HOMOGENEITY AND FORMALISMS OF MECHANICS

Janusz Grabowski

(Polish Academy of Sciences)

The Trans-Carpathian Seminar on Geometry \& Physics (March 20, 2024)

Euler's Homogeneous Function Theorem

Let us start with an easy student exercise in the first course of Calculus, known as Euler's Homogeneous Function Theorem:

Proposition

Any C^{1}-differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is homogeneous of degree 1, i.e., a function satisfying

$$
\begin{equation*}
f(t \cdot x)=t \cdot f(x) \quad \text { for all } \quad t>0 \tag{1}
\end{equation*}
$$

if and only if f is linear.
It is clear that we can replace \mathbb{R}^{n} with any n-dimensional real vector space E, and the condition (1) with $\nabla_{E}(f)=f$, where ∇_{E} is the Euler vector field on E; in homogeneous coordinates,

$$
\nabla_{E}=\sum x^{i} \partial_{x^{i}} .
$$

Hence, the dual space E^{*} can be defined as the space of smooth 1-homogeneous functions, so the linear structure on E is determined by the multiplication by reals, $h_{t}(v)=t v$.

Vector bundles

Our observation can be naturally extended to vector bundles.
Traditionally, a vector bundle is defined as a locally trivial fibration $\tau: E \rightarrow M$ with an atlas of local trivializations $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ such that the transition maps are linear in fibers,

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

where $A(x, \cdot) \in \mathrm{GL}(n, \mathbb{R})$.
The latter property can also be expressed in terms of the multiplication by reals $h_{t}(x, y)=(x, t y)$:

$$
A \circ h_{t}=h_{t} \circ A \quad \text { for all } \quad t \in \mathbb{R} .
$$

It follows that the multiplication by reals is well-defined globally, $h_{t}: E \rightarrow E$, and completely determines the vector bundle structure. The projection $\tau: E \rightarrow M$ is simply h_{0}.

Consequences for vector bundles

Since working with vector bundles we can reduce ourselves to the multiplication by reals $h_{t}(v)=t \cdot v$, one proves the following.

Corollary (Grabowski-Rotkiewicz 2009)

- A smooth map $\Phi: E_{1} \rightarrow E_{2}$ between the total spaces of two vector bundles $\pi_{i}: E_{i} \rightarrow M_{i}, i=1,2$, is a morphism of vector bundles if and only if it intertwines the multiplications by reals:

$$
\Phi(t \cdot v)=t \cdot \Phi(v)
$$

In this case, the map $\varphi=\Phi_{\mid M_{1}}$ is a smooth map between the base manifolds covered by Φ.

- Vector subbundles of a vector bundle $\tau: E \rightarrow M$ are smooth submanifolds $E_{0} \subset E$ which are invariant with respect to the multiplication by reals, $h_{t}\left(E_{0}\right) \subset E_{0}$. In this case, E_{0} is itself a vector bundle over $M_{0}=\tau\left(E_{0}\right)=M \cap E_{0}$ and the multiplication by reals inherited from E.

Graded bundles

A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ modelled on a graded vector space

$$
\mathbb{R}^{\mathbf{d}}=\mathbb{R}^{d_{1}}[1] \times \cdots \times \mathbb{R}^{d_{k}}[k] .
$$

We call k the degree and $\mathbf{d}=\left(d_{1}, \ldots, d_{k}\right)$ the rank of F, and view linear coordinates $\left(y_{w}^{a}\right)$ in $\mathbb{R}^{d_{w}}[w]$ as being homogeneous of degree (weight) w with respect to the canonical dilation $h^{\mathbf{d}}$,

$$
h_{t}^{\mathrm{d}}\left(y_{1}, \ldots, y_{k}\right)=\left(t \cdot y_{1}, \ldots, t^{k} \cdot y_{k}\right), \quad y_{w} \in \mathbb{R}^{d_{w}}, \quad t \in \mathbb{R}
$$

i.e., $y_{w}^{a} \circ h_{t}^{\mathrm{d}}=t^{w} \cdot y_{w}^{a}$.

