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Einstein’s equations

Choquet-Bruhat 52, Choquet-Bruhat, Geroch 69, Friedrich 83-86
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Evolution in Einstein’s equations

Lorentian manifold (M, gµν) dimension d signature (−+ . . .+)

Einstein field equations (without matter)

0 = Qµν := Gµν + Λgµν , Gµν = Rµν −
1

2
Rgµν (1)

where Λ ∈ R is cosmological constant, Rµν , Gµν is the Ricci tensor and
Einstein tensor respectively, R = Rµµ. Lagrangean

√
gR.

Local evolution (Cauchy problem)
1 Existence and uniqueness for the development from initial data at

spacelike hypersurface Σ ⊂M (Cauchy surface), local in time.
2 Continuous dependence on the data (typically in some Sobolev

norm)
3 Finite speed of propagation (dependence of solution only on the part

of Σ which can be achieved by causal curve)

Well-posedness of evolution equations.
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Geometric well-posedness

1 Evolution in general relativity is not unique due to invariance
under diffeomorphisms. From a solution with given initial data, we
can construct another one with the same initial data by applying a
diffeomorphism identical around the initial surface (Einstein’s hole
argument).

2 Dependences among equations. Bianchi indenties

∇µQµν = 0.

Initial data on Σ have constraints Qµin
µ|Σ = 0 and Qµνn

µnν |Σ = 0.

Geometric well-posedness

We need to consider some conditions on the coordinate system (gauge
fixing) such that every solution can be transform to this coordinate
system by a unique diffeomorphism preserving Σ. Existence and
uniqueness up to diffeomorphism (or in specific gauge).
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Choquet-Bruhat method

The harmonic gauge (de Donder gauge) Fµ = 0

Fµ = �sxµ scalar wave operator .

The gauge fixed Ricci tensor

Eµν = −1

2
� gµν + . . . , � = gµν∂µ∂ν .

where . . . denotes nonlinear terms which however depend only on up to
first derivative.

Quasi-linear wave equation

Equation of the form �g(u)u+ F (D1u) = 0 is well-posed.

The idea is to use gauge fixed Qfµν = 0 for the evolution

Eµν = λgµν (2)

Are solutions to this system also solutions to Einstein’s equations?
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Relation of Qf
µν = 0 to Einstein’s equations

We decompose Ricci tensor into gauge fixed part Eµν and the rest

Rµν = Eµν +
1

2
(∇µFν +∇νFµ) , Eµν = −1

2
� gµν + . . . ,

Bianchi identities

0 = ∇µQµν = ∇µ
(
Eµν −

1

2
gµνE

)
+

(
1

2
� + . . .

)
Fν

so Qfµν = 0 implies linear wave equation for Fµ.

On a Cauchy surface Σ
1 Fµ|Σ = 0 is a choice of coordinate system,
2 nν∇νFµ|Σ = 0 due to contraints on the initial surface

Uniqueness of solution to the wave equation shows Fν = 0 and

Eµν = λgµν , Fµ = 0 =⇒ Qµν = 0.

Geometric uniqueness, local existence by gluing technique.
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Global analysis

1 Choquet-Bruhat method gives only information about short time
behaviour (local in time)

2 It is important to understand long time asymptotics
1 Gravitational radiation is describe by field far from the source
2 Does solution without singularities stay so under small

perturbations? (Stability of solutions).

Penrose compactification of M , asymptotically simple solutions

Manifold M ⊂M with a smooth Lorentzian metric gµν such that on M

gµν = Ω2gµν , Ω ∈ C∞(M).

The conformal boundary ∂M ⊂ {Ω = 0}.

Causal structure preserved by conformal rescaling.

W. Kamiński Trans-Carpathian 7 / 27



Global analysis

Boundary is an umbillic hypersurface:

1 ∂M null for Λ = 0,

2 ∂M timelike for Λ < 0,

3 ∂M spacelike for Λ > 0 (we will call M an asymptotically de Sitter
spacetime).

In the case of Λ = 0 possible conical points on {Ω = 0}.

