, H_{1}, E_{1}, \ldots E_{8}>_{\mathbb{Z}}=10
$$

Define:

$$
<D>=\sum_{i=0}^{3} \mathbb{Z} D_{i}, \quad<D>^{\perp}=\left\{\alpha \in \operatorname{Pic}(X) \mid \alpha \cdot D_{i}=0, i=0,3\right\}
$$

which have 6-generators:

$$
\begin{gathered}
<D>^{\perp}=<\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}>_{\mathbb{Z}} \\
\alpha_{0}=E_{4}-E_{3}, \alpha_{1}=E_{1}-E_{2}, \alpha_{2}=H_{1}-E_{1}-E_{5} \\
\alpha_{3}=H_{0}-E_{3}-E_{7}, \alpha_{4}=E_{5}-E_{6}, \alpha_{5}=E_{8}-E_{7}
\end{gathered}
$$

Lattice $\langle D\rangle$ is called surface sub-lattice and $<D\rangle^{\perp}$ is called symmetry sub-lattice. With respect to intersection form the symmetry sub-lattice can be viewed as a Weyl group with the roots α_{i} and Cartan matrix $c_{j i}=2\left(\alpha_{j} \cdot \alpha_{i}\right) /\left(\alpha_{i} \cdot \alpha_{i}\right)$. Elementary reflections:

$$
\begin{gathered}
w_{i}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}(\mathcal{X}), w_{i}\left(\alpha_{j}\right)=\alpha_{j}-c_{i j} \alpha_{i} \\
w_{i}(D)=\alpha_{j}-2\left(D \cdot \alpha_{i}\right) \alpha_{i} /\left(\alpha_{i} \cdot \alpha_{i}\right)=D
\end{gathered}
$$

Because w_{i} does not affect the surface, it preserves the surface so it is a symmetry and accordingly the mapping can be expressed as a combinations of elementary reflections in the Weyl group (in our case $D_{5}^{(1)}$)

This extended Weyl group becomes the group of Cremona isometries for the space \mathcal{X} since:

- preserves the intersection form

This extended Weyl group becomes the group of Cremona isometries for the space \mathcal{X} since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)

This extended Weyl group becomes the group of Cremona isometries for the space \mathcal{X} since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

This extended Weyl group becomes the group of Cremona isometries for the space \mathcal{X} since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

This extended Weyl group becomes the group of Cremona isometries for the space \mathcal{X} since:

- preserves the intersection form
- canonical divisor K_{X} (which is nothing but the null vector δ of the Cartan matrix)
- semigroup of effective classes of divisors

Accordingly our mapping lives in a Weyl group and has the following decomposition in elementary reflections:

$$
\phi_{*}=\sigma_{t o t} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}
$$

All elements $\omega \in \widetilde{W}\left(D_{5}^{(1)}\right)$ which commutes with ϕ_{*}, namely ($\omega \circ \phi_{*}=\phi_{*} \circ \omega$) form the symmetries of the mapping.
The equation is related to the translations in this affine Weyl group. In general for an affine Weyl group with null vector δ the traslation of an element D with respect to the root α_{i} is given by

$$
t_{\alpha_{i}}: D \rightarrow D-(D, \delta) \alpha_{i}+\left(D, \alpha_{i}+\delta\right) \delta
$$

and our mapping is "the fourth root" of a translation:

$$
\phi_{*}^{4} \equiv t_{\alpha_{3}} \circ t_{\alpha_{3}} \circ t_{\alpha_{4}} \circ t_{\alpha_{5}}=t_{2 \alpha_{3}+\alpha_{4}+\alpha_{5}}
$$

Moving blowing-up points $=$ deautonomisation

This extended affine Weyl group can be realized as an automorphism of a family of generalized Halphen surfaces which are obtained by allowing the points of blow-ups to move so that they preserve the decomposition of $-K_{X}$ and the action on the Picard group.

$$
\begin{aligned}
& E_{1}:(x, y)=\left(0, a_{1}\right), \quad E_{2}:(x, y)=\left(0, a_{2}\right) \\
& E_{3}:(X, y)=\left(0, a_{3}\right), \quad E_{4}:(X, y)=\left(0, a_{4}\right) \\
& E_{5}:(x, y)=\left(a_{5}, 0\right), \\
& E_{6}:(x, y)=\left(a_{6}, 0\right) \\
& E_{7}:(x, Y)=\left(a_{7}, 0\right), \\
& E_{8}:(x, Y)=\left(a_{8}, 0\right)
\end{aligned}
$$

which can be normalized as $a_{1} a_{2} a_{3} a_{4}=a_{5} a_{6} a_{7} a_{8}=1$. Accordingly, our mapping lives in an extended affine Weyl group $\tilde{W}\left(D_{5}^{(1)}\right)$ and deautonomized as

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, q\right) \rightarrow\left(\frac{-1}{a_{6} \sqrt{q}}, \frac{-1}{a_{5} \sqrt{q}}, \frac{-\sqrt{q}}{a_{8}}, \frac{-\sqrt{q}}{a_{7}}, a_{3}, a_{4}, a_{1}, a_{2}, q\right)
$$

and $q=\left(a_{1} a_{2} a_{7} a_{8}\right) /\left(a_{3} a_{4} a_{5} a_{6}\right)$. The mapping turns into a q-Painleve equation:

$$
\begin{gathered}
x_{n+1}=a_{1}(n) a_{2}(n) y_{n} \\
y_{n+1}=-x_{n} \frac{\left(y_{n}-a_{3}(n)\right)\left(y_{n}-a_{4}(n)\right)}{\left(y_{n}-a_{1}(n)\right)\left(y_{n}-a_{2}(n)\right)}
\end{gathered}
$$

Singular fibers; "symmetry-phase transitions"

The elliptic curve:

$$
F \equiv \alpha x y+\beta a^{-1}(a x y+x+y-a)(x y+a x+a y-1)=0
$$

can be put in a Weierstarss form (using Möbius tranformations):

$$
Y^{2}=4 X^{3}-g_{1} X-g_{2}
$$

where g_{1}, g_{2} depends on $k=\alpha /$ beta. The values of k which are solutions of $\Delta(k) \equiv g_{1}^{3}-27 g_{2}^{2}=0$ give the singlar fibers of the elliptic curve. For any of these values of k the surface sub-lattice is different and, accordingly the symmetry group will be different. So for these initial conditions of the dynamical system $x(0), y(0)$ which give the value of k singular fibers, the symmetry group is changed \equiv "phase transition" In our case the singular fibers are (with multiplicities):

$$
k=0, k=\infty, k= \pm 4 i\left(a+a^{-1}\right), k=\left(a-a^{-1}\right)^{2}
$$

So for $k=0$ we have $F=(a x y+x+y-a)(x y+a x+a y-1)$ and accordingly
$-K_{\mathcal{X}}=D_{0}+D_{1}$, with $D_{0}=H_{x}+H_{y}-E_{1}-E_{3}-E_{6}-E_{8}, D_{1}=H_{x}+H_{y}-E_{2}-E_{4}-E_{5}-E_{7}$