More precisely, F is a fiber bundle with the typical fiber $\mathbb{R}^{\mathbf{d}}$ and with an atlas of local trivializations $\tau^{-1}(U) \simeq U \times \mathbb{R}^{\mathrm{d}}$ such that the transition maps respect the dilation $h_{t}(x, y)=\left(x, h_{t}^{\mathrm{d}}(y)\right)$,

$$
\begin{gathered}
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{\mathbf{d}} \\
A \circ h_{t}=h_{t} \circ A \quad \text { for all } t \in \mathbb{R} .
\end{gathered}
$$

Like for vector bundles, the dilation $h_{t}: F \rightarrow F$ is globally defined and $\tau=h_{0}$.

Weight vector fields and homogeneity

Note that our graded bundles are not graded vector bundles, since the transition maps are generally not linear on the graded vector space $\mathbb{R}^{\mathbf{d}}$: for $h_{t}(y, z)=\left(t y, t^{2} z\right)$ on \mathbb{R}^{2} we have $\varphi \circ h_{t}=h_{t} \circ \varphi$, where $\varphi(y, z)=\left(y, z+y^{2}\right)$, but φ is not linear.

Like in the case of a vector space, we have local homogeneous coordinates $\left(x^{A}, y_{w}^{a}\right)$ on F, where the coordinates x^{A} on M are of degree 0 , and the coordinates y_{w}^{a} in fibers are of degree w. The dilation h_{t} is completely determined by the weight vector field

$$
\nabla_{F}=\sum_{w=1}^{k} \sum_{a=1}^{d_{w}} w \cdot y_{w}^{a} \partial_{y_{w}^{a}}
$$

We call a smooth function $f: F \rightarrow \mathbb{R}$ homogeneous of degree (weight) $\alpha \in \mathbb{R}$ if $f \circ h_{t}=t^{\alpha} \cdot f$ for $t>0\left(\nabla_{F}(f)=\alpha \cdot f\right)$.

A morphism of graded bundles is a smooth map respecting homogeneity degrees of functions, i.e., relating the corresponding weight vector fields \rightarrow the category GrB.

Graded bundles are polynomial

Generally, we call a tensor field K on F homogeneous of degree (weight) $\alpha \in \mathbb{R}$ if

$$
£_{\nabla_{F}} K=\alpha \cdot K
$$

Proposition (Grabowski-Rotkiewicz 2012)

If $f: F \rightarrow \mathbb{R}$ is a homogeneous function of degree α, then $\alpha \in \mathbb{N}$ and f is locally a polynomial in homogeneous fiber coordinates y_{w}^{a}, with coefficients being smooth functions in the base coordinates $\left(x^{A}\right)$. Consequently, morphisms of graded bundles are polynomial in local homogeneous coordinates of degree >0. In particular, the transition functions $A(x, y)$ are polynomial in variables $\left(y_{w}^{a}\right)$, i.e., any graded bundle is a polynomial bundle.

Note that vector bundles are just graded bundles of degree 1. Another trivial example is a split graded bundle, i.e. a graded vector bundle

$$
F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]
$$

where E^{i} are vector bundles over M.

A canonical example

Example. Consider the second-order tangent bundle $\mathrm{T}^{2} M$, i.e., the bundle of second jets of smooth paths $(\mathbb{R}, 0) \rightarrow M$. Writing the Taylor expansion of paths in local coordinates $\left(x^{A}\right)$ on M :

$$
x^{A}(t)=x^{A}(0)+\dot{x}^{A}(0) t+\ddot{x}^{A}(0) \frac{t^{2}}{2}+o\left(t^{2}\right)
$$

we get local coordinates $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ on $\mathrm{T}^{2} M$, which transform

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x), \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

Hence, associating with $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ the weights $0,1,2$, we get a graded bundle structure of degree 2 on $\mathrm{T}^{2} M$.
Due to the quadratic terms above, this is not a vector bundle! All this generalizes to higher tangent bundles $\mathrm{T}^{k} M$ which are canonically graded bundles od degree k.

