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Theories of gravity in d-dimensional spacetimes have the same number of degrees of freedom as


quantum field theories in (d-1)-dimensions ⟹

Motivation

[Bekenstein ’72; Hawking ‘72]Black hole entropy obeys an area law: SBH =
A

4GN
∼ L2M2

Pl

Entropy of local QFT obeys a volume law: SQFT ∼ L3Λ3

[’t Hooft, Susskind ’90s]holographic principle



Motivation

Conformal field theory (CFT) Anti-de-Sitter (AdS) gravity

ds2 = R2 dz2+d ⃗x 2

z2

z−2 × (size)CFT = bulk proper size

Ultraviolet/short distances Infrared/long distances

AdSd+1

z
1/z

z = 0 z → ∞

CFTd

[Maldacena ’98]

Stringy ``realization’' in (asymptotically) negatively curved spacetimes  AdS/CFT correspondence⟹



Motivation

Quantum gravity  ~ CFT ?? 

• Very limited knowledge of either side, lacking independent definitions in general 

•Example:  = 4 Super Yang-Mills ~ strings in AdS   S𝒩 5 × 5

Large number of colors Small string coupling & beyond through integrability 

More generally,  formulate
•(at least) for all Λ

•in any number of dimensions



Context and goals

Which aspects of gravity are captured by CFT?

Today:  in the bulkΛ = 0

3+1 (bulk) dimensions 

GR, gravitational waves, real word black holes, ..

Advantages: • Scattering amplitude as building blocks of observables 

•Lorentz symmetry in d-dimensions ~ conformal symmetry in (d-2)-dimensions

•In d = 4 Virasoro enhancement in bulk (asymptotically) !
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Today:  in the bulkΛ = 0

3+1 (bulk) dimensions 

GR, gravitational waves, real word black holes, ..

Advantages: • Scattering amplitude as building blocks of observables 

•Lorentz symmetry in d-dimensions ~ conformal symmetry in (d-2)-dimensions

•In d = 4 Virasoro enhancement in bulk (asymptotically) !

Holographic ``dual’’ of gravity in AFS is a 2d CFT?



Context and goals

Which aspects of gravity are captured by CFT?

Today:  in the bulkΛ = 0

3+1 (bulk) dimensions 

GR, gravitational waves, real word black holes, ..

Aims: •Understand symmetries and properties of this 2d (celestial) CFT

•How does it fit into the broader holographic landscape?

•What can we learn about (quantum) gravity in 4d AFS?



Celestial holography

Massless particle states |ω, z, z̄⟩ |Δ, z, z̄⟩ ≡ ∫
∞

0
dωωΔ−1 |ω, z, z̄⟩

diagonalizes 4d boosts ~ 2d dilatationsenergy and 2 angles

T⟨p3, ⋯, pn; Tf |

|p1, p2; Ti⟩

…

𝒪(Δ, z, z̄)



Celestial holography

𝒜 ∼ ⟨p3, ⋯, pn; T → + ∞ |p1, p2; T → − ∞⟩

Scattering amplitude

T⟨p3, ⋯, pn; Tf |

|p1, p2; Ti⟩

…

𝒪(Δ, z, z̄)

Celestial amplitude

⟨𝒪Δ1
(z1) ⋯ 𝒪Δn

(zn)⟩

subject to 


symmetries ! 

∞
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Spacetime symmetries and scattering

ℐ+

ℐ−

|p(ω, z, z̄)⟩
•spacetime ~ Minkowski + perturbations

•infinite-dimensional asymptotic symmetry algebra

•quantized metric perturbations ~ particles = gravitons

[Bondi, van der Burg, Metzner, Sachs ’62]



Asymptotic symmetries

Gauge choice well adapted to the study gravitational waves (Bondi gauge): 

•waves propagate radially along family of null geodesics:

•angular coordinates constant along null rays

•constant area waveforms

gμν∂μu∂νu = 0 ⟹ guu = 0

ds2 = − du2 − 2dudr + 2r2γzz̄dzdz̄Minkowski metric in retarded coordinates

r →
∞

u = t − r

v = t + r

(z, z̄)
ℐ+

ℐ−

gμν∂μu∂νxA = 0 ⟹ guA = 0

∂rdet (r−2γAB) = 0



Asymptotically flat spacetimes

ds2 = − 2e2βdu(dr + Φdu) + r2γAB (dσA −
ΥA

r2
du) (dσB −

ΥB

r2
du)

• Asymptotically flat Bondi metrics near  ~ Minkowski + perturbations that fall off with :ℐ+ r