So, $\langle D\rangle=\mathbb{Z} D_{0}+\mathbb{Z} D_{1}, \quad<D>^{\perp}=\operatorname{Span}_{\mathbb{Z}}\left\{\alpha_{0}, \ldots, \alpha_{7}\right\} \equiv E_{7}^{(1)}$ and the roots of $E_{7}^{(1)}$ are

$$
\begin{gathered}
\alpha_{0}=H_{x}-H_{y}, \alpha_{1}=E_{6}-E_{8}, \alpha_{2}=E_{3}-E_{6}, \alpha_{3}=E_{1}-E_{3} \\
\alpha_{4}=H_{y}-E_{1}-E_{2}, \alpha_{5}=E_{2}-E_{4}, \alpha_{6}=E_{4}-E_{5}, \alpha_{7}=E_{5}-E_{7}
\end{gathered}
$$

and the pull-back mapping

$$
\left(\varphi^{4}\right)^{*}:\left(\overline{\alpha_{0}}, \ldots, \overline{\alpha_{7}}\right) \rightarrow\left(\alpha_{0}, \ldots, \alpha_{7}\right)+(2,1,-1,1,-2,1,-1,1) K_{\mathcal{X}}
$$

is a translation in $E_{7}^{(1)}$ and the push-forward can be written in terms of reflections as

$$
\varphi_{*}=\sigma w_{1} w_{2} w_{3} w_{2} w_{0} w_{5} w_{4} w_{3} w_{7} w_{6} w_{5} w_{6} w_{4} w_{3} w_{2}
$$

and the reflection symmetry given by the exchanging $\sigma=(17)(26)(35)$ In general here we have:

- generic k and $k= \pm 4 i\left(a+a^{-1}\right):-K_{\mathcal{X}}=D_{0} \quad<D>^{\perp}=E_{8}^{(1)}$
- $k=0$ and $k= \pm\left(a-a^{-1}\right)^{2}: \quad-K_{\mathcal{X}}=D_{0}+D_{1} \quad<D>^{\perp}=E_{7}^{(1)}$
- $k=\infty: \quad-K_{\mathcal{X}}=D_{0}+D_{1}+D_{2}+D_{3} \quad<D>^{\perp}=D_{5}^{(1)}$

Higher order invariants

Let us consider the following mapping

$$
\begin{align*}
& \bar{x}=\frac{(x-t)(x+t)}{y(x-1)} \\
& \bar{y}=x \tag{11}
\end{align*}
$$

We blow it up at the following points:

$$
\begin{aligned}
& \quad P_{1}:(x, y)=(t, 0), P_{2}:(x, y)=(-t, 0), P_{3}:(x, y)=(0, t), P_{4}:(x, y)=(0,-t) \\
& P_{5}:(x, y)=(1, \infty), P_{6}:(x, y)=(\infty, 1), P_{7}:(x, y)=(\infty, \infty), P_{8}:(x, x / y)=(\infty, 1) \\
& \text { Anti-canonical divisor class: }-K_{x}=2 H_{x}+2 H_{y}-E_{1}-\cdots-E_{8} \text { and the corresponding } \\
& \text { curve is } x y=0 \text { trivial; }
\end{aligned}
$$

Higher order invariants

Let us consider the following mapping

$$
\begin{align*}
& \bar{x}=\frac{(x-t)(x+t)}{y(x-1)} \\
& \bar{y}=x \tag{11}
\end{align*}
$$

We blow it up at the following points:

$$
\begin{gathered}
P_{1}:(x, y)=(t, 0), P_{2}:(x, y)=(-t, 0), P_{3}:(x, y)=(0, t), P_{4}:(x, y)=(0,-t) \\
P_{5}:(x, y)=(1, \infty), P_{6}:(x, y)=(\infty, 1), P_{7}:(x, y)=(\infty, \infty), P_{8}:(x, x / y)=(\infty, 1)
\end{gathered}
$$

Anti-canonical divisor class: $-K_{X}=2 H_{x}+2 H_{y}-E_{1}-\cdots-E_{8}$ and the corresponding curve is $x y=0$ trivial; $\operatorname{dim}\left|-K_{X}\right|=0$, but $\operatorname{dim}\left|-2 K_{X}\right|=1$. Indeed, we have

$$
\begin{gathered}
\left|-2 K_{x}\right|=\alpha x^{2} y^{2}+\beta\left(2 x^{2} y^{3}+2 x^{3} y^{2}+x^{2} y^{4}+x^{4} y^{2}-2 x^{3} y^{3}-\right. \\
\left.-2 x y^{4}-2 x^{4} y+x^{4}+y^{4}+2 t^{2}\left(x y^{2}+x^{2} y-y^{2}-x^{2}\right)+t^{4}\right) \equiv \alpha f+\beta g
\end{gathered}
$$

and the invariant is $(k=\alpha / \beta)$:

$$
\begin{aligned}
k=\frac{g}{f}= & \frac{\left(2 x^{2} y^{3}+2 x^{3} y^{2}+x^{2} y^{4}+x^{4} y^{2}-2 x^{3} y^{3}-2 x y^{4}-2 x^{4} y\right.}{x^{2} y^{2}}+ \\
& +\frac{\left.x^{4}+y^{4}+2 t^{2}\left(x y^{2}+x^{2} y-y^{2}-x^{2}\right)+t^{4}\right)}{x^{2} y^{2}}
\end{aligned}
$$

Discrete Nahm equations: non-minimal elliptic surfaces

Let us conider a different class of integrable discrete mappings, obtained by discretisations of Nahm equations.

Discrete Nahm equations: non-minimal elliptic surfaces

Let us conider a different class of integrable discrete mappings, obtained by discretisations of Nahm equations.

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

Discrete Nahm equations: non-minimal elliptic surfaces

Let us conider a different class of integrable discrete mappings, obtained by discretisations of Nahm equations.

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

- Octahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

Discrete Nahm equations: non-minimal elliptic surfaces

Let us conider a different class of integrable discrete mappings, obtained by discretisations of Nahm equations.

- Tetrahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

- Octahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

- Icosahedral symmetry

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(5 y \bar{x}+5 x \bar{y}-y \bar{y})
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?
with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES

with the integral of motion:

$$
K(\epsilon)=\frac{y(3 x-y)^{2}(4 x+y)^{3}}{1+\epsilon^{2} c_{2}+\epsilon^{4} c_{4}+\epsilon^{6} c_{6}}
$$

with

$$
\begin{gathered}
c_{2}=-35 x^{2}+7 y^{2} \\
c_{4}=7\left(37 x^{4}+22 x^{2} y^{2}-2 x y^{3}+2 y^{4}\right) \\
c_{6}=-225 x^{6}+3840 x^{5} y+80 x y^{5}-514 x^{3} y^{3}-19 x^{4} y^{2}-206 x^{2} y^{4}
\end{gathered}
$$

Question: Can one found these complicated integrals starting from singularity structure associated to the equations?