Transition functions for graded bundles

In fact, the form of transition maps (changes of local coordinates) for a general graded bundle is quite similar,

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x), \\
y_{w}^{\prime a} & =y_{w}^{b} \cdot T_{b}{ }^{a}(x)+\sum_{\substack{1<n \\
w_{1}+\cdots+w_{n}=w}} \frac{1}{n!} y_{w_{1}}^{\prime b_{1}} \cdots y_{w_{n}}^{\prime b_{n}} \cdot T_{b_{n} \cdots b_{1}}{ }^{a}(x),
\end{aligned}
$$

where $T_{b}{ }^{a}$ are invertible and $T_{b_{n} \ldots b_{1}}$ are symmetric in indices b.
Note that the transition functions of coordinates of degree r involve only coordinates of degree $\leq r$, that defines a reduced graded bundle F_{r} of degree r (we simply 'forget' coordinates of degrees $>r$). Moreover, they are linear in coordinates of degree r modulo a shift by a polynomial in variables of degrees $<r$,

$$
y_{r}^{\prime a}=y_{r}^{b} \cdot T_{b}^{a}(x)+\sum_{\substack{1<n \\ w_{1}+\cdots+w_{n}=r}} \frac{1}{n!} y_{w_{1}}^{b_{1}} \cdots y_{w_{n}}^{\prime b_{n}} \cdot T_{b_{n} \cdots b_{1}}(x),
$$

so the fibrations $F_{r} \rightarrow F_{r-1}$ are affine.

Graded bundles - the tower of affine fibrations

In this way, for any graded bundle F of degree k we get a tower of affine fibrations

$$
F=F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

Note that the bundles in the tower are only affine, so there is no canonical embedding of F_{r-1} into F_{r} nor F.

Example

In the case of the canonical graded bundle $F=\mathrm{T}^{k} M$, we get exactly the tower of natural projections of jet bundles

$$
\mathrm{T}^{k} M \xrightarrow{\tau^{k}} \mathrm{~T}^{k-1} M \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} \mathrm{~T}^{2} M \xrightarrow{\tau^{2}} \mathrm{~T} M \xrightarrow{\tau^{1}} F_{0}=M .
$$

For a split graded bundle we have

$$
\begin{gathered}
E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k] \rightarrow E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k-1}[k-1] \rightarrow \cdots \\
\cdots \rightarrow E^{1}[1] \oplus_{M} E^{2}[2] \rightarrow E^{1}[1] \rightarrow M
\end{gathered}
$$

Homogeneity structures

The multiplication by reals in a vector bundle and, more generally, the dilations

$$
h: \mathbb{R} \times F \rightarrow F, \quad h(t, p)=h_{t}(p),
$$

which for a graded bundle $\tau: F \rightarrow M$ with local homogeneous coordinates $\left(x^{A}, y_{w}^{a}\right)$ read

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right),
$$

represent smooth actions of the monoid (not a group!) (\mathbb{R}, \cdot) of multiplicative reals: $\quad h_{1}=\operatorname{id}_{F}, \quad h_{t} \circ h_{s}=h_{t s}$.
Such actions of (\mathbb{R}, \cdot) we will call homogeneity structures.
This is because h defines the concept of homogeneity on F : $f: F \rightarrow \mathbb{R}$ is homogeneous of degree $\alpha \in \mathbb{R}$ if $f \circ h_{t}=t^{\alpha} \cdot f$ for $t>0$. We can also use the associated weight vector field,

$$
\nabla(p)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=1} h_{t}(p)
$$

and say that a tensor field K on F is homogeneous of degree α if $£_{\nabla}(K)=\alpha \cdot K$.

Graded bundle $=$ homogeneity structure

We know that with every graded bundle there is canonically associated a homogeneity structure.

The fundamental result in the theory of graded bundles says that graded bundles and homogeneity structures are, in fact, fully equivalent concepts.

Theorem (Grabowski-Rotkiewicz 2012)

Associating canonically the homogeneity structure with a graded bundle yields an isomorphism of categories.

More precisely, for any homogeneity structure $h: \mathbb{R} \times F \rightarrow F$ on a manifold F, the subset $M=h_{0}(F)$ of F is a smooth submanifold and there is a non-negative integer $k \in \mathbb{N}$ such that $h_{0}: F \rightarrow M$ is canonically a graded bundle of degree k whose homogeneity structure coincides with h. In other words, there is an atlas on F consisting of local homogeneous functions.

Double vector bundles

An important concept of a double vector bundle, introduced by Pradines in 1974, is a manifold equipped with two vector bundle structures which are compatible in a categorical sense, i.e., as a vector bundle in the category of vector bundles.

Definition

A double vector bundle (DVB in short) $(D ; A, B ; M)$ is a system of four vector bundle structures and VB-morphisms,

Moreover, each of the structure maps of each of the vector bundle structures on D (the bundle projection, the zero section, the addition, and the scalar multiplication) is a morphism of vector bundles with respect to the other structure.

