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Euler’s Homogeneous Function Theorem

Let us start with an easy student exercise in the first course of
Calculus, known as Euler’s Homogeneous Function Theorem:

Proposition

Any C1-differentiable function f : Rn → R is homogeneous of
degree 1, i.e., a function satisfying

f(t · x) = t · f(x) for all t > 0 , (1)

if and only if f is linear.

It is clear that we can replace Rn with any n-dimensional real
vector space E, and the condition (1) with ∇E(f) = f , where
∇E is the Euler vector field on E; in homogeneous coordinates,

∇E =
∑

xi∂xi .

Hence, the dual space E∗ can be defined as the space of smooth
1-homogeneous functions, so the linear structure on E is
determined by the multiplication by reals, ht(v) = tv.
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Vector bundles

Our observation can be naturally extended to vector bundles.

Traditionally, a vector bundle is defined as a locally trivial
fibration τ : E →M with an atlas of local trivializations
τ−1(U) ' U × Rn such that the transition maps are linear in
fibers,

U ∩ V × Rn 3 (x, y) 7→ (x,A(x, y)) ∈ U ∩ V × Rn ,

where A(x, ·) ∈ GL(n,R).

The latter property can also be expressed in terms of the
multiplication by reals ht(x, y) = (x, ty):

A ◦ ht = ht ◦A for all t ∈ R.

It follows that the multiplication by reals is well-defined
globally, ht : E → E, and completely determines the vector
bundle structure. The projection τ : E →M is simply h0.
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Consequences for vector bundles

Since working with vector bundles we can reduce ourselves to
the multiplication by reals ht(v) = t · v, one proves the following.

Corollary (Grabowski-Rotkiewicz 2009)

A smooth map Φ : E1 → E2 between the total spaces of two
vector bundles πi : Ei →Mi, i = 1, 2, is a morphism of
vector bundles if and only if it intertwines the
multiplications by reals:

Φ(t · v) = t · Φ(v) .

In this case, the map ϕ = Φ|M1
is a smooth map between

the base manifolds covered by Φ.

Vector subbundles of a vector bundle τ : E →M are smooth
submanifolds E0 ⊂ E which are invariant with respect to
the multiplication by reals, ht(E0) ⊂ E0. In this case, E0 is
itself a vector bundle over M0 = τ(E0) = M ∩ E0 and the
multiplication by reals inherited from E.
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Graded bundles

A straightforward generalization is the concept of a graded
bundle τ : F →M modelled on a graded vector space

Rd = Rd1 [1]× · · · × Rdk [k].
We call k the degree and d = (d1, . . . , dk) the rank of F , and
view linear coordinates (yaw) in Rdw [w] as being homogeneous of
degree (weight) w with respect to the canonical dilation hd,

hdt (y1, . . . , yk) = (t · y1, . . . , tk · yk) , yw ∈ Rdw , t ∈ R ,
i.e., yaw ◦ hdt = tw · yaw.

More precisely, F is a fiber bundle with the typical fiber Rd and
with an atlas of local trivializations τ−1(U) ' U × Rd such that
the transition maps respect the dilation ht(x, y) = (x, hdt (y)),

U ∩ V × Rn 3 (x, y) 7→ (x,A(x, y)) ∈ U ∩ V × Rd ,

A ◦ ht = ht ◦A for all t ∈ R.
Like for vector bundles, the dilation ht : F → F is globally
defined and τ = h0.
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Weight vector fields and homogeneity

Note that our graded bundles are not graded vector bundles,
since the transition maps are generally not linear on the graded
vector space Rd: for ht(y, z) = (ty, t2z) on R2 we have
ϕ ◦ ht = ht ◦ ϕ, where ϕ(y, z) = (y, z + y2), but ϕ is not linear.

Like in the case of a vector space, we have local homogeneous
coordinates (xA, yaw) on F , where the coordinates xA on M are
of degree 0, and the coordinates yaw in fibers are of degree w.
The dilation ht is completely determined by the weight vector
field

∇F =

k∑
w=1

dw∑
a=1

w · yaw∂yaw .