YES

The tetrahedral symmetry (simple can be brought to QRT (a general mapping having elliptic functions as solutions)):

$$
\begin{gathered}
\bar{x}-x=\epsilon(x \bar{x}-y \bar{y}) \\
\bar{y}-y=-\epsilon(y \bar{x}+x \bar{y})
\end{gathered}
$$

use the substitution $u=(1-\epsilon x) / y, v=(1+\epsilon x) / y$ and we get QRT-mapping ($\bar{u}=v$) and

$$
3 \bar{u} \underline{u}-u(\bar{u}+\underline{u})-u^{2}+4 \epsilon^{2}=0
$$

with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
with the invariant

$$
K=\frac{-3(u-\bar{u})^{2}+4 \epsilon^{2}}{2 \epsilon^{2}(u+\bar{u})\left(u \bar{u}-\epsilon^{2}\right)} \equiv \frac{3 x^{2} y-y^{3}}{1-\epsilon^{2}\left(x^{2}+y^{2}\right)}
$$

What we learn:
The red substitution looks like curves corresponding to divisor classes of some blow-down structure.
The cases of octahedral and icosahedral symmetry cannot be transformed to QRT forms by these type of substitutions.
So we need to analyse carefully the singularity structure. What is seen is that we have more singularities and apparently some of them are useless making the corresponding rational elliptic surface to be more complicated.

Analytical stability and blowing-down structure

Analytical stability and blowing-down structure

Let $\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be a birational automorphism.
For any such automorphism we can blow up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and construct a rational surface X such that: $\tilde{\phi}: X \rightarrow X$ with $\phi=\tilde{\phi}$ in general and $\tilde{\phi}$ is analytically stable which means: $\left(\tilde{\phi}^{*}\right)^{n}=\left(\tilde{\phi}^{n}\right)^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)$
Analitical stability is equivalent with the following: There is no divisor D such that exist $k>0$ and $\tilde{\phi}(D)=$ point, $\tilde{\phi}^{k}(D)=$ indeterminate
$D \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \bullet D^{\prime}$

- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem (1902), and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem (1902), and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- the genus formula is helping here $g=1+\frac{1}{2}\left(F^{2}+F \cdot K_{X}\right)$ which must be zero
- compute the surface X where $\tilde{\phi}: X \rightarrow X$ is analitically stable
- there is a singularity pattern $\bullet \rightarrow D_{1} \rightarrow D_{2} \rightarrow \ldots \rightarrow D_{k} \rightarrow \bullet$ having (-1) curves in the components of some D_{i} and this set of (-1) curves is preserved by the action of $\tilde{\phi}: X \rightarrow X$.
- Blow down the (-1) curves in the following way: Let C be the (-1) divisor class and F_{1}, F_{2} two divisor classes such that

$$
F_{1} \cdot F_{1}=F_{2} \cdot F_{2}=0, \quad F_{1} \cdot F_{2}=1, \quad C \cdot F_{1}=C \cdot F_{2}=0
$$

- all the above procedure is allowed by the Castelnuovo theorem (1902), and if $\operatorname{dim}\left|F_{1}\right|=\operatorname{dim}\left|F_{2}\right|=1$ we can put $\left|F_{1}\right|=\alpha_{1} x^{\prime}+\beta_{1} y^{\prime},\left|F_{2}\right|=\alpha_{2} x^{\prime \prime}+\beta_{2} y^{\prime \prime}$
- the genus formula is helping here $g=1+\frac{1}{2}\left(F^{2}+F \cdot K_{X}\right)$ which must be zero
- then we have a new coordinate system where X is minimal given by the following transformation:

$$
\mathbb{C}^{2} \ni(x, y) \longrightarrow\left(\frac{y^{\prime}}{x^{\prime}}, \frac{y^{\prime \prime}}{x^{\prime \prime}}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following:
$x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the following system:

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following: $x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the following system:

$$
\left\{\begin{array}{l}
\bar{u}=v \tag{12}\\
\bar{v}=\frac{(u+2 v-20 \epsilon)(v+10 \epsilon)}{4 u-v+10 \epsilon}
\end{array}\right.
$$

The case of octahedral symmetry:

$$
\begin{gathered}
\bar{x}-x=\epsilon(2 x \bar{x}-12 y \bar{y}) \\
\bar{y}-y=-\epsilon(3 y \bar{x}+3 x \bar{y}+4 y \bar{y})
\end{gathered}
$$

We simplify by the following:
$x=\frac{1}{3}(\chi-2 y), \quad \bar{x}=\frac{1}{3}(\bar{\chi}-2 \bar{y}), u=(1-\epsilon \chi) / y, v=(1+\epsilon \chi) / y$ to the following system:

$$
\left\{\begin{array}{l}
\bar{u}=v \tag{12}\\
\bar{v}=\frac{(u+2 v-20 \epsilon)(v+10 \epsilon)}{4 u-v+10 \epsilon}
\end{array}\right.
$$

The space of initial conditions is given by the $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown up at the following nine points:

$$
\begin{aligned}
& E_{1}:(u, v)=(-10 \epsilon, 0), E_{2}(0,10 \epsilon), E_{3}(10 \epsilon, 5 \epsilon) \\
& E_{4}(5 \epsilon, 0), E_{5}(0,-5 \epsilon), E_{6}(-5 \epsilon,-10 \epsilon) \\
& E_{7}(\infty, \infty), E_{8}:(1 / u, u / v)=(0,-1 / 2), E_{9}:(1 / u, u / v)=(0,-2)
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6} \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9}, \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7} .
\end{aligned}
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6}, \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9}, \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7} .
\end{aligned}
$$

The curve corresponding to α_{0} is a (-1) curve which must be blown down. $E_{1} \rightarrow H_{a}=H_{u}+H_{v}-E_{2}-E_{7}$ and $E_{2} \rightarrow H_{b}=H_{u}+H_{v}-E_{1}-E_{7}$, 0-curves intersecting each other: The corresponding curves are given by:

$$
a_{1} u+a_{2}(v-10 \epsilon)=0, \quad b_{1}(u+10 \epsilon)+b_{2} v=0
$$

The action on the Picard group:

$$
\begin{aligned}
& \bar{H}_{u}=2 H_{u}+H_{v}-E_{1}-E_{3}-E_{7}-E_{8}, \bar{H}_{v}=H_{u} \\
& \bar{E}_{1}=E_{2}, \bar{E}_{2}=H_{u}-E_{3}, \bar{E}_{3}=E_{4}, \bar{E}_{4}=E_{5}, \bar{E}_{5}=E_{6}, \\
& \bar{E}_{6}=H_{u}-E_{1}, \bar{E}_{7}=H_{u}-E_{8}, \bar{E}_{8}=E_{9}, \bar{E}_{9}=H_{u}-E_{7} .
\end{aligned}
$$

Three invariant divisor classes:

$$
\begin{aligned}
& \alpha_{0}=H_{u}+H_{v}-E_{1}-E_{2}-E_{7}, \alpha_{1}=H_{u}+H_{v}-E_{1}-E_{2}-E_{8}-E_{9}, \\
& \alpha_{2}=E_{7}-E_{8}-E_{9}, \alpha_{3}=H_{u}+H_{v}-E_{3}-E_{4}-E_{5}-E_{6}-E_{7} .
\end{aligned}
$$