The core of a double vector bundle

Let C be the intersection of the two kernels:

$$
C=\left\{c \in D \mid \exists m \in M \text { such that } q_{B}^{D}(c)=0_{m}^{B}, \quad q_{A}^{D}(c)=0_{m}^{A}\right\} .
$$

It is called the core of D and, together with the map $q_{C}(c)=m$, it is a vector bundle $q_{C}: C \rightarrow M$.

We can illustrate the core in the diagram of the double vector bundle as follows.

One can prove that

$$
\left(q_{A}^{D}, q_{B}^{D}\right): D \rightarrow A \oplus_{M} B
$$

is an affine bundle modelled on the vector bundle $\left(q_{A}, q_{B}\right)^{*}(C)$.

Double vector bundles - the reference example

Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
Consider the manifold

$$
D=A \times_{M} B \times_{M} C .
$$

Then D is canonically a double vector bundle, with the side bundles A and B, the core C, and with the obvious projections,

$$
q_{A}^{D}: A \times_{M} B \times_{M} C \rightarrow A, \quad q_{B}^{D}: A \times_{M} B \times_{M} C \rightarrow B,
$$

the obvious zero-sections,

$$
\begin{aligned}
& \tilde{0}^{A}: A \ni a_{m} \mapsto\left(a_{m}, 0_{m}^{B}, 0_{m}^{C}\right) \in D, \\
& \tilde{0}^{B}: B \ni b_{m} \mapsto\left(0_{m}^{A}, b_{m}, 0_{m}^{C}\right) \in D,
\end{aligned}
$$

and the obvious vector space structures in fibers.
Actually, every double vector bundle is locally of this form.
In particular, the Whitney sum $A \oplus_{M} B$ is a double vector bundle with the trivial core.

Double Graded Bundles

Our understanding of vector bundles as homogeneity structures extremely simplifies the 'categorical' definition of Pradines.

Theorem (Grabowski-Rotkiewicz 2009)

Two vector bundle structures, $q_{A}^{D}: D \rightarrow A$ and $q_{B}^{D}: D \rightarrow B$, on a manifold D are compatible if and only if the corresponding homogeneity structures commute:

$$
h_{t}^{A} \circ h_{s}^{B}=h_{s}^{B} \circ h_{t}^{A} \quad \text { for all } \quad t, s \in \mathbb{R} .
$$

Definition

A double graded bundle (DGB) is a manifold D equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that $h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1}$ for all $t, s \in \mathbb{R}$.
If degrees of h^{1}, h^{2} are k, l, then (k, l) we call the bi-degree of D. Of course, all this can be naturally generalized to a concept of a n-fold graded bundle of n-degree $\left(k_{1}, \ldots, k_{n}\right)$.

Tangent lifts of graded bundles

The compatibility condition can also be formulated as the commutation of the weight vector fields, $\left[\nabla^{1}, \nabla^{2}\right]=0$. Note that $h_{t}^{\text {tot }}=h_{t}^{1} \circ h_{t}^{2}$ defines the total graded bundle structure of D. An extension to n-tuple graded bundles is obvious.

Let $\tau: F \rightarrow M$ be a graded bundle of degree k with the homogeneity structure h, which in local coordinates $\left(x^{A}, y_{w}^{a}\right)$,
$1 \leq w \leq k$, reads $\quad h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)$.
Let us consider the tangent lift $\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}=\mathrm{T} h_{t}$ of h, i.e.,

$$
\left(\mathrm{d}_{\mathrm{\top}} h\right)_{t}\left(x^{A}, y_{w}^{a}, \dot{x}^{B}, \dot{y}_{w}^{b}\right)=\left(x^{A}, t^{w} y_{w}^{a}, \dot{x}^{B}, t^{w} \dot{y}_{w}^{b}\right) .
$$

Proposition

The tangent lift $\mathrm{d}_{\mathrm{T}} h$ is a homogeneity structure of degree k on $\mathrm{T} F$, which is compatible with the canonical vector bundle structure on TF. In other words, the tangent bundle of a graded bundle is canonically a double graded bundle.