F =
1
2

 sphereqAB

F = 0  planeqAB

r →
∞

u = t − r

v = t + r

(z, z̄)
ℐ+

ℐ−

Φ = F(σA) −
M
r

+ 𝒪(r−2), γAB = qAB +
1
r

CAB +
1
r3

TAB + 𝒪(r−4)



Asymptotically flat spacetimes

ds2 = − 2e2βdu(dr + Φdu) + r2γAB (dσA −
ΥA

r2
du) (dσB −

ΥB

r2
du)

• Asymptotically flat Bondi metrics near  ~ Minkowski + perturbations that fall off with :ℐ+ r

Φ = F(σA) −
M
r

+ 𝒪(r−2),

F =
1
2

 sphereqAB

F = 0  planeqAB

r →
∞

u = t − r

v = t + r

(z, z̄)
ℐ+

ℐ−

∂uCAB = NAB free data

‣ remaining functions determined in terms of  by Einstein’s equationsCAB

γAB = qAB +
1
r

CAB +
1
r3

TAB + 𝒪(r−4)



Φ = Φ[R̄, M]

Einstein equations at large−r

•Radial equations (Grμ = 0) ⟹

ΥA = ΥA[CAB, NA]

β = β[CAB]

mass aspect (energy lost through gravitational waves)

angular momentum aspect



Einstein equations at large−r

•Radial equations (Grμ = 0) ⟹ mass aspect (energy lost through gravitational waves)

angular momentum aspect

•Remaining equations at  𝒪(r−2) ⟹ time evolution of M, NA, TAB

‣     Guu = 0 ⟹ ∂uM =
1
4

DADBNAB −
1
8

NABNAB

‣   GuA = 0 ⟹ ∂uNA = DAM +
1
16

DA(CABNAB) −
1
4

NBCDACBC −
1
4

DB (CBCNAC − NBCCAC) −
1
4

DBDBDCCAC +
1
4

DBDADCCBC

‣   GAB = 0 ⟹ ∂uEAB =
1
2

MCAB +
1
3

D(ANB) −
1
6

γABDCNC +
1
4

CABNCDCCD −
1
8

ϵ C
A CCBϵDEDEDCCCD

[Nichols’18]

Φ = Φ[R̄, M]

ΥA = ΥA[CAB, NA]

β = β[CAB]



∂uM =
1
4

DADBNAB −
1
8

NABNAB

∂uNA = DAM +
1
16

DA(CABNAB) −
1
4

NBCDACBC −
1
4

DB (CBCNAC − NBCCAC) −
1
4

DBDBDCCAC +
1
4

DBDADCCBC

∂uEAB =
1
2

MCAB +
1
3

D(ANB) −
1
6

γABDCNC +
1
4

CABNCDCCD −
1
8

ϵ C
A CCBϵDEDEDCCCD

Einstein equations at large−r

•Radial equations (Grμ = 0) ⟹ mass aspect (energy lost through gravitational waves)

angular momentum aspect

•Remaining equations at  𝒪(r−2) ⟹ time evolution of M, NA, TAB

‣     Guu = 0 ⟹

‣   GuA = 0 ⟹

‣   GAB = 0 ⟹ [Nichols’18]

Greatly simplify after reorganizing asymptotic 


 data according to symmetry!

Φ = Φ[R̄, M]

ΥA = ΥA[CAB, NA]

β = β[CAB]



Asymptotic symmetries

Extended BMS ~ enhancement of Poincare including angle-dependent translations and Lorentz transformations

•Solve ℒξgμν = 𝒪(r−#) ⟹ ξ(T, Y ) = T(z, z̄)∂u + YA(z, z̄)∂A +
1
2

D ⋅ Y (u∂u − r∂r) + ⋯

Order dictated by large-r fall-off of metric components

Supertranlsations 

Superrotations
generate eBMS  algebra4 [Barnich, Troessaert ’09]



BMS primaries

δYΦ(h,h̄) = (YA∂A + h∂zYz + h̄∂z̄Yz̄) Φh,h̄

Definition:  is a conformal primary field of weights  if it obeysΦ(h,h̄)(z, z̄) (h, h̄)

• Metric components  at fixed  cut on  are in general not primaries (M, NA, TAB) u ℐ

•Can build combinations of them that are primaries at , eg.u = 0 ℳ = M +
1
8

CABNAB, (h, h̄) = ( 3
2

,
3
2 )



BMS primaries

δYΦ(h,h̄) = (YA∂A + h∂zYz + h̄∂z̄Yz̄) Φh,h̄

Definition:  is a conformal primary field of weights  if it obeysΦ(h,h̄)(z, z̄) (h, h̄)