Description of asymptotic infinity in terms of conformally rescaled metric

1 Condition for asymptotic simplicity: is it stable under perturbations?

2 Radiation: what is description of initial data on the boundary?

This talk devoted to Λ > 0 case.
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Conformal method of Friedrich

Friedrich’s approach

Find a set of equations such that

1 they are more general: every solution to Einstein’s equations is also
a solution to these equations,

2 they are conformally invariant,

3 the system is hyperbolic (after imposing suitable gauge),

4 the scale factor Ω and properties of being conformal to Einsteinian
metric propagate by hyperbolic equations too.
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Conformal method of Friedrich

1 Stability of asymptotically dS spaces follows
from well-posedness,

2 Understanding of the initial data on conformal
boundary

3 Friedrich’s system invented for 3 + 1. It
evolves many variables and the idea is based
on specific for 4 dimension propety of Bianchi
identity.

Can one extend it to higher dimensions? What is
geometric origin of such systems?
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Conformal boundary (Starobinsky expansion)

Coordinate system (Σ = ∂M spacelike, M = Σ× [0, ε))

ḡ = Ω2g = −dΩ2 + g̃ij(Ω, x)dxidxj (3)

where g̃ij is a Ω dependent family of metrics on Σ.

The freedom in the choice is parametrized by diffeomorphisms and
conformal transformations on Σ.

Equations second order in Ω. We can apply Frobenius method for
expansion in the series around regular singular point Ω = 0.

There are subtleties related to dependences among equations. We
only use part of the equations to determine the metric. Vanishing of
the whole Qµν follows from Bianchi identities.
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Conformal boundary (Starobinsky expansion)

Expansion g̃ =
∑∞
n=0 Ωng̃n, dimension of Σ, d′ = d− 1

1 g̃
(0)
ij freely specified, g̃

(n)
ij determined by Qij = 0 equation

R̃
(2n)
ij + . . .+ tm g̃

(2n+2)
ij , n ≤ d′

2
− 1 (3)

Every odd term vanishes, until...

2 for d′ odd: At order n = d′ − 1, g̃
(d′−1)
ij free up to conditions

∇ig̃(d′−1)
ij = 0, tr g̃(d′−1) = 0. (4)

Holographic stress energy tensor
3 For d′ even: At order n = d′ − 2, there is an obstruction for smooth

extension. In general, the metric cannot be smooth (but it admits a

polylogarithmic expansion). In this case Hij = Q
(d′−2)
ij is

independent of the rest of the expansion.
4 The rest of the expansion is determined. Vanishing of the whole
Qµν follows from Bianchi identities.
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Generalization of the Friedrich system

1 It suggests that only in even dimension d (d′ odd) we should be able
to evolve the equations through the boundary.

2 It needs to involve at least d derivative of the metric. because part
of the data on the boundary is hidden in the holographic stress
energy tensor.

In order to find such system we need to better understand conformal
geometry.
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Conformal geometry

Hansen, Schouten 24, Fefferman, Graham 85, Bailey, Eastwood, Graham 01,

Gover, Hirachi...
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Conformal geometry

(Pseudo-)riemannian geometry

1 There exists a distinguished connection (Levi-Civita)
2 There exists a normal coordinate construction around x ∈M with

residual symmetry of orthogonal group.
3 Polynomial invariants can be written as contraction of

gµν , ∇µ1
· · · ∇µn

Rµνρσ (5)

so-called even Weyl invariants.
4 With a choice of orientation additionally contractions

√
gεµ1...µn

(odd Weyl invariants).
5 It is useful to introduce weight ω for Riemannian invariant K

K
ν1...νnU
µ1...µnL

[e2cg] = e(ω+nL−nU )cK
ν1...νnU
µ1...µnL

[g]. (6)

Space of invariants of given weight is finite dimensional and ω ≤ 0

ω(gµν) = 0, ω(∇µ1 · · · ∇µnRµνρσ) = −(n+ 2). (7)
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Conformal geometry

Conformal class of the metric

g and g′ are conformally related if gµν = e2φg′µν for φ ∈ C∞(M).