Canonical example

$$
\left.\begin{array}{ll}
\tau: E \longrightarrow M & \tau_{E}: \mathrm{T} E \longrightarrow E \\
\left(x^{a}, y^{i}\right) \mapsto\left(x^{a}\right) \\
\left(x^{a}, y^{i}, \dot{x}^{b}, \dot{y}^{j}\right) \mapsto\left(x^{a}, y^{i}\right)
\end{array} \quad \begin{array}{l}
\mathrm{T} \tau: \mathrm{T} E \longrightarrow \mathrm{~T} M \\
\left(x^{a}, y^{i}, \dot{x}^{b}, \dot{y}^{j}\right) \mapsto\left(x^{a}, \dot{x}^{b}\right)
\end{array}\right] \begin{aligned}
& h_{t}\left(x^{a}, y^{i}\right)=\left(x^{a}, t y^{i}\right), \quad\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}\left(x^{a}, y^{i}, \dot{x}^{b}, \dot{y}^{j}\right)=\left(x^{a}, t y^{i}, \dot{x}^{b}, t \dot{y}^{j}\right) \\
& \nabla=\sum_{i} y^{i} \partial_{y^{i}}, \quad \nabla^{1}=\mathrm{d}_{\top}\left(\sum_{i} y^{i} \partial_{y^{i}}\right)=\sum_{i}\left(y^{i} \partial_{y^{i}}+\dot{y}^{i} \partial_{\dot{y}^{i}}\right) \\
& \nabla^{2}=\sum_{a} \dot{x}^{a} \partial_{\dot{x}^{a}}+\sum_{i} \dot{y}^{i} \partial_{\dot{y}^{i}}, \quad\left[\nabla^{1}, \nabla^{2}\right]=0 .
\end{aligned}
$$

In the case $E=\mathrm{T} M$, there is a canonical automorphism (called the flip) $\kappa:$ TT $M \rightarrow$ TT M, intertwining both VB-structures.

Break

I INVITE YOU TO TAKE A BREAK

Phase lifts of graded bundles

To lift h_{t} from a graded bundle $\tau: F \rightarrow M$ of rank k to the cotangent bundle $\mathrm{T}^{*} F$, consider the adapted coordinates $\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)$ and

$$
\left(\mathrm{T} h_{t^{-1}}\right)^{*}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{w} y_{w}^{a}, p_{B}, t^{-w} p_{b}^{w}\right)
$$

for $t \neq 0$. This makes no sense for $t=0$, so we define the phase lift of h by $\left(\mathrm{d}_{\mathbf{T}^{*}} h\right)_{t}=t^{k} \cdot\left(\mathrm{~T} h_{t^{-1}}\right)^{*}$. This makes sense for $t=0$:

$$
\left(\mathrm{d}_{\mathbf{T}^{*}} h\right)_{t}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{w} y_{w}^{a}, t^{k} p_{B}, t^{k-w} p_{b}^{w}\right) .
$$

Proposition

The phase lift $\mathrm{d}_{\mathbf{T}^{*}} h$ is a homogeneity structure on $\mathrm{T}^{*} F$, which is compatible with the canonical vector bundle structure. In other words, the cotangent bundle of a graded bundle is canonically a double graded bundle.

Phase lifts of vector bundles

$$
\begin{array}{cc}
\tau: E \longrightarrow M & \pi_{E}: \mathbf{\top}^{*} E \longrightarrow E \\
\left(x^{a}, y^{i}\right) \mapsto\left(x^{a}\right) & \left(x^{a}, y^{i}, p_{b}, \xi_{j}\right) \mapsto\left(x^{a}, y^{i}\right) \\
h_{t}\left(x^{a}, y^{i}\right)=\left(x^{a}, t y^{i}\right), & \left(\mathrm{d}_{\mathbf{\top} *} h\right)_{t}\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right)=\left(x^{a}, t y^{i}, t p_{b}, \xi_{j}\right)
\end{array}
$$

The Poisson bracket $\left\{y^{i}, \xi_{j}\right\}$ is δ_{j}^{i} which implies that ξ_{j} are coordinates dual to y^{i}, so $\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right) \mapsto\left(x^{a}, \xi_{j}\right)$ represents a projection $\zeta: \mathrm{T}^{*} E \rightarrow E^{*}$.
We have therefore a double vector bundle

Linearity vs double vector bundles

Linearity of different geometrical structures is usually related to some DVB structures.

