Consistency conditions and fiducial 2-field models for SRRT inflation

Calin Lazaroiu (with M. Babalic and V. Slupic)

UNED, Madrid and Horia Hulubei Institute, Romania

A B > A B >

= nar

Outline

- Two-field cosmological models with oriented target space
- 2 Reduced observables and functional conditions
- The adiabatic and entropic equations
- 4 Kinematic parameters
- Slow roll and rapid turn regimes
- The adapted frame
- 🕐 Natural local coordinates on the phase space
- 8 Consistency conditions for sustained rapid turn with third order slow roll
- The SRRT equation

Two-field cosmological models with oriented target space

Definition

A two-dimensional oriented scalar triple is an ordered system $(\mathcal{M}, \mathcal{G}, V)$, where:

- $(\mathcal{M}, \mathcal{G})$ is a connected, **oriented** and borderless Riemann surface (called scalar manifold)
- $V \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R})$ is a smooth function (called scalar potential).

Assumptions

- $(\mathcal{M}, \mathcal{G})$ is complete (this ensures conservation of energy)
- **②** V > 0 on \mathcal{M} (this avoids technical problems but can be relaxed)

Each scalar triple defines a model of gravity coupled to scalar fields on \mathbb{R}^4 :

$$\mathcal{S}_{\mathcal{M},\mathcal{G},V}[g,arphi] = \int_{\mathbb{R}^4} \mathrm{d}^4 x \, \sqrt{|g|} \left[rac{M^2}{2} R(g) - rac{1}{2} \mathrm{Tr}_g arphi^*(\mathcal{G}) - V \circ arphi
ight]$$

Define the *rescaled Planck mass* $M_0 \stackrel{\text{def.}}{=} \sqrt{\frac{2}{3}}M$, where *M* is the reduced Planck mass. Take *g* to describe a spatially flat FLRW universe:

$$\mathrm{d} s^2_g := -\mathrm{d} t^2 + a^2(t) \mathrm{d} ec{x}^2 \ (x^0 = t \ , \ ec{x} = (x^1, x^2, x^3) \ , \ a(t) > 0 \ \forall t)$$

and φ to depend only on the cosmological time: $\varphi = \varphi(t)$.

The cosmological equation and geometric dynamical system

Define the Hubble parameter $H(t) \stackrel{\text{def.}}{=} \frac{\dot{a}(t)}{a(t)}$ and the rescaled Hubble function:

$$\mathcal{H}: \mathcal{TM} o \mathbb{R}_{>0} \ , \ \mathcal{H}(u) \stackrel{ ext{def.}}{=} \sqrt{||u||^2 + 2V(\pi(u))} \ orall u \in \mathcal{TM}$$

where $\pi : T\mathcal{M} \to \mathcal{M}$ is the bundle projection.

Proposition

When H > 0, the equations of motion are equivalent with the cosmological equation:

$$abla_t \dot{arphi}(t) + rac{1}{M_0} \mathcal{H}(\dot{arphi}(t)) \dot{arphi}(t) + (ext{grad}_\mathcal{G} V)(arphi(t)) = 0 ~,$$

together with the Hubble condition:

$$H(t)=rac{1}{3M_0}\mathcal{H}(\dot{arphi}(t))$$
 .

The solutions $\varphi: I \to \mathcal{M}$ of the cosmological equation are called cosmological curves. The cosmological equation defines an autonomous dissipative geometric dynamical system on $T\mathcal{M}$. Any cosmological curve φ defines a cosmological orbit $\mathcal{O}_{\varphi}: I \to T\mathcal{M}$ given by $\mathcal{O}_{\varphi}(t) \stackrel{\text{def.}}{=} (\varphi(t), \dot{\varphi}(t))$, which describes the state evolution of the dynamical system.

Reduced observables and functional conditions

Let $j^k(\mathcal{M})$ be the *k*-th jet bundle of curves in \mathcal{M} ; notice that $j^1(\mathcal{M}) = T\mathcal{M}$.

Definition

A classical cosmological observable of order k is a function $f : U \to \mathbb{R}$, where U is an open subset of $j^k(\mathcal{M})$. Observables of order 1 are called *basic*.