Interesting problem is to classify conformal invariants on M of weight ω

K[e2φg] = e(ω+nL−nU )φK[g], φ ∈ C∞(M). (5)

They need to be also Riemannian invariants so ω ≤ 0.

1 There is no distinguished connection.

2 There exists normal coordinate construction by conformal geodesics,
but the residual group is not semi-simple

3 Problem of construction and classification of invariants is hard.

Examples: Weyl tensor, contraction of multiple Weyl tensor, Bach tensor
only in 4 dimensions.

W. Kamiński Trans-Carpathian 12 / 27



Fefferman-Graham construction

1 We can associate Starobinsky expansion to the metric (now M plays
a role of the boundary). Conformal transformations of M
corresponds to diffeomorphisms of the bulk.

2 It is useful to work with one more dimension M =
t

R∗ ×M ×
ρ

R

g = 2ρdt2 + 2tdρdt+ t2g̃µνdx
µdxν , ρ = Ω2, g̃µν |t=1,ρ=0 = gµν ,

which satisfies Einstein’s equation RIJ = O+(ρd/2−1).

3 TI := t∂0 is a conformal Killing ∇ITJ = gIJ .

4 Diffeomorphisms corresponding to conformal transformations
preserves N = {ρ = 0} surface and there (t, xµ)→ (t+ φ, xµ)

5 Cross sections ι of the projection from N

π : N 3 (t, x)→ x ∈M (6)

are in one to one correspondence with the choice of metrics in
conformal class (bundle of scales g = ι∗g).
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Fefferman-Graham construction

1 Consider a Riemannian invariant KI1...In of the ambient metric such
that LTK = (ω + n)K. Suppose that every contraction of K with
T vanishes on N

2 We define Kµ1...µn by first restricting K to N and then pulling back
by ι. The result is a conformal invariant of weight ω.

3 In particular every scalar Riemannian invariant of the ambient metric
provides by this construction a conformal invariant.

Bailey-Eastwood-Graham

These are all (even) conformal scalar invariants for fixed weight.

In the case of higher valence tensors such results are not known.

Remark

Vector T is preserved by diffeomorphisms implementing gauge
transformations, thus it can also be used in the construction.

W. Kamiński Trans-Carpathian 13 / 27



Fefferman-Graham obstruction tensor

For d even, Fefferman-Graham obstruction tensor

Hµν = S̃
[ d
2−1]
µν , [n] = (2n) (6)

is well-defined (here S̃µν is the Ricci tensor for the ambient space t = 1).

Geometric definition

Previous construction applied to KIJ = ρ1− d
2RIJ where

ρ :=
1

2
TIT

I = ρt2 (7)

We notice that RIJ = O(ρd/2−1) and TIRIJ = 0.

Obstruction tensor is a conformal invariant of weight −d.
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Fefferman-Graham obstruction tensor

1 Hµν [e2φg] = e(2−d)φHµν [g] (weight −d)

2 It is traceless and divergence-free

trH = 0, ∇µHµν = 0 (6)

3 It has a Lagrangean L =
√
g̃[ d

2 ] (holograpohic volume).

4 If g satisfies Einstein’s equations then

2ρdt2 + 2tdρdt+ t2(1 + λρ)2gµνdx
µdxν (7)

is Ricci flat. This means that

Qµν = 0 =⇒ Hµν = 0. (8)
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Anderson’s proposition (dimension d ≥ 4 even)

Friedrich’s approach with Hµν = 0

Find a set of equations such that

1 they are more general: every solution to Einstein’s equations is also
a solution to these equations,

Qµν = 0 =⇒ Hµν = 0 (9)

2 they are conformally invariant,

Hµν [e2φg] = 0⇐⇒ Hµν [g] = 0 (10)

3 the system is hyperbolic (after imposing suitable gauge), ? There
are not only diffeomorphisms but also conformal transformations.