The curve corresponding to α_{0} is a (-1) curve which must be blown down. $E_{1} \rightarrow H_{a}=H_{u}+H_{v}-E_{2}-E_{7}$ and $E_{2} \rightarrow H_{b}=H_{u}+H_{v}-E_{1}-E_{7}, 0$-curves intersecting each other: The corresponding curves are given by:

$$
a_{1} u+a_{2}(v-10 \epsilon)=0, \quad b_{1}(u+10 \epsilon)+b_{2} v=0
$$

So if we set $a=(v-10 \epsilon) / u \quad b=(u+10 \epsilon) / v$ our dynamical system becomes

$$
\left\{\begin{array}{l}
\bar{a}=\frac{3 a b-2 a+2}{a-4} \tag{13}\\
\bar{b}=\frac{4-a}{2 a+1}
\end{array}\right.
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), \quad F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2) .
\end{aligned}
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), \quad F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), \quad F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), \quad F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2) .
\end{aligned}
$$

The invariant is nothing but the proper transform of the anti-canonical divisor:

$$
K_{X}=2 H_{a}+2 H_{b}-\oplus_{i=1}^{8} F_{i}
$$

namely

$$
K=\frac{(a b-1)(a b+2 a+2 b-5)}{4 a b+2 a+2 b+1}
$$

This system has the following space of initial conditions which define a minimal rational elliptic surface:

$$
\begin{aligned}
& F_{1}:(a, b)=(0, \infty), \quad F_{2}:(a, b)=(\infty, 0), \\
& F_{3}:(a, b)=(-1 / 2,4), \quad F_{4}:(a, b)=(-2, \infty) \\
& F_{5}:(a, b)=(\infty,-2), \quad F_{6}:(a, b)=(4,-1 / 2), \\
& F_{7}:(a, b)=(-2,-1 / 2), \quad F_{8}:(a, b)=(-1 / 2,-2) .
\end{aligned}
$$

The invariant is nothing but the proper transform of the anti-canonical divisor:

$$
K_{X}=2 H_{a}+2 H_{b}-\oplus_{i=1}^{8} F_{i}
$$

namely

$$
K=\frac{(a b-1)(a b+2 a+2 b-5)}{4 a b+2 a+2 b+1}
$$

which is the same as the one given at the beginning [Suris et al. 2012]

$$
K(\epsilon)=\frac{y(2 x+3 y)(x-y)^{2}}{1-10 \epsilon^{2}\left(x^{2}+4 y^{2}\right)+\epsilon^{4}\left(9 x^{4}+272 x^{3} y-352 x y^{3}+696 y^{4}\right)}
$$

Higher dimensional systems

Let us consider the following 4-dimensional mappings $\varphi: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4} ;\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \mapsto\left(\bar{q}_{1}, \bar{q}_{2}, \bar{p}_{1}, \bar{p}_{2}\right):$

$$
\left\{\begin{array}{l}
\bar{q}_{1}=-p_{2}-q_{2}+a q_{2}^{-1}+b \tag{14}\\
\bar{p}_{1}=q_{2} \\
\bar{q}_{2}=-q_{1}-p_{1}+a q_{1}^{-1}+b \\
\bar{p}_{2}=q_{1}
\end{array}\right.
$$

and its slight modification:

$$
\left\{\begin{array}{l}
\bar{q}_{1}=-q_{1}-p_{2}+a q_{2}^{-1}+b_{1} \tag{15}\\
\bar{p}_{1}=q_{2} \\
\bar{q}_{2}=-q_{2}-p_{1}+a q_{1}^{-1}+b_{2} \\
\bar{p}_{2}=q_{1}
\end{array},\right.
$$

It turns out that deautonomized version of Mapping (14) is a Bäcklund transformation of a direct product of the fourth Painlevé equation, which has two continuous variables and $A_{2}^{(1)}+A_{2}^{(1)}$ Weyl group type symmetry, while that of Mapping (15) is a Bäcklund transformation of Noumi-Yamada's $A_{5}^{(1)}$ equation, which has only one continuous variable and Weyl group $A_{5}^{(1)}$ type symmetry. These systems provide typical models for geometric studies on higher dimensional Painlvé systems.

Singularity Confinement

The method of singularity confinement in higher dimension;
The idea is that a hypersurface in some compactification X of \mathbb{C}^{n} which is contracted to lower dimensional variety (singularity) in by f is recovered to a hypersurface after a finite number of iterations of f and the memory of initial conditions is recovered generically. To see this we introduce the exceptional set, given by the zeros of the Jacobian

$$
\mathcal{E}(f)=\{D \subset X: \text { hypersurface } \mid \operatorname{det}(\partial f / \partial x)=0 \text { on } D \text { in generic }\}
$$

where zero of the Jacobian implies contraction to a lower dimensional variety. If every D in $\mathcal{E}(f)$ is not contracted by f^{n} for some positive integer n, we say that the initial data is not lost and the map f satisfies the singularity confinement criterion. It is well-known that this test provides a necessary condition for the mapping to be integrable but is not sufficient. For its complement, the notion of algebraic entropy was introduced by Hietarinta and Viallet [HV] and studied geometrically [Takenawa01, Mase18]. This entropy is essentially the same with topological entropy [Gromov, Yomdin] for algebraic stable mappings.
In this section we consider the mappings on compactified space $\left(\mathbb{P}^{1}\right)^{4}=\left(\mathbb{C P}^{1}\right)^{4}$ and apply the singularity confinement test to them.

Algebraic stability

The following proposition is fundamental to our study.
Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ and $g: \mathcal{Y} \rightarrow \mathcal{Z}$ be dominant rational maps. Then $f^{*} \circ g^{*}=(g \circ f)^{*}$ holds if and only if there does not exist a divisor D on \mathcal{X} such that $f(D \backslash I(f)) \subset I(g)$.
In our case we have the following corolary:

A rational map φ from a smooth projective variety \mathcal{X} to itself is algebraically stable if and only if there does not exist a positive integer k and a divisor D on \mathcal{X} such that $f(D \backslash I(f)) \subset I\left(f^{k}\right)$.

If we take $q_{1}=\varepsilon$ with $|\varepsilon| \ll 1$ and the others are generic, the principal terms of the Laurent series with respect to ε in the trajectories are

$$
\begin{aligned}
\left(\varepsilon, p_{1}^{(0)}\right. & \left., q_{2}^{(0)}, p_{2}^{(0)}\right): 3 \operatorname{dim} \\
& \rightarrow\left(q_{1}^{(1)}, p_{1}^{(1)}, a \varepsilon^{-1}, \varepsilon\right): 2 \operatorname{dim} 14 \\
\quad & \left(-a \varepsilon^{-1}, a \varepsilon^{-1}, q_{2}^{(2)}, p_{2}^{(2)}\right): 2 \operatorname{dim} 4 \\
& \rightarrow\left(q_{1}^{(3)}, p_{1}^{(3)},-\varepsilon,-a \varepsilon^{-1}\right): 2 \operatorname{dim} 16 \\
& \rightarrow\left(q_{1}^{(4)},-\varepsilon, q_{2}^{(4)}, p_{2}^{(4)}\right): 3 \operatorname{dim},
\end{aligned}
$$