Primary fields constructed from asymptotic data up to :  𝒪(r−1)

Primaries

(Δ, J)

C 𝒩 ≡ ∂uN̂ ℳ ℳ̃ 𝒫 𝒯

(3,0) (3,1) (3,2)(3,0)

𝒥

(3, − 1)(3, − 2)(1,2)

(h, h̄) ≡ ( Δ + J
2

,
Δ − J

2 )



BMS primaries

Primary fields constructed from asymptotic data up to :  𝒪(r−1)

Primaries

(Δ, J)

C 𝒩 ≡ ∂uN̂ ℳ ℳ̃ 𝒫 𝒯

(3,0) (3,1) (3,2)(3,0)

𝒥

(3, − 1)(3, − 2)(1,2)

(h, h̄) ≡ ( Δ + J
2

,
Δ − J

2 )

C ≡ CABmAmB

𝒩 ≡ 𝒩ABm̄Am̄B

𝒥 ≡ 𝒥Am̄A

ℳℂ ≡ ℳ + i ℳ̃

𝒫 ≡ 𝒫AmA

𝒯 ≡ 𝒯ABmAmB

mAm̄A = 1Frame fields:

Part of null spacetime tetrad (l, n, m, m̄)



Einstein equations at large- , revisitedr

In terms of the BMS-covariant quantities, leading Einstein’s equations collapse to:

( ·𝒥 = 1
2 D𝒩, D = mADA)

·ℳℂ = D𝒥 +
1
4

C𝒩 ⟺ ∂uM = ⋯

·𝒫 = Dℳℂ + C𝒥 ⟺ ∂uNA = ⋯

·𝒯 = D𝒫 +
3
2

Cℳℂ ⟺ ∂uTAB = ⋯

ℳℂ ≡ Q0, 𝒫 ≡ Qs=1, 𝒯 ≡ Qs=2

∂uQs = DQs−1 +
s + 1

2
CQs−2, s = 0,1,2

Q−1 =
1
2

D∂uN, Q−2 =
1
2

∂uN+ boundary conditions



Einstein equations at large- , revisitedr

• Can solve order by order in the number of fields:        Qs = Q(1)
s + Q(2)

s + ⋯ (polynomial in field space)

• Expect to obtain conserved quantities near , but ℐ±
∓ lim

u→−∞
Qs(u, z, z̄) = ∞, s ≥ 1

•Divergences can be systematically regularized by imposing no-flux condition ⟹ qs(z, z̄)

•Assume matching across i0

q+
s

q−
s

= ⟹ spacetime conservation law

∂uQs = DQs−1 +
s + 1

2
CQs−2, s = 0,1,2



From conservation laws to soft theorems

∂uQs = DQs−1 +
s + 1

2
CQs−2, s = 0,1,2

• Define pairing ∫S2

ℱ(z, z̄)q±
s (z, z̄) ≡ 𝒬s

q+
s

q−
s

• Matching ⟹

⟨out |𝒬+
s 𝒮 − 𝒮𝒬−

s | in⟩ = 0

charges are conserved hence commute with the S-matrix:

•For s = 0, 1, 2 reproduce tree-level leading, subleading and subsubleading soft graviton theorems!

lim
ω→0

ω ̂q =
2

∑
s=0

ωs−1S(s)
± ×

⋯

p1p2

pn



From conservation laws to soft theorems

⟨out | [𝒬1
s , 𝒮] | in⟩ = − ⟨out | [𝒬2

s , 𝒮] | in⟩ ⟹Conservation laws truncated to quadratic order (sub) -leading soft theorem!s

p1p2

pn

lim
ω→0

ω ̂q =
∞

∑
s=0

ωs−1S(s)
± ×

⋯

p1p2

pnq+
s

q−
s

∂uQs = DQs−1 +
s + 1

2
CQs−2, s ∈ ℕ

•Postulate extension for all positive integers  (can prove to linear order)s
q1

s ∝ Ds+2ℳ−(s), ℳ−(s) = ∫ duusN(u)

(sub) -leading soft gravitons

• Use  to show that: {N(u, xA), C(u′￼, x′￼A)} =
κ2

2
δ(u − u′￼)δ(2)(xA − x′￼A)



Higher-spin symmetry

Use  to show that (truncated)  realize a  algebra on phase space: {N(u, xA), C(u′￼, x′￼A)} =
κ2

2
δ(u − u′￼)δ(2)(xA − x′￼A) qs w1+∞

{qs(z), qs′￼
(z′￼)}1 = {q2

s , q1
s′￼
} + (s ↔ s′￼) =

κ2

8 [−(s′￼+ 1)q1
s+s′￼−1(z′￼)Dzδ(z, z′￼) + (s + 1)q1

s+s′￼−1(z)Dz′￼
δ(z, z′￼)]

•Similar structure (infinite symmetry algebra) in YM


• Same charge algebra at quadratic order upon including cubic terms in the truncation! 