Any observable of order k can be reduced to a basic observable using the cosmological equation (on-shell reduction of observables). In particular, slow roll & turn parameters of various orders can be reduced on-shell to produce basic observables. Thus local conditions on a cosmological curve which constrain these parameters can be formulated as conditions on points in TM (conditions on the state of the dynamical system).

Let $f_1, \ldots, f_4 : \mathcal{U} \subset T\mathcal{M} \to \mathbb{R}$ be smooth basic observables which are functionally independent for generic model parameters (\mathcal{G}, V) . Since dim $T\mathcal{M} = 4$, the simultaneous conditions

$$f_1(u) = f_2(u) = f_3(u) = f_4(u) = 0 \ (u \in U)$$

select a discrete set of points u in $T\mathcal{M}$ for generic (\mathcal{G}, V) . Hence no cosmological orbit \mathcal{O} can satisfy these conditions unless \mathcal{G} and V satisfy a constraint (a differential equation) which renders the model non-generic. If we require $|f_j| \ll 1$ instead, the same argument shows that \mathcal{G} and V must approximately satisfy a differential equation.

DQC

The adiabatic and entropic equations

Let (T, N) be the positive Frenet frame of a cosmological curve $\varphi : I \to \mathcal{M}$:

$$T(t) \stackrel{\mathrm{def.}}{=} rac{\dot{\varphi}(t)}{||\dot{\varphi}(t)||}$$
 , $N(t) = JT(t)$,

where $J \in End(TM)$ is the complex structure determined on M by the conformal class of G:

$$\omega(u, v) = \mathcal{G}(Ju, v)$$
, where $\omega \stackrel{\text{def.}}{=} \operatorname{vol}_{\mathcal{G}}$

and let σ be an increasing proper length parameter for $\varphi {:}$

$$\mathrm{d}\sigma = ||\dot{\varphi}(t)||\mathrm{d}t$$

Projecting the cosmological equation along T and N gives respectively the *adiabatic* and *entropic* equations:

$$\ddot{\sigma} + rac{1}{M_0} \mathcal{H}(\sigma, \dot{\sigma}) \dot{\sigma} + V_T(\sigma) = 0 \ , \ \Omega(\sigma) = rac{V_N(\sigma)}{\dot{\sigma}} \ ,$$

where

$$\mathcal{H}(\sigma, \dot{\sigma}) = \sqrt{\dot{\sigma}^2 + 2V(\sigma)}$$
,

 $V_{\mathcal{T}}(\sigma) \stackrel{\text{def.}}{=} (\mathrm{d}V)(\varphi(\sigma))(\mathcal{T}(\sigma)) \ , \ V_{\mathcal{N}}(\sigma) \stackrel{\text{def.}}{=} (\mathrm{d}V)(\varphi(\sigma))(\mathcal{N}(\sigma))$

and we defined the signed turn rate of φ through:

$$\Omega(t) \stackrel{\mathrm{def.}}{=} -\mathcal{G}(N,
abla_t T)$$
 .

■
■
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Kinematic parameters

Definition

Consider the following functions of t associated to the cosmological curve φ :

• The first, second and third Hubble slow roll parameters:

$$\varepsilon = -\frac{\dot{H}}{H^2}$$
, $\eta_{\parallel} = -\frac{\ddot{\sigma}}{H\dot{\sigma}}$, $\xi = \frac{\ddot{\sigma}}{H^2\dot{\sigma}}$

• The first and second turn parameters:

$$\eta_{\perp} \stackrel{\mathrm{def.}}{=} rac{\Omega}{H} \;\;,\;\;
u \stackrel{\mathrm{def.}}{=} rac{\dot{\eta_{\perp}}}{H\eta_{\perp}}$$

• The first IR parameter κ and the conservative parameter c:

$$\kappa \stackrel{\text{def.}}{=} \frac{\dot{\sigma}^2}{2V} \ , \ \ \boldsymbol{c} \stackrel{\text{def.}}{=} \frac{H\dot{\sigma}}{||\mathrm{d}V||}$$

Remark

The opposite relative acceleration vector $\eta \stackrel{\text{def.}}{=} -\frac{1}{H\dot{\sigma}} \nabla_t \dot{\varphi}$ decomposes as $\eta = \eta_{\parallel} T + \eta_{\perp} N$ and we have:

$$\varepsilon = \frac{3\kappa}{1+\kappa}$$

Slow roll and rapid turn conditions

For simplicity, we take M = 1 i.e. $M_0 = \sqrt{\frac{2}{3}}$.