where $x_{i}^{(j)}$ denotes a generic value in \mathbb{C}, " k dim" denotes the dimension of corresponding subvariety in $\left(\mathbb{P}^{1}\right)^{4}$ and n denotes the order of blowing up. Similarly, starting with $q_{2}=\varepsilon$ and the others being generic, we get

$$
\begin{aligned}
& \left(q_{1}^{(0)}, p_{1}^{(0)}, \varepsilon, p_{2}^{(0)}\right): 3 \operatorname{dim} \\
& \quad \rightarrow\left(a \varepsilon^{-1}, \varepsilon, q_{2}^{(1)}, p_{2}^{(1)}\right): 2 \operatorname{dim} 6 \\
& \quad \rightarrow\left(q_{1}^{(2)}, p_{1}^{(2)},-a \varepsilon^{-1}, a \varepsilon^{-1}\right): 2 \operatorname{dim} 12 \\
& \quad \rightarrow\left(-\varepsilon,-a \varepsilon^{-1}, q_{2}^{(3)}, p_{2}^{(3)}\right): 2 \operatorname{dim} 8 \\
& \quad \rightarrow\left(q_{1}^{(4)}, p_{1}^{(4)}, q_{2}^{(4)},-\varepsilon\right): 3 \operatorname{dim} .
\end{aligned}
$$

In both two cases information on the initial values $x_{i}^{(0)}$ is recovered after finitesteps

For the second mapping we find the following two singularity sequences:

$$
\begin{aligned}
& \left(\varepsilon, p_{1}^{(0)}, q_{2}^{(0)}, p_{2}^{(0)}\right): 3 \operatorname{dim} \\
& \quad \rightarrow\left(-p_{2}^{(0)}+a / q_{2}^{(0)}+b_{1}, q_{2}^{(0)}, a \varepsilon^{-1}, \varepsilon\right): 2 \operatorname{dim} 6 \\
& \quad \rightarrow\left(p_{2}^{(0)}-a / q_{2}^{(0)}, a \varepsilon^{-1},-a \varepsilon^{-1},-p_{2}^{(0)}+a / q_{2}^{(0)}+b_{1}\right): 1 \operatorname{dim} 4 \\
& \quad \rightarrow\left(-\varepsilon,-a \varepsilon^{-1}, q_{2}^{(3)}, p_{2}^{(0)}-a / q_{2}^{(0)}\right): 2 \operatorname{dim} 8 \\
& \quad \rightarrow\left(q_{1}^{(4)}, p_{1}^{(4)}, q_{2}^{(4)},-\varepsilon\right): 3 \operatorname{dim},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(q_{1}^{(0)}, p_{1}^{(0)}, \varepsilon^{-1}, p_{2}^{(0)}\right): 3 \operatorname{dim} \\
& \quad \rightarrow\left(-p_{2}^{(0)}-q_{1}^{(0)}+b_{1}, \varepsilon^{-1},-\varepsilon^{-1}, q_{1}^{(0)}\right): 2 \operatorname{dim} 2 \\
& \quad \rightarrow\left(p_{2}^{(0)},-\varepsilon^{-1}, q_{2}^{(2)},-p_{2}^{(0)}-q_{1}^{(0)}+b_{1}\right): 3 \operatorname{dim} \\
& \quad \rightarrow\left(q_{1}^{(3)}, p_{1}^{(3)}, \varepsilon^{-1}, p_{2}^{(3)}\right): \text { Returned }
\end{aligned}
$$

General blow-up procedure

In this section we construct a space of initial conditions by blowing up the defining variety along singularities of the previous section. Recall that in local coordinates $U \subset \mathbb{C}^{N}$, blowing up along a subvariety V of dimension $N-k, k \geq 2$, written as

$$
x_{1}-h_{1}\left(x_{k+1}, \ldots x_{N}\right)=\cdots=x_{k}-h_{k}\left(x_{k+1}, \ldots x_{N}\right)=0,
$$

where h_{i} 's are holomorphic functions, is a birational morphism $\pi: X \rightarrow U$ such that X is an open variety given by

$$
U_{i}=\left\{\left(u_{1}^{(i)}, \ldots, u_{k}^{(i)}, x_{k+1}, \ldots x_{N}\right) \in \mathbb{C}^{N}\right\} \quad(i=1, \ldots, k)
$$

with $\pi: U_{i} \rightarrow U$:

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{N}\right)= & \left(u_{1}^{(i)} u_{i}^{(i)}+h_{1}, \ldots, u_{i-1}^{(i)} u_{i}^{(i)}+h_{i-1}, u_{i}^{(i)}+h_{i},\right. \\
& \left.u_{i+1}^{(i)} u_{i}^{(i)}+h_{i+1} \ldots, u_{k}^{(i)} u_{i}^{(i)}+h_{k}, x_{k+1}, \ldots, x_{N}\right) .
\end{aligned}
$$

It is convenient to write the coordinates of U_{i} as

$$
\left(\frac{x_{1}-h_{1}}{x_{i}-h_{i}}, \ldots, \frac{x_{i-1}-h_{i-1}}{x_{i}-h_{i}}, x_{i}-h_{i}, \frac{x_{i+1}-h_{i+1}}{x_{i}-h_{i}}, \ldots, \frac{x_{k}-h_{k}}{x_{i}-h_{i}}, x_{k+1}, \ldots x_{N}\right) .
$$

The exceptional divisor E is written as $u_{i}=0$ in U_{i} and each point in the center of blowup corresponds to a subvariety isomorphic to $\mathbb{P}^{k-1}:\left(x_{1}-h_{1}: \cdots: x_{k-1}-h_{k}\right)$. Hence E is locally a direct product $V \times \mathbb{P}^{k-1}$. We called such \mathbb{P}^{k-1} a fiber of the exceptional divisor.

Let us give a simple example in \mathbb{P}^{3}.
We have the homogeneous coordinates of $\mathbb{P}^{3}=\left(X_{0}: X_{1}: X_{2}: X_{3}\right)$ and consider one chart $X_{0} \neq 0$ give by the affine coordinates $\left(x_{1}, x_{2}, x_{3}\right)=\left(X_{1} / X_{0}, X_{2} / X_{0}, X_{3} / X_{0}\right)$ The blow-up of the line $x_{1}=x_{2}=0$ is given by:

$$
\mathbb{P}^{3} \leftarrow\left(x_{1}, \frac{x_{2}}{x_{1}}, x_{3}\right) \cup\left(\frac{x_{1}}{x_{2}}, x_{2}, x_{3}\right) \equiv\left(x_{1}, \zeta, x_{3}\right) \cup\left(\frac{1}{\zeta}, x_{2}, x_{3}\right)
$$

and the exceptional divizor is nothing but the plane $\mathbb{C} \times \mathbb{P}^{1}$.
Also blow up of the point $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ is given by:

$$
\mathbb{P}^{3} \leftarrow\left(x_{1}, \frac{x_{2}}{x_{1}}, \frac{x_{3}}{x_{1}}\right) \cup\left(\frac{x_{1}}{x_{2}}, x_{2}, \frac{x_{3}}{x_{2}}\right) \cup\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}, x_{3}\right)
$$

which are exactly the three charts of \mathbb{P}^{2}.
If we consider the Cremona transformation of $\sigma: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$