We call a smooth function f : F → R homogeneous of degree
(weight) α ∈ R if f ◦ ht = tα · f for t > 0 (∇F (f) = α · f).

A morphism of graded bundles is a smooth map respecting
homogeneity degrees of functions, i.e., relating the
corresponding weight vector fields → the category GrB.
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Graded bundles are polynomial

Generally, we call a tensor field K on F homogeneous of degree
(weight) α ∈ R if

£∇F
K = α ·K.

Proposition (Grabowski-Rotkiewicz 2012)

If f : F → R is a homogeneous function of degree α, then α ∈ N
and f is locally a polynomial in homogeneous fiber coordinates
yaw, with coefficients being smooth functions in the base
coordinates (xA). Consequently, morphisms of graded bundles
are polynomial in local homogeneous coordinates of degree > 0.
In particular, the transition functions A(x, y) are polynomial in
variables (yaw), i.e., any graded bundle is a polynomial bundle.

Note that vector bundles are just graded bundles of degree 1.
Another trivial example is a split graded bundle, i.e. a graded
vector bundle

F = E1[1]⊕M · · · ⊕M Ek[k] ,

where Ei are vector bundles over M .
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A canonical example

Example. Consider the second-order tangent bundle T2M , i.e.,
the bundle of second jets of smooth paths (R, 0)→M . Writing
the Taylor expansion of paths in local coordinates (xA) on M :

xA(t) = xA(0) + ẋA(0)t+ ẍA(0)
t2

2
+ o(t2) ,

we get local coordinates (xA, ẋB, ẍC) on T2M , which transform

x′A = x′A(x) ,

ẋ′A =
∂x′A

∂xB
(x) ẋB ,

ẍ′A =
∂x′A

∂xB
(x) ẍB +

∂2x′A

∂xB∂xC
(x) ẋBẋC .

Hence, associating with (xA, ẋB, ẍC) the weights 0, 1, 2, we get a
graded bundle structure of degree 2 on T2M .
Due to the quadratic terms above, this is not a vector bundle!
All this generalizes to higher tangent bundles TkM which are
canonically graded bundles od degree k.
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Transition functions for graded bundles

In fact, the form of transition maps (changes of local
coordinates) for a general graded bundle is quite similar,

x′A = x′A(x),

y′aw = ybw · T a
b (x) +

∑
1<n

w1+···+wn=w

1

n!
y′b1w1
· · · y′bnwn

· T a
bn···b1(x),

where T a
b are invertible and T a

bn···b1 are symmetric in indices b.

Note that the transition functions of coordinates of degree r
involve only coordinates of degree ≤ r, that defines a reduced
graded bundle Fr of degree r (we simply ‘forget’ coordinates of
degrees > r). Moreover, they are linear in coordinates of degree
r modulo a shift by a polynomial in variables of degrees < r,

y′ar = ybr · T a
b (x) +

∑
1<n

w1+···+wn=r

1

n!
y′b1w1
· · · y′bnwn

· T a
bn···b1(x) ,

so the fibrations Fr → Fr−1 are affine.
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Graded bundles - the tower of affine fibrations

In this way, for any graded bundle F of degree k we get a tower
of affine fibrations

F = Fk
τk−→ Fk−1

τk−1

−→ · · · τ3−→ F2
τ2−→ F1

τ1−→ F0 = M .

Note that the bundles in the tower are only affine, so there is no
canonical embedding of Fr−1 into Fr nor F .

Example

In the case of the canonical graded bundle F = TkM , we get
exactly the tower of natural projections of jet bundles

TkM
τk−→ Tk−1M

τk−1

−→ · · · τ3−→ T2M
τ2−→ TM

τ1−→ F0 = M .

For a split graded bundle we have

E1[1]⊕M · · · ⊕M Ek[k]→ E1[1]⊕M · · · ⊕M Ek−1[k − 1]→ · · ·
· · · → E1[1]⊕M E2[2]→ E1[1]→M.
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Homogeneity structures

The multiplication by reals in a vector bundle and, more
generally, the dilations

h : R× F → F, h(t, p) = ht(p),
which for a graded bundle τ : F →M with local homogeneous
coordinates (xA, yaw) read

ht(x
A, yaw) = (xA, twyaw) ,

represent smooth actions of the monoid (not a group!) (R, ·) of
multiplicative reals: h1 = idF , ht ◦ hs = hts.