4 the scale factor Ω and properties of being conformal to Einsteinian
metric propagate by hyperbolic equations too. ?
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Anderson-Fefferman-Graham (AFG) equations

Günther ’70, Anderson, Anderson-Chruściel ’05, WK’ 23
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Fefferman-Graham obstruction tensor

We denote S̃µν , S̃µ∞ and S̃∞∞ components of ambient Ricci tensor.

1 Recursive determination of g̃
[n]
µν

0 = S̃[n]
µν = R̃[n]

µν + . . .+ tm g̃[n+1]
µν , n ≤ d

2
− 2 (11)

2 For n = 0 we have g̃
[1]
µν = −2Pµν where the Schouten tensor

Pµν =
1

d− 2

(
Rµν +

R

2(d− 1)
gµν

)
(12)

3 For n = 1, Bach tensor Bµν appears (Hd=4
µν = Bµν)

g̃[2]
µν =

1

d− 4
Bµν + (. . .) gµν , Bµν = �Pµν −∇µ∇νP + . . . (13)

4 In general, Hµν depends on the d-derivatives of the metric (growing
complexity).
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Fefferman-Graham obstruction tensor

To simplify notation we introduce ∂−1
∞ the integration in ρ = Ω2 from

ρ = 0 (inverse to ∂∞)

1 We can simplify computation using remaining parts of the Ricci
tensor

Ãµν = S̃µν −
1

2
(∇̃µG̃ν + ∇̃νG̃µ)− g̃µν γ̃,

where we introduce functions

γ̃ = ∂−1
∞ S̃∞∞, G̃µ = 2∂−1

∞ S̃µ∞ − ∂µ∂−1
∞ γ̃, (11)

2 Equations Ã
[n]
µν = 0 for n ≥ 2

0 = �g̃[n]
µν + . . .+ (n+ 1)

(
n− d

2
+ 1

)
g̃[n+1]
µν (12)

3 Recursive computation gives

Hµν = c�
d
2−2 (�Pµν −∇µ∇νP ) + . . . (13)
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Anderson-Fefferman-Graham (AFG) equations

1 Initial data: Dd−1gµν |Σ.

2 Gauge freedom: diffeomorphisms and conformal transformations.
Constraints

Hµin
µ|Σ = 0, Hµνn

µnν |Σ = 0, Hµ
µ |Σ = 0. (14)

3 They are higher derivatives equations. Are they of hyperbolic type in
some gauge?

4 They are related to Einstein’s equations in the ambient space. Can
we apply Choquet-Bruhat method (corresponding decomposition of
the FG tensor)?

5 Why the property of being solution to Einstein’s equation propagates
from initial Cauchy surface?
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Gauge fixing for AFG equations

Gauge fixing conditions (diffeomorphisms and conformal transformations)

Fµ = �sxµ = 0, P =
1

2(n− 1)
R = 0 (15)

Gauge fixed obstruction tensor

Hµν = c�
d
2−2 (�Pµν −∇µ∇νP ) + . . . = −1

2
�

d
2 gµν + . . . (16)

Problems with hyperbolicity in the case of multiple characteristics (Ivrii)

�N+1
g(u) u+ F (D2N+1u) = 0, Dku k-th jets

is in general not well-posed for N > 0.

1 Weakly hyperbolic (we can compute all time derivatives, convergent
series for analytic initial data).

2 One needs to control many lower order terms (Levi conditions).

W. Kamiński Trans-Carpathian 19 / 27



Hyperbolic systems

Generalized quasi-linear wave equation (recursive)

Consider a system for u[k] fields 0 ≤ n ≤ N ,

�u[n] + Fn(D1u[n], D2u
[k]
k<n) + cnu

[n+1] = 0,

where � = gµν(u[0])∂µ∂ν and cn 6= 0, n < N and cN = 0.

1 It is not a system of quasi-linear wave equations.

2 It is well-posed in smooth category (proof by introducing many
auxiliary (derivative) variables DN−ku[k])

3 Leray hyperbolicity (shift in Sobolev spaces u[n] ∈ Hs−n).

Recursive elimination of u[k] for k ≥ 1 in terms of u = u[0] gives

0 = �N+1u+ . . . , 2N + 2 order equation.