Definition

- The first, second and third slow roll conditions are the conditions $\epsilon \ll 1$, $|\eta_{\parallel}| \ll 1$ and $|\xi| \ll 1$.
- The second order slow roll regime is defined by the joint conditions $\epsilon \ll 1$ and $|\eta_{||}| \ll 1.$
- The third order slow roll regime is defined by the joint conditions $\epsilon \ll 1$, $|\eta_{\parallel}| \ll 1$ and $|\xi| \ll 1$.

Definition

- The rapid turn condition is the condition $|\eta_{\perp}| \gg 1$.
- The sustained rapid turn regime is defined by the joint conditions $|\eta_{\perp}| \gg 1$ and $|\nu| \ll 1$.

Proposition

Suppose that the second slow roll condition $|\eta_{\parallel}| \ll 1$ is satisfied. Then the rapid turn condition $|\eta_{\perp}| \gg 1$ is equivalent with the conservative condition $c \ll 1$.

The adapted frame

Let $\mathcal{M}_0 \stackrel{\text{def.}}{=} \{m \in \mathcal{M} \mid (\mathrm{d}V)(m) \neq 0\}$ be the complement of the critical locus.

Definition

The *adapted frame* of $(\mathcal{M}, \mathcal{G}, V)$ is the oriented orthonormal frame (n, τ) of \mathcal{M}_0 defined by the vector fields:

$$n \stackrel{\text{def.}}{=} rac{\operatorname{grad} V}{||\operatorname{grad} V||}$$
, $\tau = Jn$.

Definition

The *characteristic angle* $\theta \in (-\pi, \pi]$ of φ is the angle of rotation from the adapted frame (n, τ) to the Frenet frame (T, N):

$$T = n\cos\theta + \tau\sin\theta$$
, $N = -n\sin\theta + \tau\cos\theta$

The quantity $s \stackrel{\text{def.}}{=} \operatorname{sign}(\sin \theta) \in \{-1, 0, 1\}$ is called the *characteristic sign* of φ .

Consistency conditions for sustained rapid turn with third order slow roll

For any vector fields X, Y, we use the notation $V_{XY} \stackrel{\text{def.}}{=} \text{Hess}(V)(X, Y)$, where $\text{Hess}(V) \stackrel{\text{def.}}{=} \nabla dV$ is the Riemannian Hessian of V.

Proposition

$$rac{V_{TT}}{3H^2} = rac{\Omega^2}{3H^2} + arepsilon + \eta_{\parallel} - rac{\xi}{3}$$
 $rac{V_{TN}}{H^2} = rac{\Omega}{H} \left(3 - arepsilon - 2\eta_{\parallel} +
u
ight)$

Theorem

Suppose that the third order slow roll conditions $\varepsilon \ll 1$, $|\eta_{\parallel}| \ll 1$ and $|\xi| \ll 1$ as well as the small rate of turn condition $|\nu| \ll 1$ are satisfied. In this case, we have $\cos \theta \approx -3c$, $\sin \theta \approx s\sqrt{1-9c^2}$ and:

$$\begin{split} V_{TN}^{2} &\approx 3VV_{TT} \\ V_{TT} &\approx 9c^{2}V_{nn} - 6sc\sqrt{1 - 9c^{2}}V_{n\tau} + (1 - 9c^{2})V_{\tau\tau} \\ V_{TN} &\approx -3sc\sqrt{1 - 9c^{2}}(V_{\tau\tau} - V_{nn}) - (1 - 18c^{2})V_{n\tau} \end{split}$$