Such actions of (R, ·) we will call homogeneity structures.

This is because h defines the concept of homogeneity on F :
f : F → R is homogeneous of degree α ∈ R if f ◦ ht = tα · f for
t > 0. We can also use the associated weight vector field,

∇(p) =
d

dt

∣∣∣
t=1

ht(p),

and say that a tensor field K on F is homogeneous of degree α
if £∇(K) = α ·K.
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Graded bundle = homogeneity structure

We know that with every graded bundle there is canonically
associated a homogeneity structure.

The fundamental result in the theory of graded bundles says
that graded bundles and homogeneity structures are, in fact,
fully equivalent concepts.

Theorem (Grabowski-Rotkiewicz 2012)

Associating canonically the homogeneity structure with a graded
bundle yields an isomorphism of categories.

More precisely, for any homogeneity structure h : R× F → F
on a manifold F , the subset M = h0(F ) of F is a smooth
submanifold and there is a non-negative integer k ∈ N such that
h0 : F →M is canonically a graded bundle of degree k whose
homogeneity structure coincides with h. In other words, there is
an atlas on F consisting of local homogeneous functions.
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Double vector bundles

An important concept of a double vector bundle, introduced by
Pradines in 1974, is a manifold equipped with two vector
bundle structures which are compatible in a categorical sense,
i.e., as a vector bundle in the category of vector bundles.

Definition

A double vector bundle (DVB in short) (D;A,B;M) is a
system of four vector bundle structures and VB-morphisms,

D

qDA ��

qDB // B

qB
��

A
qA //M

Moreover, each of the structure maps of each of the vector
bundle structures on D (the bundle projection, the zero section,
the addition, and the scalar multiplication) is a morphism of
vector bundles with respect to the other structure.
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The core of a double vector bundle

Let C be the intersection of the two kernels:

C = {c ∈ D | ∃ m ∈M such that qDB (c) = 0Bm, qDA (c) = 0Am}.

It is called the core of D and, together with the map qC(c) = m,
it is a vector bundle qC : C →M .

We can illustrate the core in the diagram of the double vector
bundle as follows.

D
qDB

  

qDA

~~
A

qA

  

C

qC
��

?�

OO

B
qB

~~
M

One can prove that
(qDA , q

D
B ) : D → A⊕M B

is an affine bundle modelled on the vector bundle (qA, qB)∗(C).
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Double vector bundles - the reference example

Let qA : A→M , qB : B →M , qC : C →M be vector bundles.
Consider the manifold

D = A×M B ×M C .

Then D is canonically a double vector bundle, with the side
bundles A and B, the core C, and with the obvious projections,

qDA : A×M B ×M C → A , qDB : A×M B ×M C → B ,

the obvious zero-sections,

0̃A : A 3 am 7→ (am, 0
B
m, 0

C
m) ∈ D ,

0̃B : B 3 bm 7→ (0Am, bm, 0
C
m) ∈ D ,

and the obvious vector space structures in fibers.

Actually, every double vector bundle is locally of this form.

In particular, the Whitney sum A⊕M B is a double vector
bundle with the trivial core.
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Double Graded Bundles

Our understanding of vector bundles as homogeneity structures
extremely simplifies the ‘categorical’ definition of Pradines.

Theorem (Grabowski-Rotkiewicz 2009)

Two vector bundle structures, qDA : D → A and qDB : D → B, on
a manifold D are compatible if and only if the corresponding
homogeneity structures commute:

hAt ◦ hBs = hBs ◦ hAt for all t, s ∈ R.

Definition

A double graded bundle (DGB) is a manifold D equipped with
two homogeneity structures h1, h2 which are compatible in the
sense that h1t ◦ h2s = h2s ◦ h1t for all t, s ∈ R .

If degrees of h1, h2 are k, l, then (k, l) we call the bi-degree of D.