- A bivector field Λ on a vector bundle E is linear if the corresponding map

$$
\Lambda^{\#}: \mathrm{T}^{*} E \longrightarrow \mathrm{~T} E
$$

is a morphism of double vector bundles.

- A two-form ω on a vector bundle E is linear if the corresponding map

$$
\omega^{b}: \mathrm{T} E \longrightarrow \mathrm{~T}^{*} E
$$

is a morphism of double vector bundles.

- A distribution $D \subset \mathrm{~T} E$ on a vector bundle E is linear if D is a double vector subbundle, i.e., D is a vector subbundle with respect to the both vector bundle structures on E.
- A (linear) connection on a vector bundle E is a horizontal distribution in $\mathrm{T} E$ (Ehresmann connection) which is linear.

Canonical isomorphism $\mathrm{T}^{*} E \simeq \mathrm{~T}^{*} E^{*}$

Theorem (Tulczyjew 1974)

There is a canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} E^{*} \rightarrow \mathrm{~T}^{*} E
$$

which in the adapted local coordinates reads

$$
\mathcal{R}\left(x^{a}, \xi^{i}, p_{b}, \pi_{j}\right)=\left(x^{a}, \pi_{i},-p_{b}, \xi^{j}\right) .
$$

The map \mathcal{R} is simultaneously an anti-symplectomorphism.

Canonical DVBs in mechanics

Let us put now $E=\mathrm{T} M$ to be the vector bundle of kinematical configurations. We know already that $\mathrm{T}^{*} \mathrm{~T} M$ and $\mathrm{T}^{*} \mathrm{~T}^{*} M$ are canonically DVBs which are canonically isomorphic:

$$
\begin{gathered}
\mathcal{R}: \mathrm{T}^{*} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \mathrm{~T} M \\
\left(q^{i}, p_{j}, \pi_{k}, y^{l}\right) \mapsto\left(q^{i}, y^{j},-\pi_{k}, p_{l}\right)
\end{gathered}
$$

It is easy to see that the above isomorphism is simultaneously an anti-symplectomorphism. The canonical symplectic form $\omega_{M}=\mathrm{d} p_{i} \wedge \mathrm{~d} q^{i}$ on $\mathrm{T}^{*} M$ induces a VB-isomorphism

$$
\begin{gathered}
\beta_{M}: \mathrm{TT}^{*} M \rightarrow \mathbf{T}^{*} \mathrm{~T}^{*} M \\
\left(q^{i}, p_{j}, \dot{q}^{k}, \dot{p}_{l}\right) \mapsto\left(q^{i}, p_{j},-\dot{p}_{k}, \dot{q}^{l}\right)
\end{gathered}
$$

which is actually a DVB-isomorphism and anti-symplectomorphism with respect to the lifted symplectic structure

$$
\mathrm{d}_{\mathbf{\top}}\left(\omega_{M}\right)=\mathrm{d} \dot{p}_{i} \wedge \mathrm{~d} q^{i}+\mathrm{d} p_{i} \wedge \mathrm{~d} \dot{q}^{i}
$$

on TT* M.

The Tulczyjew triple

Consequently,

$$
\begin{gathered}
\alpha_{M}=\mathcal{R} \circ \beta_{M}: \mathrm{T}^{*} M \rightarrow \mathrm{~T}^{*} \mathrm{~T} M, \\
\left(q^{i}, p_{j}, \dot{q}^{k}, \dot{p}_{l}\right) \mapsto\left(q^{i}, \dot{q}^{j}, \dot{p}_{k}, p_{l}\right)
\end{gathered}
$$

is a DVB-isomorphism which is simultaneously a symplectomorphism. It is called the Tulczyjew isomorphism.
The full diagram of these symplectic DVB-isomorphisms, called the Tulczyjew triple, is the following:

Dynamics

The Tulczyjew's approach to formalism of mechanics uses the modern concept of first-order dynamics (first-order ODE), more general than the one based on just vector fields.

Definition

An implicit first-order dynamics on a manifold N is a submanifold $D \subset \mathrm{~T} N$. A smooth curve $\gamma: \mathbb{R} \rightarrow N$ is a solution, if its tangent prolongation $\dot{\gamma}: \mathbb{R} \rightarrow \mathrm{T} N$ takes values in D.

Example

A vector field X on N, defines the dynamics $D=X(N) \subset \mathrm{T} N$. Solutions for D are exactly trajectories of X.
Images of vector fields are exactly those submanifolds D of TM which are projected diffeomorphically on M by the bundle projection $\tau_{M}: \mathrm{TM} \rightarrow M$.