These equations admit a solution c with $c \ll 1$ iff:

$$V_{n\tau}^2 V_{\tau\tau} \approx 3 V V_{nn}^2$$

Calin Lazaroiu

Consistency conditions and fiducial 2-field models 10/22

わへぐ

Corollary

The cosmological curve φ satisfies the sustained rapid turn conditions with third order slow roll at cosmological time t iff the following condition is satisfied at the point $m = \varphi(t)$ of \mathcal{M}_0 :

$$V_{n\tau}^2 V_{\tau\tau} \approx 3 V V_{nn}^2$$

Definition

The *SRRT* equation is the following condition which constrains the target space metric \mathcal{G} and scalar potential V on the noncritical submanifold \mathcal{M}_0 :

$$V_{n\tau}^2 V_{\tau\tau} = 3 V V_{nn}^2$$

A metric \mathcal{G} on \mathcal{M}_0 which satisfies this equation for a fixed scalar potential V is called an *SRRT metric relative to V*.

The SRRT equation can be written as a nonlinear differential equation for the pair (\mathcal{G}, V) on \mathcal{M}_0 . When \mathcal{G} is fixed, it can be viewed as a nonlinear second order PDE for V. When V is fixed, it can be viewed as a nonlinear first order PDE for \mathcal{G} .

Fixing the conformal class of ${\mathcal G}$

Let $S \stackrel{\text{def.}}{=} \operatorname{Sym}^2(T^*\mathcal{M})$ and $S_+ \subset S$ be the fiber sub-bundle consisting of positive-definite tensors. When V is fixed, the SRRT equation has the form:

$$\mathcal{F}(j^1(\mathcal{G})) = 0$$

where $\mathcal{F}: j^1(S_+) \to \mathbb{R}$ is a smooth function which depends on V. Let $L = \det T^*\mathcal{M} = \wedge^2 T^*\mathcal{M}$ be the real determinant line bundle of \mathcal{M} and L_+ be its sub-bundle of positive vectors. Fixing the complex structure J determined by \mathcal{G} , the map $\mathcal{G} \to \omega$ gives an isomorphism of fiber bundles $S_+ \xrightarrow{\sim} L_+$ which induces an isomorphism $j^1(S_+) \xrightarrow{\sim} j^1(L_+)$. Use this to transport \mathcal{F} to a function $F := F_V^J: j^1(L_+) \to \mathbb{R}$. Then the SRRT equation becomes:

$$F(j^1(\omega))=0$$
 .

This is a contact Hamilton-Jacobi equation for $\omega \in \Gamma(L_+)$ relative to the Cartan contact structure of $j^1(L_+)$. *F* restricts to a cubic polynomial function on the fibers of the natural projection $j^1(L_+) \rightarrow L_+$.

In local isothermal coordinates (U, x^1, x^2) on \mathcal{M} relative to J, we have:

$$\mathrm{d}s_{\mathcal{G}}^2 = e^{2\phi} (\mathrm{d}x_1^2 + \mathrm{d}x_2^2) \ , \ \omega = e^{2\phi} \mathrm{d}x^1 \wedge \mathrm{d}x^2$$

and one can write the contact HJ equation as a nonlinear first order PDE for the conformal exponent ϕ , which is cubic in the partial derivatives $\partial_1 \phi$ and $\partial_2 \phi$. A change of local isothermal coordinates corresponds to a contact transformation.

The contact Hamiltonian in isothermal Liouville coordinates

Let \mathcal{G}_0 be the locally-defined flat metric with squared line element $\mathrm{d}s_0^2 = \mathrm{d}x_1^2 + \mathrm{d}x_2^2$ and define the *modified Euclidean gradient* of V through:

$$\operatorname{grad}_0^J V \stackrel{\operatorname{def.}}{=} J \operatorname{grad}_0 V$$

where $\operatorname{grad}_0 V = \operatorname{grad}_{\mathcal{G}_0} V = \partial_1 V \partial_1 + \partial_2 V \partial_2$ is the ordinary Euclidean gradient. Let \cdot denote the Euclidean scalar product defined by \mathcal{G}_0 , thus $\partial_i \cdot \partial_j = \delta_{ij}$. Let:

$$\begin{split} H_0 &= \operatorname{Hess}_0(V)(\operatorname{grad}_0 V, \operatorname{grad}_0 V) = \partial_i \partial_j V \partial_i V \partial_j V \\ \tilde{H}_0 &= \operatorname{Hess}_0(V)(\operatorname{grad}_0 V, \operatorname{Jgrad}_0 V) = -\partial_i \partial_j V \partial_i V \varepsilon_{jk} \partial_k V \end{split}$$