Of course, all this can be naturally generalized to a concept of a
n-fold graded bundle of n-degree (k1, . . . , kn).
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Tangent lifts of graded bundles

The compatibility condition can also be formulated as the
commutation of the weight vector fields, [∇1,∇2] = 0.
Note that htott = h1t ◦ h2t defines the total graded bundle
structure of D. An extension to n-tuple graded bundles is
obvious.

Let τ : F →M be a graded bundle of degree k with the
homogeneity structure h, which in local coordinates (xA, yaw),
1 ≤ w ≤ k, reads ht(x

A, yaw) = (xA, twyaw).

Let us consider the tangent lift (dTh)t = Tht of h, i.e.,

(dTh)t(x
A, yaw, ẋ

B, ẏbw) = (xA , twyaw , ẋ
B, twẏbw) .

Proposition

The tangent lift dTh is a homogeneity structure of degree k on
TF , which is compatible with the canonical vector bundle
structure on TF . In other words, the tangent bundle of a graded
bundle is canonically a double graded bundle.
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Canonical example

τ : E −→M
(xa, yi) 7→ (xa)

τE : TE −→ E
(xa, yi, ẋb, ẏj) 7→ (xa, yi)

Tτ : TE −→ TM
(xa, yi, ẋb, ẏj) 7→ (xa, ẋb)

TE
Tτ

""

τE

}}
E

τ

!!

E

τ0
��

?�

OO

TM

τM||
M

ht(x
a, yi) = (xa, tyi), (dTh)t(x

a, yi, ẋb, ẏj) = (xa, tyi, ẋb, tẏj)

∇ =
∑

i y
i∂yi , ∇1 = dT(

∑
i y
i∂yi) =

∑
i

(
yi∂yi + ẏi∂ẏi

)
∇2 =

∑
a ẋ

a∂ẋa +
∑

i ẏ
i∂ẏi , [∇1,∇2] = 0.

In the case E = TM , there is a canonical automorphism (called
the flip) κ : TTM → TTM , intertwining both VB-structures.

Janusz Grabowski (IMPAN) Homogeneity structures 18 / 35



Break

I INVITE YOU TO TAKE A BREAK
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Phase lifts of graded bundles

To lift ht from a graded bundle τ : F →M of rank k to the
cotangent bundle T∗F , consider the adapted coordinates
(xA , yaw , pB , p

w
b ) and

(Tht−1)∗(xA , yaw , pB , p
w
b ) = (xA , twyaw , pB , t

−wpwb )

for t 6= 0. This makes no sense for t = 0, so we define the phase
lift of h by (dT∗h)t = tk ·

(
Tht−1

)∗
. This makes sense for t = 0:

(dT∗h)t(x
A , yaw , pB , p

w
b ) = (xA , twyaw , t

kpB , t
k−wpwb ) .

Proposition

The phase lift dT∗h is a homogeneity structure on T∗F , which is
compatible with the canonical vector bundle structure.
In other words, the cotangent bundle of a graded bundle is
canonically a double graded bundle.
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Phase lifts of vector bundles

τ : E −→M
(xa, yi) 7→ (xa)

πE : T∗E −→ E
(xa, yi, pb, ξj) 7→ (xa, yi)

ht(x
a, yi) = (xa, tyi), (dT∗h)t(x

a, yi, pb, ξj) = (xa, tyi, tpb, ξj)

The Poisson bracket {yi, ξj} is δij which implies that ξj are

coordinates dual to yi, so (xa, yi, pb, ξj) 7→ (xa, ξj) represents a
projection ζ : T∗E → E∗.
We have therefore a double vector bundle

T∗E

πE∗

%%

πE

yy
E

τ

%%

T∗M

πM

��

?�

OO

E∗

π
yy

M
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Linearity vs double vector bundles

Linearity of different geometrical structures is usually related to
some DVB structures.

A bivector field Λ on a vector bundle E is linear if the
corresponding map

Λ# : T∗E −→ TE

is a morphism of double vector bundles.