This equation is equivalent to the system, thus also well-posed.
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Gauge fixing for AFG equation

The gauge fixed tensors Ã tensors (Ẽ[n])

Ẽµν = S̃µν −
1

2
(∇̃µG̃ν + ∇̃νG̃µ)− g̃µν γ̃,

where the gauge fixing functions (∂−1
∞ integration in ρ)

γ̃ = −1

2
g̃[0]ξχg̃

[1]
ξχ + ∂−1

∞ S̃∞∞, G̃µ = Fµ + 2∂−1
∞ S̃µ∞ − ∂µ∂−1

∞ γ̃,

Equivalence{
Ẽµν = O(ρd/2),

γ̃ = O(ρd/2−1), G̃µ = O(ρd/2)

}
⇐⇒

{
Hµν = 0,
R = 0, Fµ = 0

}

If Ẽµν = O(ρd/2) then γ̃[0] ∝ R and G̃
[0]
µ = Fµ = �sxµ.
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The AFG equation is well-posed WK’ 23

1 The equation Ẽµν = O(ρd/2) (recursive, generalized hyperbolic
system)

Ẽ[n]
µν = −1

2
[�g̃ g̃µν ]

[n]
+ . . .+ cng̃

[n+1]
µν ,

for g̃
[k]
µν for k = 0, . . . , d2 − 1 (where cd/2−1 = 0).

2 Bianchi identity gives recursive, generalized hyperbolic equations for
the gauge functions

−1

2
�g̃γ̃ + . . . = O(ρd/2−1), −1

2
�g̃G̃µ + . . . = O(ρd/2).

3 Vanishing of the initial condition for this system follows from
vanishing of R and Fµ to sufficient order on Σ and constraints on Σ.

Well-posedness in this gauge follows from standard gluing technique in
the same way as for case of the Einstein’s equations.
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Almost Einstein structure

Spacetime M is conformal to a solution of Einstein’s equations (for
Ω 6= 0) if

tf(∇µ∇νΩ + PµνΩ) = 0, (17)

where tf is the traceless part. The condition (??) defines almost Einstein
structure (Ω arbitrary not vanishing identically).

Almost Einstein (Nurowski-Gover, Gover, Graham-Willse)

Existence of the covariantly constant covector II = ∂Iσ,

∇IIJ = O(ρd/2−1).

Relation to (??): Ω = σ|[0]
t=1. Moreover, III

I ∝ Λ +O(ρd/2−1).

Reminder: Killing equation propagation for Einstein’s vacuum gravity

(� + . . .)Xµ = 0 =⇒ (� + . . .)∇(µXν) = 0.
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Propagation of (almost) Einstein structure

Propagation (II = ∂Iσ, σ = tσ̃)

���σ = O(ρd/2+1),⇐⇒ [�g̃σ̃][n] + . . .+ cnσ̃
[n+1] = 0, n ≤ d

2
.

Well-posed generalized hyperbolic system.

If ���σ = O(ρd/2+1) and RIJ = O(ρ∞) then

(��� + . . .)∇IIJ = ∇I∇J���σ +O(ρ∞) = O(ρd/2−1),

It is a well-posed system for K̃
[n]
IJ = ∇IIJ |[n]

t=1 for n ≤ d
2 − 2. If the

initial data vanish, then ∇IIJ = O(ρd/2−1) everywhere.

The initial conditions reduce to

Dd−1 tf(∇µ∇νΩ + PµνΩ)|Σ = 0

thanks to recursive structure of the propagation equation.
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Propagation of (almost) Einstein structure

Propagation (II = ∂Iσ, σ = tσ̃)

���σ = O(ρd/2+1),⇐⇒ [�g̃σ̃][n] + . . .+ cnσ̃
[n+1] = 0, n ≤ d

2
.

Well-posed generalized hyperbolic system.