Let $U \subset \mathcal{M}_0$ and $U_0 \subset \mathbb{R}^2$ be the image of U in the isothermal chart (U, x^1, x^2) . The isothermal Liouville coordinates $(U, x^1, x^2, u, p_1, p_2)$ induce an isomorphism of fiber bundles $j^1(L_+)|_U \simeq U_0 \times \mathbb{R} \times \mathbb{R}^2$. Consider the smooth functions $A, B : U_0 \times \mathbb{R}^2 \to \mathbb{R}$ defined through:

$$egin{aligned} \mathcal{A}(x,m{p}) \stackrel{ ext{def.}}{=} (\partial_i V)(x) m{p}_i \ , \ \ \mathcal{B}(x,m{p}) \stackrel{ ext{def.}}{=} -\epsilon_{ij} (\partial_j V)(x) m{p}_i \ . \end{aligned}$$

The linear transformation $\mathbb{R}^2 \ni (p_1, p_2) \to (A(x), B(x)) \in \mathbb{R}^2$ is nondegenerate for $x \in U_0$, with inverse:

$$p_1 = \frac{\partial_1 V A - \partial_2 V B}{(\partial_1 V)^2 + (\partial_2 V)^2} \quad , \quad p_2 = \frac{\partial_2 V A + \partial_1 V B}{(\partial_1 V)^2 + (\partial_2 V)^2} \quad .$$

The contact Hamiltonian in isothermal Liouville coordinates

Theorem

In isothermal Liouville coordinates (x^1, x^2, u, p_1, p_2) on $j^1(L_+)|_U$, the contact Hamiltonian is given by the smooth function $F : U_0 \times \mathbb{R}^3 \to \mathbb{R}$ given by:

 $F(x, u, p) \stackrel{\text{def.}}{=} -[B(x) - \tilde{H}_0(x)]^2 [A(x, p) + (\Delta_0 V)(x) - H_0(x)] - 3e^{2u} V [A(x, p) - H_0(x)]^2$

and the contact Hamilton-Jacobi equation takes the form:

$$F(x_1, x_2, \phi, \partial_1 \phi, \partial_2 \phi) = 0$$

Remark

- The contact HJ equation can be solved *locally* through the method of characteristics.
- The contact Hamiltonian is proper in the sense of Crandall & Lyons, i.e. is nondecreasing in *u*. Hence the Dirichlet problem can be approached *globally* using the theory of viscosity solutions.

We have:

 $-F = AB^2 - 3Ve^{2u}A^2 + (\Delta_0 V - H_0)B^2 - 2\tilde{H}_0AB + (6Ve^{2u}H_0 + \tilde{H}_0^2)A + 2\tilde{H}_0(H_0 - \Delta_0 V)B - F_0 ,$ where:

$$F_0 = -\tilde{H}_0^2[(\Delta_0 V) - H_0] + 3V e^{2u} H_0^2 \ . \label{eq:F0}$$

Define:

$$P_1 \stackrel{\mathrm{def.}}{=} A - H_0 \ , \ P_2 = B - \tilde{H}_0 \ \text{for a product of } A = 0 \ \text{for a product of }$$

The momentum curve

The momentum curve is the curve $C_{x,u}$ defined by the condition F(x, u, p) = 0 in the *p*-plane. This curve passes through the origin of *P*-plane, i.e. through the point with coordinates:

$$\begin{array}{rcl} p_1 & := & p_{01} \stackrel{\mathrm{def.}}{=} - \frac{\mathrm{grad} V \cdot (-H_0, \tilde{H}_0)}{||\mathrm{d} V||^2} = \frac{\partial_1 V H_0 - \partial_2 V \tilde{H}_0}{(\partial_1 V)^2 + (\partial_2 V)^2} \\ p_2 & := & p_{02} \stackrel{\mathrm{def.}}{=} \frac{\mathrm{grad}_J V \cdot (-H_0, \tilde{H}_0)}{||\mathrm{d} V||^2} = \frac{\partial_2 V H_0 + \partial_1 V \tilde{H}_0}{(\partial_1 V)^2 + (\partial_2 V)^2} \end{array}$$

in the p-plane. The singular points of the momentum curve coincide with the characteristic points of the contact HJ equation.