A two-form ω on a vector bundle E is linear if the
corresponding map

ω[ : TE −→ T∗E

is a morphism of double vector bundles.

A distribution D ⊂ TE on a vector bundle E is linear if D
is a double vector subbundle, i.e., D is a vector subbundle
with respect to the both vector bundle structures on E.

A (linear) connection on a vector bundle E is a horizontal
distribution in TE (Ehresmann connection) which is linear.
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Canonical isomorphism T∗E ' T∗E∗

T∗E∗

πE

""

πE∗

{{
E∗

π

##

T∗M

πM
��

?�

OO

E

τ||
M

T∗E
πE

""

πE∗

{{
E∗

π

##

T∗M

πM
��

?�

OO

E

τ||
M

Theorem (Tulczyjew 1974)

There is a canonical isomorphism of double vector bundles

R : T∗E∗ → T∗E

which in the adapted local coordinates reads

R(xa, ξi, pb, πj) = (xa, πi,−pb, ξj) .

The map R is simultaneously an anti-symplectomorphism.
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Canonical DVBs in mechanics

Let us put now E = TM to be the vector bundle of kinematical
configurations. We know already that T∗TM and T∗T∗M are
canonically DVBs which are canonically isomorphic:

R : T∗T∗M → T∗TM,

(qi, pj , πk, y
l) 7→ (qi, yj ,−πk, pl) .

It is easy to see that the above isomorphism is simultaneously
an anti-symplectomorphism. The canonical symplectic form
ωM = dpi ∧ dqi on T∗M induces a VB-isomorphism

βM : TT∗M → T∗T∗M,

(qi, pj , q̇
k, ṗl) 7→ (qi, pj ,−ṗk, q̇l),

which is actually a DVB-isomorphism and anti-symplecto-
morphism with respect to the lifted symplectic structure

dT(ωM ) = dṗi ∧ dqi + dpi ∧ dq̇i

on TT∗M .
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The Tulczyjew triple

Consequently,
αM = R ◦ βM : TT∗M → T∗TM,

(qi, pj , q̇
k, ṗl) 7→ (qi, q̇j , ṗk, pl)

is a DVB-isomorphism which is simultaneously a symplecto-
morphism. It is called the Tulczyjew isomorphism.

The full diagram of these symplectic DVB-isomorphisms, called
the Tulczyjew triple, is the following:

T∗T∗M

  

��

R
))

TT∗M
αM //

��

��

βMoo T∗TM

��

��

TM

��

TM

��

TM

����

T∗M

!!

T∗M

  

T∗M

  
M M M
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Dynamics

The Tulczyjew’s approach to formalism of mechanics uses the
modern concept of first-order dynamics (first-order ODE), more
general than the one based on just vector fields.

Definition

An implicit first-order dynamics on a manifold N is a
submanifold D ⊂ TN . A smooth curve γ : R→ N is a solution,
if its tangent prolongation γ̇ : R→ TN takes values in D.

Example

A vector field X on N , defines the dynamics D = X(N) ⊂ TN .
Solutions for D are exactly trajectories of X.
Images of vector fields are exactly those submanifolds D of TM
which are projected diffeomorphically on M by the bundle
projection τM : TM →M .

Similarly, submanifolds of T2N are understood as (implicit)
ordinary second-order differential equations, etc.
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The Tulczyjew triple - the Lagrangian side

For a Lagrangian L : TM → R, the phase dynamics DL on T∗M
is the image of the Tulczyjew differential T L = α−1M ◦ dL, called
sometimes also the time evolution operator,

DL �
� // TT∗M

""

��

T∗TM

""

α−1
Moo

πT∗M
��

TM TM

dLii

λL

uu

T L
ll

T∗M T∗M

M M .

Dynamics DL = T L(TM) is explicit for hyperregular
Lagrangians only, i.e., when the Legendre map,

λL = πT∗M ◦ dL : TM → T∗M, λL
(
q, q̇
)

=
(
q,
∂L

∂q̇
(q, q̇)

)
,

is a diffeomorphism. Note that the dynamics has been obtained
purely geometrically and no variational calculus has been used.
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The Euler-Lagrange equations

In general, the implicit dynamics looks like

DL = (α−1M ◦ dL)(TM) =

{
(q, p, q̇, ṗ) : p =

∂L

∂q̇
, ṗ =

∂L

∂q

}
.