Similarly, submanifolds of $\mathrm{T}^{2} N$ are understood as (implicit) ordinary second-order differential equations, etc.

The Tulczyjew triple - the Lagrangian side

For a Lagrangian $L: \mathrm{T} M \rightarrow \mathbb{R}$, the phase dynamics \mathcal{D}_{L} on $\mathrm{T}^{*} M$ is the image of the Tulczyjew differential $\mathcal{T} L=\alpha_{M}^{-1} \circ \mathrm{~d} L$, called sometimes also the time evolution operator,

Dynamics $\mathcal{D}_{L}=\mathcal{T} L(\mathrm{~T} M)$ is explicit for hyperregular
Lagrangians only, i.e., when the Legendre map,

$$
\lambda_{L}=\pi_{\mathrm{T}^{*} M} \circ \mathrm{~d} L: \mathrm{T} M \rightarrow \mathrm{~T}^{*} M, \quad \lambda_{L}(q, \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)
$$

is a diffeomorphism. Note that the dynamics has been obtained purely geometrically and no variational calculus has been used.

The Euler-Lagrange equations

In general, the implicit dynamics looks like

$$
\mathcal{D}_{L}=\left(\alpha_{M}^{-1} \circ \mathrm{~d} L\right)(\mathrm{T} M)=\left\{(q, p, \dot{q}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{q}}, \quad \dot{p}=\frac{\partial L}{\partial q}\right\}
$$

The physically meaningful phase dynamics lives on the phase space $\mathrm{T}^{*} M$, however, one usually derives a second-order dynamics on M in the coordinate form

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q} .
$$

Note, however, that the information about momenta is lost in this passage. To derive the second-order equations geometrically, consider T $\mathcal{T} L: \mathrm{TT} M \rightarrow \mathrm{TTT}^{*} M$ and take

$$
\mathcal{D}_{E L}=(\mathrm{T} \mathcal{T} L)^{-1}\left(\mathrm{~T}^{2} \mathrm{~T}^{*} M\right) \subset \mathrm{T}^{2} M,
$$

where we view $\mathrm{T}^{2} M$ as the submanifold of holonomic vectors in TT M, i.e., fixed points of the canonical 'flip', $\dot{q}=\delta q$.

Euler-Lagrange equations (continued)

In local coordinates,

SO

$$
\mathcal{T} L(q, \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}, \dot{q}, \frac{\partial L}{\partial q}(q, \dot{q})\right)
$$

$$
\begin{aligned}
& \mathrm{T} \mathcal{T} L(q, \dot{q}, \delta q, \delta \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}, \dot{q}, \frac{\partial L}{\partial q}, \delta q, \frac{\partial^{2} L}{\partial \dot{q}^{2}} \delta \dot{q}+\frac{\partial^{2} L}{\partial \dot{q} \partial q} \delta q,\right. \\
& \left.\delta \dot{q}, \frac{\partial^{2} L}{\partial \dot{q} \partial q} \delta \dot{q}+\frac{\partial^{2} L}{\partial q^{2}} \delta q\right) .
\end{aligned}
$$

As holonomic vectors satisfy $\delta q=\dot{q}$ and $\delta p=\dot{p}$, we have

$$
\mathcal{D}_{E L}=\left\{(q, \dot{q}, \delta q, \delta \dot{q}) \mid \delta q=\dot{q}, \frac{\partial L}{\partial q}=\frac{\partial^{2} L}{\partial \dot{q}^{2}} \delta \dot{q}+\frac{\partial^{2} L}{\partial \dot{q} \partial q} \delta q\right\} .
$$

Hence, $\mathcal{D}_{E L} \subset \top^{2} M$ and, interpreting $\delta \dot{q}$ as \ddot{q}, we get the Euler-Lagrange equations in the form

$$
\frac{\partial^{2} L}{\partial \dot{q}^{2}} \ddot{q}+\frac{\partial^{2} L}{\partial \dot{q} \partial q} \dot{q}-\frac{\partial L}{\partial q}=0
$$

The Tulczyjew triple - the Hamiltonian side

For a Hamiltonian $H: \mathrm{T}^{*} M \rightarrow \mathbb{R}$, the phase dynamics \mathcal{D}_{H} on $\mathrm{T}^{*} M$ is always explicit - the image of the Hamiltonian vector field $X_{H}=\beta_{M}^{-1} \circ \mathrm{~d} H$:

We have then:
$\mathcal{D}_{H}=\beta_{M}^{-1}\left(\mathrm{~d} H\left(\mathrm{~T}^{*} M\right)\right)=\left\{(q, p, \dot{q}, \dot{p}): \quad \dot{p}=-\frac{\partial H}{\partial q}, \quad \dot{q}=\frac{\partial H}{\partial p}\right\}$.
Hence, the dynamics is described by the Hamilton equations.