$$
\sigma(X: Y: Z: T)=(Y Z T: X Z T: X Y T: X Y Z)
$$

then the exceptional divizor corresponding to blow up at (1:0:0:0) is $E_{0} \cong \mathbb{P}^{2}$
$(y, z, t) \leftarrow(y, z / y, t / y) \cup(y / z, z, t / z) \cup(y / t, z / t, t) \equiv\left(u_{1}, v_{1}, w_{1}\right) \cup\left(u_{2}, v_{2}, w_{2}\right) \cup\left(u_{3}, v_{3}, w_{3}\right)$
where we consider the affine variable $y=Y / X, z=Z / X, t=T / X$ and E_{0} is given by $\left(u_{1}=0\right) \cup\left(v_{2}=0\right) \cup\left(w_{3}=0\right)$ So in the first chart $y=u_{1}, z=u_{1} v_{1}, t=u_{1} w_{1}$ and accordingly the image of E_{0} through σ is

$$
\begin{gathered}
\left.\sigma_{*}\left(E_{0}\right) \equiv \sigma\right|_{u_{1}=0}=\left.u_{1}^{2}\left(u_{1} v_{1} w_{1}: v_{1} w_{1}: w_{1}: v_{1}\right)\right|_{u_{1}=0}=\left(0: v_{1} w_{1}: w_{1}: v 1\right) \cong \\
\cong\left(w_{1}, w_{1} / v_{1}, 1\right) \cup\left(v_{1}, 1, v_{1} / w_{1}\right) \cup\left(1,1 / v_{1}, 1 / w_{1}\right)
\end{gathered}
$$

which is again a plane isomorphic to \mathbb{P}^{2} (is the opposite face of the E_{0} blow-up point of the \mathbb{P}^{3} tetrahedron). Now if we blow up ALL the vertices of the \mathbb{P}^{3} tetrahedron we get the following

$$
\begin{aligned}
& \sigma_{*}\left(E_{0}\right)=H-E_{1}-E 2-E_{3} \\
& \sigma_{*}\left(E_{1}\right)=H-E_{0}-E 2-E_{3} \\
& \sigma_{*}\left(E_{2}\right)=H-E_{1}-E 0-E_{3} \\
& \sigma_{*}\left(E_{3}\right)=H-E_{1}-E 2-E_{0}
\end{aligned}
$$

where H is the triangular "face" $\left(\mathbb{P}^{2}\right)$ opposite to E_{i}.

Each of the two mappings can be lifted to a pseudo-automorphism on a rational projective variety \mathcal{X} obtained by successive 16 blow-ups from $\left(\mathbb{P}^{1}\right)^{4}$. First mapping:

$$
\begin{array}{ll}
C_{1}: q_{1}^{-1}=p_{1}^{-1}=0 & U_{1}:\left(u_{1}, v_{1}, q_{2}, p_{2}\right)=\left(q_{1}^{-1}, q_{1} p_{1}^{-1}, q_{2}, p_{2}\right) \\
C_{2}: u_{1}=v_{1}+1=0 & U_{2}:\left(u_{2}, v_{2}, q_{2}, p_{2}\right)=\left(u_{1}, u_{1}^{-1}\left(v_{1}+1\right), q_{2}, p_{2}\right) \\
C_{3}: u_{2}=v_{2}+b^{(1)}=0 & U_{3}:\left(u_{3}, v_{3}, q_{2}, p_{2}\right)=\left(u_{2}, u_{2}^{-1}\left(v_{2}+b^{(1)}\right), q_{2}, p_{2}\right) \\
C_{4}: u_{3}=v_{3}+\left(b^{(1)}\right)^{2}+a_{0}^{(1)}=0 \\
& U_{4}:\left(u_{4}, v_{4}, q_{2}, p_{2}\right)=\left(u_{3}, u_{3}^{-1}\left(v_{3}+\left(b^{(1)}\right)^{2}+a_{0}^{(1)}\right), q_{2}, p_{2}\right) \\
C_{5}: q_{1}^{-1}=p_{1}=0 & U_{5}:\left(u_{5}, v_{5}, q_{2}, p_{2}\right)=\left(q_{1}^{-1}, q_{1} p_{1}, q_{2}, p_{2}\right) \\
C_{6}: u_{5}=v_{5}-a_{1}^{(1)}=0 & U_{6}:\left(u_{6}, v_{6}, q_{2}, p_{2}\right)=\left(u_{5}, u_{5}^{-1}\left(v_{5}-a_{1}^{(1)}\right), q_{2}, p_{2}\right) \\
C_{7}: q_{1}=p_{1}^{-1}=0 & U_{7}\left(v_{7}, u_{7}, q_{2}, p_{2}\right)=\left(q_{1} p_{1}, p_{1}^{-1}, q_{2}, p_{2}\right) \\
C_{8}: u_{7}=v_{7}+a_{2}^{(1)}=0 & U_{8}:\left(v_{8}, u_{8}, q_{2}, p_{2}\right)=\left(u_{7}^{-1}\left(u_{7}+a_{2}^{(1)}\right), u_{7}, q_{2}, p_{2}\right) \\
C_{9}: p_{2}^{-1}=q_{2}^{-1}=0 & U_{9}:\left(q_{1}, p_{1}, u_{9}, v_{9}\right)=\left(q_{1}, p_{1}, q_{2}^{-1}, p_{2}^{-1} q_{2}\right) \\
C_{10}: u_{9}=v_{9}+1=0 & U_{10}:\left(q_{1}, p_{1}, u_{10}, v_{10}\right)=\left(q_{1}, p_{1}, u_{9}, u_{9}^{-1}\left(v_{9}+1\right)\right) \\
C_{11}: u_{10}=v_{10}+b^{(2)}=0 & U_{11}:\left(q_{1}, p_{1}, u_{11}, v_{11}\right)=\left(q_{1}, p_{1}, u_{10}, u_{10}^{-1}\left(v_{10}+b^{(2)}\right)\right) \\
C_{12}: u_{11}=v_{11}+\left(b^{(2)}\right)^{2}+a_{0}^{(2)}=0 \\
& U_{12}:\left(q_{1}, p_{1}, u_{12}, v_{12}\right)=\left(q_{1}, p_{1}, u_{11}, u_{11}^{-1}\left(v_{11}+\left(b^{(2)}\right)^{2}+a_{0}^{(2)}\right)\right) \\
C_{13}: p_{2}=q_{2}^{-1}=0 & U_{13}:\left(q_{1}, p_{1}, u_{13}, v_{13}\right)=\left(q_{1}, p_{1}, q_{2}^{-1}, p_{2} q_{2}\right) \\
C_{14}: u_{13}=v_{13}-a_{1}^{(2)}=0 & U_{14}:\left(q_{1}, p_{1}, u_{14}, v_{14}\right)=\left(q_{1}, p_{1}, u_{13}, u_{13}^{-1}\left(v_{13}-a_{1}^{(2)}\right)\right) \\
C_{15}: p_{2}^{-1}=q_{2}=0 & U_{15}:\left(q_{1}, p_{1}, v_{15}, u_{15}\right)=\left(q_{1}, p_{1}, p_{2} q_{2}, p_{2}^{-1}\right) \\
C_{16}: u_{15}=v_{15}+a_{2}^{(2)}=0 & U_{16}:\left(q_{1}, p_{1}, v_{16}, u_{16}\right)=\left(q_{1}, p_{1}, u_{15}^{-1}\left(v_{15}+a_{2}^{(2)}\right), u_{15}\right)
\end{array}
$$