The physically meaningful phase dynamics lives on the phase
space T∗M , however, one usually derives a second-order
dynamics on M in the coordinate form

d

dt

(∂L
∂q̇

)
=
∂L

∂q
.

Note, however, that the information about momenta is lost in
this passage. To derive the second-order equations
geometrically, consider TT L : TTM → TTT∗M and take

DEL = (TT L)−1(T2T∗M) ⊂ T2M,

where we view T2M as the submanifold of holonomic vectors in
TTM , i.e., fixed points of the canonical ‘flip’, q̇ = δq.
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Euler-Lagrange equations (continued)

In local coordinates,

T L(q, q̇) =
(
q,
∂L

∂q̇
, q̇,

∂L

∂q
(q, q̇)

)
,

so

TT L(q, q̇, δq, δq̇) =
(
q,
∂L

∂q̇
, q̇,

∂L

∂q
, δq,

∂2L

∂q̇2
δq̇ +

∂2L

∂q̇ ∂q
δq ,

δq̇,
∂2L

∂q̇ ∂q
δq̇ +

∂2L

∂q2
δq
)
.

As holonomic vectors satisfy δq = q̇ and δp = ṗ, we have

DEL =

{
(q, q̇, δq, δq̇)

∣∣ δq = q̇,
∂L

∂q
=
∂2L

∂q̇2
δq̇ +

∂2L

∂q̇ ∂q
δq

}
.

Hence, DEL ⊂ T2M and, interpreting δq̇ as q̈, we get the
Euler-Lagrange equations in the form

∂2L

∂q̇2
q̈ +

∂2L

∂q̇ ∂q
q̇ − ∂L

∂q
= 0.
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The Tulczyjew triple - the Hamiltonian side

For a Hamiltonian H : T∗M → R, the phase dynamics DH on
T∗M is always explicit – the image of the Hamiltonian vector
field XH = β−1M ◦ dH:

T∗T∗M

##

��

β−1
M // TT∗M

""

��

DH? _oo

TM TM

T∗M

dH

88

T∗M

M M

We have then:

DH = β−1M
(
dH(T∗M)

)
=

{
(q, p, q̇, ṗ) : ṗ = −∂H

∂q
, q̇ =

∂H

∂p

}
.

Hence, the dynamics is described by the Hamilton equations.
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Legendre transformation

The final picture is the following:

Hamiltonian side
∣∣ phase dynamics

∣∣ Lagrangian side

DH
?
= DL� _

��
T∗T∗M

  

��

β−1
M

44

TT∗M
αM //

""

��

βMoo T∗TM

��

��

α−1
M

jj

TM

��

TM //

��

oo TM

����

dLgg

T∗M

!!

dH

::

T∗M //

##

oo T∗M

  
M M //oo M

Note that DH ,DL,dL(TM), dH(T∗M) are always lagrangian
submanifolds of the symplectic manifolds TT∗M,T∗TM,TT∗M ,
respectively.
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The Legendre transformation

The Legendre transformation is a procedure of passing from a
Lagrangian to a Hamiltonian description of the system.
Generally, a Lagrangian description has a Hamiltonian
formulation, i.e., DL = DH for some Hamiltonian H, only for
hyperregular Lagrangians, i.e., when the Legendre map
λL : TM → T∗M is a diffeomorphism.

Thus, contrary to the belief of many physicists, the Lagrangian
and Hamiltonian formalisms are generally not equivalent.

A way out is to consider not a single Hamiltonian but Morse
families. It is well known that if the Lagrangian L : TM → R is
hyperregular, then DL = DH for the Hamiltonian function

H(q, p) = q̇ipi − L, where (q, q̇) = λ−1L (q, p).

In this case, the Lagrangian submanifolds dL(TM) ⊂ T∗TM
and dH(T∗M) ⊂ T∗T∗M are related by R : T∗T∗M → T∗TM .
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