Proposition

The origin of the P-plane is the only singular point of the momentum curve. When $(\Delta_0 V)(x) = 0$, the curve is reducible and F factorizes as:

$$F = P_1(P_2^2 - 3Ve^{2u}P_1)$$

The curve is symmetric under reflection in the P_1 -axis. When $(\Delta_0 V)(x) > 0$, it is connected and contained in the half-space $P_1 \ge -(\Delta V)(x)$, being the union of two embedded curves which intersect each other at the origin of the P-plane. When $(\Delta_0 V)(x) < 0$, it has three connected components, namely the origin of the (P_1, P_2) -plane (which is its only singular point) and two connected components which are nonsingular and contained in the half-space $P_1 > -(\Delta_0 V)(x)$.

The momentum curve

Figure: The momentum curve for $V(x)e^{2u(x)} = 1$ in the cases $(\Delta_0 V)(x) = -1, 0, 1$. The singular point of the curve is shown as a black dot.

Quasilinear approximation near an isolated critical point

Let $c \in U_0$ be an isolated critical point of V and λ_1, λ_2 be the principal values of Hess(V)(c). In principal isothermal coordinates centered at c, we have:

$$V(x) = V(c) + rac{1}{2}(\lambda_1 x_1^2 + \lambda_2 x_2^2) + \mathcal{O}(||x||_0^3)$$

Consider the following homogeneous polynomial functions of degree two in the variables x_1 and x_2 , where $k \in \mathbb{Z}_{>0}$:

$$s_k(x) \stackrel{\text{def.}}{=} \lambda_1^k x_1^2 + \lambda_2^k x_2^2$$

Proposition

We have:

$$F(x, u, p) = -\frac{a_1(x, u)x^1p_1 + a_2(x)x^2p_2 - b(x, u)}{s_2(x)^3} + \mathcal{O}(||x||_0^2)$$

where a_i and b are homogeneous polynomial functions of degree six in x_1 and x_2 (whose coefficients depend on u) given by:

$$a_i(x, u) = \lambda_i s_2(x) \left[t_i(x) + 6V(c)e^{2u}s_2(x)s_3(x) \right]$$

with:

$$t_1(x) = \lambda_1 \lambda_2^2 (\lambda_1 - \lambda_2) x_2^2 [s_2(x) - 3\lambda_2 s_1(x)]$$

$$t_2(x) = \lambda_2 \lambda_1^2 (\lambda_2 - \lambda_1) x_1^2 [s_2(x) - 3\lambda_1 s_1(x)]$$

and:

$$b(x, u) = -\lambda_1^3 \lambda_2^3 (\lambda_1 - \lambda_2)^2 x_1^2 x_2^2 s_1(x) + 3V(c) e^{2u} s_2(x) s_3(x)^2$$

Corollary

The contact HJ equation is approximated to first order in $||x||_0$ by the following quasilinear first order PDE:

$$a_1(x,\phi)x^1\partial_1\phi + a_2(x,\phi)x^2\partial_2\phi = b(x,\phi) \quad . \tag{1}$$

This quasilinear PDE can be studied by the Lagrange-Charpit method. Its scale-invariant solutions can be studied by reduction to a nonlinear ODE for a function defined on the unit circle.

Proposition

Suppose that ϕ satisfies the quasilinear equation (1) and that we have $\varphi(x) \gg 1$. Then ϕ is an approximate solution of the following linear first order PDE:

$$2s_2(x)\lambda_i x^i \partial_i \phi = s_3(x) \quad , \tag{2}$$

which it satisfies up to corrections of order $\mathcal{O}\left(\frac{e^{-2\phi}}{3V(c)}\right)$.