Second mapping:

$$
\begin{array}{ll}
C_{1}: q_{2}^{-1}=p_{1}^{-1}=0 & U_{1}:\left(q_{1}, v_{1}, u_{1}, p_{2}\right)=\left(q_{1}, q_{2} p_{1}^{-1}, q_{2}^{-1}, p_{2}\right) \\
C_{2}: u_{1}=v_{1}+1=0 & U_{2}:\left(q_{1}, v_{2}, u_{2}, p_{2}\right)=\left(q_{1}, u_{1}^{-1}\left(v_{1}+1\right), u_{1}, p_{2}\right) \\
C_{3}: u_{2}=q_{1}+p_{2}-b_{1}=0 & U_{3}:\left(q_{1}, v_{2}, u_{3}, v_{3}\right)=\left(q_{1}, v_{2}, u_{2}, u_{2}^{-1}\left(q_{1}+p_{2}-b_{1}\right)\right. \\
C_{4}: u_{3}=v_{3}+a_{0}=0 & U_{4}:\left(q_{1}, v_{2}, u_{4}, v_{4}\right)=\left(q_{1}, v_{2}, u_{3}, u_{3}^{-1}\left(v_{3}+a_{0}\right)\right) \\
C_{5}: q_{2}^{-1}=p_{2}=0 & U_{5}:\left(q_{1}, p_{1}, u_{5}, v_{5}\right)=\left(q_{1}, p_{1}, q_{2}^{-1}, p_{2} q_{2}\right) \\
C_{6}: u_{5}=v_{5}+a_{2}=0 & U_{6}:\left(q_{1}, p_{1}, u_{5}, v_{5}\right)=\left(q_{1}, p_{1}, u_{5}, u_{5}^{-1}\left(v_{5}+a_{2}\right)\right) \\
C_{7}: q_{1}=p_{1}^{-1}=0 & U_{7}:\left(v_{7}, u_{7}, q_{2}, p_{2}\right)=\left(q_{1} p_{1}, p_{1}^{-1}, q_{2}, p_{2}\right) \\
C_{8}: u_{7}=v_{7}-a_{4}=0 & U_{8}:\left(v_{8}, u_{8}, q_{2}, p_{2}\right)=\left(u_{7}^{-1}\left(v_{7}-a_{4}\right), u_{7}, q_{2}, p_{2}\right) \\
& \\
& \\
C_{9}: q_{1}^{-1}=p_{2}^{-1}=0 & U_{9}:\left(u_{9}, p_{1}, q_{2}, v_{9}\right)=\left(q_{1}^{-1}, p_{1}, q_{2}, q_{1} p_{2}^{-1}\right) \\
C_{10}: u_{9}=v_{9}+1=0 & U_{10}:\left(u_{10}, p_{1}, q_{2}, v_{10}\right)=\left(u_{9}, p_{1}, q_{2}, u_{9}^{-1}\left(v_{9}+1\right)\right) \\
C_{11}: u_{10}=q_{2}+p_{1}-b_{2}=0 & U_{11}:\left(u_{11}, v_{11}, q_{2}, v_{10}\right)=\left(u_{10}, u_{10}^{-1}\left(q_{2}+p_{1}-b_{2}\right), q_{2}, v_{10}\right) \\
C_{12}: u_{11}=v_{11}+a_{3}=0 & U_{12}:\left(u_{12}, v_{12}, q_{2}, v_{10}\right)=\left(u_{11}, u_{11}^{-1}\left(v_{11}+a_{3}\right), q_{2}, v_{10}\right) \\
C_{13}: q_{1}^{-1}=p_{1}=0 & U_{13}:\left(u_{13}, v_{13}, q_{2}, p_{2}\right)=\left(q_{1}^{-1}, q_{1} p_{1}, q_{2}, p_{2}\right) \\
C_{14}: u_{13}=v_{13}+a_{5}=0 & U_{14}:\left(u_{14}, v_{14}, q_{2}, p_{2}\right)=\left(u_{13}, p_{2}, q_{2}, u_{13}^{-1}\left(v_{13}+a_{5}\right)\right) \\
C_{15}: p_{2}^{-1}=q_{2}=0 & U_{15}:\left(q_{1}, p_{1}, v_{15}, u_{15}\right)=\left(q_{1}, p_{1}, p_{2} q_{2}, p_{2}^{-1}\right) \\
C_{16}: u_{15}=v_{15}-a_{1}=0 & U_{16}:\left(q_{1}, p_{1}, v_{16}, u_{16}\right)=\left(q_{1}, p_{1}, u_{15}^{-1}\left(v_{15}-a_{1}\right), u_{15}\right)
\end{array}
$$

Theorem

The push-forward action of φ on $H^{2}(\mathcal{X}, \mathbb{Z})$ is as follows:
Case $A_{2}^{(1)}+A_{2}^{(1)}$:

$$
\begin{align*}
& H_{q_{1}} \mapsto H_{p_{2}}, \quad H_{p_{1}} \mapsto 2 H_{q_{2}}+H_{p_{2}}-E_{9}-E_{10}-E_{13}-E_{14} \\
& H_{q_{2}} \mapsto H_{p_{1}}, \quad H_{p_{2}} \mapsto H_{q_{1}}+2 H_{p_{1}}-E_{1}-E_{2}-E_{5}-E_{6} \\
& E_{1} \mapsto H_{p_{2}}-E_{10}, \quad E_{2} \mapsto H_{p_{2}}-E_{9}, \quad E_{3} \mapsto E_{15}, \quad E_{4} \mapsto E_{16}, \\
& E_{5} \mapsto E_{11}, \quad E_{6} \mapsto E_{12}, \quad E_{7} \mapsto H_{p_{2}}-E_{14}, \quad E_{8} \mapsto H_{p_{2}}-E_{13}, \tag{16}\\
& E_{9} \mapsto H_{p_{1}}-E_{2}, \quad E_{10} \mapsto H_{p_{1}}-E_{1}, \quad E_{11} \mapsto E_{7}, \quad E_{12} \mapsto E_{8}, \\
& E_{13} \mapsto E_{3}, \quad E_{14} \mapsto E_{4}, \quad E_{15} \mapsto H_{p_{1}}-E_{6}, \quad E_{16} \mapsto H_{p_{1}}-E_{5}
\end{align*}
$$