[Freidel, Pranzetti, A.R ’21]

[Freidel, Pranzetti, A.R ’23]



Conformally soft gravitons

u

N ∼ |u |−1−s−ϵ , u → ± ∞

Charges well defined provided IR condition

Assume exponential suppression

as ω → ∞

Ñ (ω) = ∫ dueiωu∂uC*(u)
UV condition

̂N (Δ) = ∫
∞

0
dωωΔ−1 Ñ (ω)

No poles in RH complex  planeΔ
Δ

IR poles — charges No UV poles

[Arkani-Hamed, Pate, A.R., Strominger ’20]



Conformally soft gravitons = memory ``observables’’

Ñ ±(ω) =
∞

∑
n=0

ωnℳ±(n)

Tower of soft/memory operators:

 completely determine gravitational signals that decrease rapidly as  (obey the UV condition)ω → ∞

ℳ(s) ≡ Res
Δ=−s

̂N (Δ) =
is

s! ∫
+∞

−∞
duusN(u), s ∈ ℕ



Tower of Goldstone operators 

𝒮±(n) ≡ lim
Δ→n

̂N ±(Δ), n ∈ ℕ, 𝒮+(n) = Dn+2
z 𝒢+(n), 𝒮−(n) = Dn+2

z̄ 𝒢−(n)

⟨p |𝒟± ≡ ⟨p |exp {
∞

∑
s=0

(−1)s

πκ2 ∫ d2z [Q∓(s, z; p)𝒢±(s, z) − Q*∓(s, z; p)𝒢*∓(s, z)]}

• Involved in the all order generalization of Dirac-Faddeev-Kulish dressings:

pi

pj

[Dirac ’31; Weinberg ’65; Chung; Kibble; Faddeev, Kulish…]

C±(u) =
i

2π

∞

∑
n=0

(−iu)n

n!
𝒮±(n)

• Time signal reconstructed from Goldstones provided   (IR condition)C(u)
u→∞

∝ |u |−1−n , ∀n > 0

UV & IR conditions   = space of Schwartz functions⟺ N(u) ∈ S



[Freidel, Pranzetti, A.R. ’22]

 form a complete basis for gravitational signals in !ℳ±(n), 𝒮±(n) S

Θ ≡
2
κ2 ∫ du∫S

NδC

C±(u) =
i

2π

∞

∑
n=0

(−iu)n

n!
𝒮±(n)

|n, z, ± ⟩ ≡
1

πκ2
ℳ†

±(n, z) |0⟩

| ̂n, z, ± ⟩ ≡
1

πκ2
𝒮†

±(n, z) |0⟩

• Orthogonality with respect to the symplectic product

Θ± =
1

iκ2π

∞

∑
n=0

∫S
d2z qℳ±(n)δ𝒮*±(n)Θ = Θ+ + Θ− + δα,

• Completeness: P =
∞

∑
n=0,ϵ∈±

∫S
|n, z, ϵ⟩⟨ ̂n, z, ϵ | =

∞

∑
n=0,ϵ∈±

∫S
| ̂n, z, ϵ⟩⟨n, z, ϵ |

•  coincides with the identity operator on the set of Schwartz functions!P

A discrete basis



Summary

Tower of memory/Goldstone modes forms a ``discrete’’ basis for ``sufficiently localized’’ wavepackets  

Infinite tower of charges extracted from Einstein’s equations

Matching condition  conservation  universal tower of tree-level soft theorems↔ ↔

Higher spin symmetry algebra in 2d!



Outlook: observational signatures of QG?

Physical interpretation of IR-finite terms in dressings/soft S-matrix; higher dimensions?

Logarithmic soft theorems, tails?

Matter, different backgrounds

Theoretical:

Practical:

Asymptotic symmetry interpretation of the tower of soft operators? Higher spin symmetry from diffeos?!

Beyond tree level - loops, higher derivative corrections?

Meaningful constraints on scattering amplitudes and/or low energy EFT parameters?

Scattering amplitudes for GW: multipoles, relation to PN expansion, prospects for measuring tower of memories?

Relation to shockwaves (beyond leading order) [Verlinde, Zurek]

[…Grant, Nichols ’22]



Mulțumesc!