3

Solutions which blow up at an isolated critical point

Consider the polar coordinate system (r, θ) defined though:

$$x_1 = r \cos \theta \quad , \quad x_2 = r \sin \theta \quad . \tag{3}$$

Proposition

Suppose that $\lambda_1 \neq \lambda_2$. Then the general smooth solution of the linear equation (2) is:

$$\phi(r,\theta) = \phi_0(\theta) + Q_0\left(\frac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2} \log r + \frac{1}{\lambda_1} \log|\cos \theta| - \frac{1}{\lambda_2} \log|\sin \theta|\right) \quad , \tag{4}$$

where:

$$\phi_0(\theta) = \frac{1}{4} \log(\lambda_1^2 \cos^2 \theta + \lambda_2^2 \sin^2 \theta) - \frac{1}{2} \frac{\lambda_2 \log|\cos \theta| - \lambda_1 \log|\sin \theta|}{\lambda_2 - \lambda_1}$$
(5)

and Q_0 is an arbitrary smooth function of a single variable.

Proposition

Suppose that $\lambda_1 = \lambda_2 := \lambda$. Then the linear equation (2) reduces to:

$$x^i \partial_i \phi = \frac{1}{2} \quad , \tag{6}$$

00

whose general solution is:

$$\phi(r,\theta) = \frac{1}{2}\log r + Q_0(\theta) \quad , \tag{7}$$

where $Q_0 \in \mathcal{C}^{\infty}(S^1)$ is an arbitrary smooth function.

Solutions which blow up at an isolated critical point

Suppose that $\lambda_1 \neq \lambda_2$. The general solution (4) reads:

$$\phi(r,\theta) = \phi_0(\theta) + Q\left(\log r + \frac{\lambda_2 \log|\cos \theta| - \lambda_1 \log|\sin \theta|}{\lambda_2 - \lambda_1}\right)$$

and satisfies $\lim_{r\to 0}\phi(r,\theta)=+\infty$ iff $\lim_{w\to -\infty}Q(w)=+\infty.$ In this case, we have:

 $\phi pprox Q(\log r)$ for $r \ll 1$,

so ϕ is rotationally-invariant near c. The corresponding SRRT metric is asymptotically rotationally-invariant at c, with Gaussian curvature:

$$K pprox -e^{-2\phi}\Delta\phi pprox -e^{-2Q(\log r)}Q^{\prime\prime}(\log r) ~{
m for}~r \ll 1$$
 .

Requiring $K = K_c$ for some constant K_c gives:

$$e^{-2Q(w)}Q''(w)=K_c.$$

Also require that \mathcal{G} is geodesically complete at c. For $K_c = 0$, we can take Q(w) = -w, which gives $\phi(r, \theta) \approx_{r \ll 1} -\log r$ and:

$$\mathrm{d} s^2 pprox_{r\ll 1} rac{1}{r^2} (\mathrm{d} r^2 + r^2 \mathrm{d} heta^2) = \mathrm{d}
ho^2 + \mathrm{d} heta^2 \ , \ \ \mathrm{where} \ \
ho \stackrel{\mathrm{def.}}{=} \log r \ .$$

so G asymptotes at c to the metric on a flat cylinder. For $K_c = -1$, the SRRT metric G asymptotes to the hyperbolic cusp metric at c:

$$\mathrm{d}s^2 \approx \frac{1}{(r\log r)^2} (\mathrm{d}r^2 + r^2 \mathrm{d}\theta^2) \quad \text{for} \quad r \ll 1 \quad . \tag{8}$$

A natural Cauchy problem

Consider a circle $C_R \subset U_0$ of radius R < 1 centered at $0 \in U_0$ and the b.c.:

 $\phi|_{\mathcal{C}_{\mathcal{R}}} = -\log[\mathcal{R}\log(1/\mathcal{R})]$.

() Projected characteristic curves.

Figure: The potential, projected characteristics and a viscosity approximant of the solution of the Dirichlet problem for the contact Hamilton-Jacobi equation for $V_c = 1/90$ and $\lambda_1 = -1/5$, $\lambda_2 = 1$ with R = 1/20.

() Contour plot of the potential.

() 3D plot of the potential.

() Some characteristic curves projected on the (x_1, x_2) -plane.

() Solution of the Dirichlet problem for the viscosity perturbation with $c = e^{-8}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

nar

Figure: The potential, projected characteristics and a viscosity approximant of the solution of the Dirichlet problem for $V_c = 1/18$ and $\lambda_1 = -1$, $\lambda_2 = 1$ with R = 1/20.