Case: $A_{5}^{(1)}$:

$$
\begin{align*}
& H_{q_{1}} \mapsto H_{p_{2}}, \quad H_{p_{1}} \mapsto H_{p_{1}}+H_{q_{2}}+H_{p_{2}}-E_{1}-E_{2}-E_{5}-E_{6} \\
& H_{q_{2}} \mapsto H_{p_{1}}, \quad H_{p_{2}} \mapsto H_{q_{1}}+H_{p_{1}}+H_{p_{2}}-E_{9}-E_{10}-E_{13}-E_{14} \\
& E_{1} \mapsto H_{p_{1}}-E_{2}, \quad E_{2} \mapsto H_{p_{1}}-E_{1}, \quad E_{3} \mapsto E_{7}, \quad E_{4} \mapsto E_{8}, \\
& E_{5} \mapsto E_{3}, \quad E_{6} \mapsto E_{4}, \quad E_{7} \mapsto H_{p_{2}}-E_{6}, \quad E_{8} \mapsto H_{p_{2}}-E_{5}, \tag{17}\\
& E_{9} \mapsto H_{p_{2}}-E_{10}, \quad E_{10} \mapsto H_{p_{2}}-E_{9}, \quad E_{11} \mapsto E_{15}, \quad E_{12} \mapsto E_{16}, \\
& E_{13} \mapsto E_{11}, \quad E_{14} \mapsto E_{12}, \quad E_{15} \mapsto H_{p_{1}}-E_{14}, \quad E_{16} \mapsto H_{p_{1}}-E_{13}
\end{align*}
$$

Theorem

For Case $A_{2}^{(1)}+A_{2}^{(1)}$, the linear system of the anticanonical divisor class $\delta=2 \sum_{i=1}^{2}\left(H_{q_{i}}+H_{p_{i}}\right)-\sum_{i=1}^{16} E_{i}$ is given by

$$
\begin{equation*}
\left(\alpha_{0}+\alpha_{1} l_{1}\right)\left(\beta_{0}+\beta_{1} l_{2}\right)=0 \tag{18}
\end{equation*}
$$

for any $\left(\alpha_{0}: \alpha_{1}\right),\left(\beta_{0}: \beta_{1}\right) \in \mathbb{P}^{1}$, where I_{i} are given by

$$
\begin{align*}
& I_{1}=q_{1} p_{1}\left(q_{1}+p_{1}-b\right)-a\left(q_{1}+p_{1}\right) \\
& I_{2}=q_{2} p_{2}\left(q_{2}+p_{2}-b\right)-a\left(q_{2}+p_{2}\right) . \tag{19}
\end{align*}
$$

and fibers $\alpha_{0}+\alpha_{1} I_{1}=0$ and $\alpha_{0}+\alpha_{1} I_{2}=1$ are mapped to each other, while for Case $A_{5}^{(1)}$, the linear system is given by

$$
\begin{equation*}
\alpha_{0}+\alpha_{1} I_{1}+\alpha_{2} I_{2}=0, \tag{20}
\end{equation*}
$$

for any $\left(\alpha_{0}: \alpha_{1}: \alpha_{2}\right) \in \mathbb{P}^{2}$, where \boldsymbol{I}_{i} are given by

$$
\begin{align*}
\iota_{1}= & \left(q_{1} p_{1}-q_{2} p_{2}\right)^{2}+b_{1} b_{2}\left(q_{1} p_{1}+q_{2} p_{2}\right) \\
& +b_{1}\left(a\left(p_{1}+q_{2}\right)-q_{1} p_{1}^{2}-q_{2}^{2} p_{2}\right)+b_{2}\left(a\left(q_{1}+p_{2}\right)-q_{1}^{2} p_{1}-q_{2} p_{2}^{2}\right) \\
\iota_{2}= & \left(a\left(q_{1}+p_{2}\right)+q_{1} p_{2}\left(b_{2}-q_{2}-p_{1}\right)\right)\left(a\left(q_{2}+p_{1}\right)+q_{2} p_{1}\left(b_{1}-q_{1}-p_{2}\right)\right) \tag{21}
\end{align*}
$$

Discrete linearizable systems

What means linearizable? The system is just a disguise of a linear discrete equation i.e. exist dependent variable transformations which transform the system into a linear equation.
Main problem - how to detect linearisability?
Complexity growth and algebraic entropy - which shows how degree of the numerator (as a polynomial in some variables fixed by initial conditions) grows with respect to interation.
Example:

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{a}{x_{n}}+b
$$

$x_{0}=p, x_{1}=q / r$ and we compute polynomial degree for the numerator or denominator (as polynomials in p, q, r) and we get:

$$
1,2,4,8,13,20,28,38,49,62,76, . .
$$

which can be fitted by (n is the iteration):

$$
d(n)=\frac{1}{8}\left(9+6 n^{2}-(-1)^{n}\right)
$$

The algebraic entropy is given by

$$
S=\lim _{n \rightarrow \infty} \log \left(\frac{d(n)}{n}\right)
$$

We have the following results (an equivalent form of Diller-Favre theorem 2001:)

- if $d(n)$ is linear in n then the system is linearisable and the entropy $S=0$
- if $d(n)$ is quadratic in n the system is integrable (finite number of blow-ups, affine Weyl group symmetry) preserving an elliptic fibration and again $S=0$
- if $d(n)$ depends exponentially on n the system is not integrable and the entropy is $S \neq 0$, and the Gromow-Yomdin theorem saying that $S \leq h_{\text {top }}$ (topological entropy)
In algebraic geometry context $d(n)=\left(\left(\phi^{*}\right)^{n}\left(H_{x}\right) \cdot H_{y}\right)$ where $\phi^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)$ Linearisable systems are complicated since they have infinite number of singularities (so an infinite number of blow ups is needed) but if we start from the singularity patterns we can blow down exceptional curves and we get the linearisation procedure.

Example (a_{n} arbitrary complex function)

$$
\begin{gathered}
x_{n+1}=y_{n} \\
y_{n+1}=a_{n} y_{n}-y_{n}^{2} / x_{n}
\end{gathered}
$$

We blow up at the following points $E_{1}:(x, y)=(0,0), E_{2}:(x, y)=(\infty, \infty)$ and we get the following singularity pattern:

$$
\begin{gathered}
(x / y, y):=(0,0) \rightarrow H_{x}-E_{1} \rightarrow H_{y}-E_{2} \rightarrow(1 / x, x / y):=(0,0) \\
\quad \ldots \text { point } \rightarrow H_{x}-E_{2} \rightarrow \text { curve... } \\
\quad \ldots \text { curve } \rightarrow H_{y}-E_{1} \rightarrow \text { point... }
\end{gathered}
$$

Now $H_{x}-E_{1}$ is exceptional and we can blow down with the blow down structure: $H_{u}=H_{x}, H_{v}=H_{x}+H_{y}-E_{1}-E_{2}, F_{1}=H_{x}-E_{1}, F_{2}=H_{x}-E_{2}$ The lines corresponding to H_{u} and H_{v} are:

$$
\left|H_{u}\right|: x-u=0,\left|H_{v}\right|: x+v y=0
$$

So if $u=x, v=y / x$ our system will be linearised to

$$
\begin{gathered}
u_{n+1}=u_{n} v_{n} \\
v_{n+1}=a_{n}+v_{n}
\end{gathered}
$$

Conclusions

- Singularities are essential in analysing discrete dynamical systems.
- The singularity structure may give a non-minimal elliptic surface. In order to make it minimal one has to blow down some - 1 divisor classes and in the new coordinates the mappings can be solved
- linearisable systems have complicated singularities and they cannot be transformed into automorphisms.