Legendre transformation

The final picture is the following:
Hamiltonian side | phase dynamics | Lagrangian side

Note that $\mathcal{D}_{H}, \mathcal{D}_{L}, \mathrm{~d} L(\mathrm{~T} M), \mathrm{d} H\left(\mathrm{~T}^{*} M\right)$ are always lagrangian submanifolds of the symplectic manifolds $\mathrm{TT}^{*} M, \mathrm{~T}^{*} \mathrm{~T} M, \mathrm{TT}^{*} M$, respectively.

The Legendre transformation

The Legendre transformation is a procedure of passing from a Lagrangian to a Hamiltonian description of the system. Generally, a Lagrangian description has a Hamiltonian formulation, i.e., $\mathcal{D}_{L}=\mathcal{D}_{H}$ for some Hamiltonian H, only for hyperregular Lagrangians, i.e., when the Legendre map $\lambda_{L}: \mathrm{T} M \rightarrow \mathrm{~T}^{*} M$ is a diffeomorphism.

Thus, contrary to the belief of many physicists, the Lagrangian and Hamiltonian formalisms are generally not equivalent.

A way out is to consider not a single Hamiltonian but Morse families. It is well known that if the Lagrangian $L: \mathrm{TM} \rightarrow \mathbb{R}$ is hyperregular, then $\mathcal{D}_{L}=\mathcal{D}_{H}$ for the Hamiltonian function

$$
H(q, p)=\dot{q}^{i} p_{i}-L, \quad \text { where } \quad(q, \dot{q})=\lambda_{L}^{-1}(q, p)
$$

In this case, the Lagrangian submanifolds $\mathrm{d} L(\mathrm{~T} M) \subset \mathrm{T}^{*} \mathrm{~T} M$ and $\mathrm{d} H\left(\mathrm{~T}^{*} M\right) \subset \mathrm{T}^{*} \mathrm{~T}^{*} M$ are related by $\mathcal{R}: \mathrm{T}^{*} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \mathrm{~T} M$.

References

A．J．Bruce，K．Grabowska \＆J．Grabowski，Linear duals of graded bundles and higher analogues of（Lie） algebroid，J．Geom．Phys． 101 （2016），71－99．

囯 A．J．Bruce，J．Grabowski \＆M．Rotkiewicz， Polarization of graded bundles，SIGMA 12 （2016），Paper No．106， 30 pp．
圊 K．Grabowska，J．Grabowski \＆Z．Ravanpak， VB－structures and generalizations，Ann．Global Anal． Geom． 62 （2022），235－284．
囦 J．Grabowski \＆M．Rotkiewicz，Higher vector bundles and multi－graded symplectic manifolds，J．Geom．Phys． 59 （2009），1285－1305．

图 J．Grabowski \＆M．Rotkiewicz，Graded bundles and homogeneity structures，J．Geom．Phys． 62 （2012），21－36．
圊 J．Pradines，Représentation des jets non holonomes par des morphismes vectoriels doubles soudés（French），C．R． Acad．Sci．Paris Sér．A 278 （1974），1523－1526．
（ W．M．Tulczyjew，Hamiltonian systems，Lagrangian systems，and the Legendre transformation，Symposia Math． 14，（1974），101－114．
國 W．M．Tulczyjew \＆P．Urbański，A slow and careful Legendre transformation for singular Lagrangians，The Infeld Centennial Meeting（Warsaw，1998），Acta Phys． Polon．B 30，（1999），2909－2978．
目 P．Urbański，Double vector bundles in classical mechanics， Rend．Sem．Mat．Univ．Pol．Torino 54，（1996），405－421．

THANK YOU FOR YOUR ATTENTION!

(Sokolica-Carpathians)