If Hµν = 0, then in Lorentzian setting, there exists a non-unique
Ricci flat extension RIJ = O(ρ∞),

The equation ���σ = O(ρd/2+1) depends on the extension of the
metric of order O(ρd/2). It is equivalent to supercritical GJMS
equation Pd+1Ω = 0.

Solution σ +O(ρd/2+1) may depend on the extension of the metric.
However, if it defines an almost Einstein structure, then this
dependence disappears.

Well-posedness ensures propagation of almost Einstein structures.
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Some applications

Wald, Zoupas; Bac, WK, Lewandowski, Broda 23
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Symplectic potentials

(Covariant) variational bi-complex

1 Variational identity (symplectic form ω = δΘ)

δL = E δg + dΘ, L ∈ Λd,0, Θ ∈ Λd−1,1 (18)

where Λk,l are natural k-forms, l-linear and antisymmetric in δg.

Acyclicity of the bicomplex (Gilkey, Wald,...):

1 If κ ∈ Λd,0

Eg(κ) = 0⇐⇒ κ = dξ + characteristic classes (19)

The characteristic classes are Pontrygin forms and Euler class. In
terms of densities first is odd second even.

2 For (n, k) 6= (d, 0) the d complex is acyclic

dκ = 0⇒ κ = dξ, κ ∈ Λn,k (20)

It holds also in the presence of additional tensor fields (then additionally
Eφ = 0 in the first part).
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Symplectic potentials

Ambiguities:

1 in Lagrangean

L′ = L+ η, Eg(η) = 0, Θ′ = Θ + Θη (18)

Thus η is a sum of total divergence and the Euler class (even case).

2 in symplectic potential
Θ′ = Θ + dκ. (19)

There exists a canonical Θcan for every choice of torsion-free
connection (integration by parts).

3 Symplectic form δΘ unique up to exact forms.

The presymplectic potential is used for constructing Noether currents for
symmteries j ∈ Λd−1,0. In the case of charges associated to local gauge
transformations by acyclicity j = dκ, where κ ∈ Λd−2,0. These objects
are used for defining charges in the asmptotic regions.

Problems: Ambiguities in Θ singular behaviour at ∂M .
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Symplectic potentials

1 For Einstein’s gravity

L =
√
gR, Θcan,GR = ∗(g̃µνδΓρµν − g̃ρνδΓµµν) (18)

Singular behaviour at conformal boundary.

2 Can we correct it such that the limit is well-defined? Usually done in
specific Starobinsky gauge by substraction method.

3 However, now we have an envelope AFG theory

L1 =
√
g̃
[ d
2 ]
, (19)

There is no distinguished connection, but there exists Θ1 such that
for solutions of Einstein’s equations

Θ1 = Λ
d
2−1Θcan,GR (20)

4 We look for correction of L1 and Θ1.
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Symplectic potentials

1 Suppose that we have conformally invariant L2 and Θ2, then the
limit of Θ2 exists and Θ2 = Θ1 + . . . have the same symplectic form.

2 On the boundary, conformally invariant presymplectic potential is
unique (on Einstein’s solutions) ∝ τ ijδgij .

3 Alexakis decomposition of global conformal invariants

L1 = conf + Euler + d (. . .) (18)

The last two parts have trivial Euler-Lagrange equations

4 In the case of Θ such decomposition is not known.

Bac, WK, Lewandowski, Broda ‘23

In dimension 4 we can write L2 as Lagrangean for Yang-Mills theory for
conformal Cartan connection. The standard YM sympletic potential turns
out to be conformally invariant.

Conjecture: Θ2 can be also defined for higher even dimensions.
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Summary

AFG equations can be used as generalization of Friedrich’s method
to any even dimension.

They provide nice geometric framework: propagation of almost
Einstein structures, symplectic currents

Useful for understanding initial data on the conformal boundary.

Outlook:

Better understanding what happens at the boundary.

Extension of the symplectic potential method to higher even
dimensions.

Can one add (conformal) matter?

Thank you!
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