Jacobi-like structures: A line bundle perspective

Eugen-Mihaita CIOROIANU

University of Craiova

cioroianu.eugen@ucv.ro

T-CSG&P, June 5, 2024

• Differential operators

- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

• Differential operators

- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- Referencess

- Algebraic part
- Geometric context

- Algebraic part
- Geometric context

- Algebraic part
- Geometric context

This perspective stems from Vinogradov's Diffiety concept, which is built on the observation that any 'geometry' is the realization of a corresponding 'algebra' [1]. According to [2], at the most elementar level, a differential operator (d.o.) of order p is an additive map

$$\Delta: M \to N, \quad M, N \in \mathrm{Mod}_{\mathrm{R}},$$

that enjoys

$$\delta_{a_0} \cdots \delta_{a_p} \Delta = 0, \quad \delta_a \Delta := [\Delta, a].$$

If the category $\rm Mod_R$ is refined, i.e., the module structure is enriched, then differential operators should satisfy additional requirements, compatible with the supplementary properties.

e.g. if Mod_R is replaced by Mod_A , with A an associative, unitary, and commutative algebra over \mathbb{R} then the aditivity should be replaced with \mathbb{R} -liniarity.

Here, the ring R is assumed to be unitary and commutative.

The set of d.o. of order p is denoted by $\rm Diff_p(M;N)$ and it possesses a natural R-ring structure

 $R\times \mathrm{Diff}_p(M;N) \ni (a,\Delta) \mapsto \Delta a \in \mathrm{Diff}_p(M;N), \quad (a\Delta)x := a(\Delta x)$

These modules exhibit some 'universal' ones,

 $\operatorname{Diff}_p(N), \quad \operatorname{J}^p(M)$

equipped with 'universal' d.o. of order \boldsymbol{p}

$$\pi_p(N) : \operatorname{Diff}_p(N) \to N, \quad j^p(M) : M \to \operatorname{J}^p(M)$$

that display the isomorphisms

 $\operatorname{Hom}_{R}(M;\operatorname{Diff}_{p}(N))\simeq\operatorname{Diff}_{p}(M;N)\simeq\operatorname{Hom}_{R}(\operatorname{J}^{p}(M);N).$

7 / 68

The previous 'universal' modules are

 $\operatorname{Diff}_p(N) = \operatorname{Diff}_p(R; N), \quad \operatorname{J}^p(M) = \operatorname{Diff}_p(M; R),$

while the corresponding isomorphisms read

 $\operatorname{Hom}_R(M;\operatorname{Diff}_p(N)) \ni \Delta \mapsto \pi_p(N) \circ \Delta, \operatorname{Hom}_R(\operatorname{J}^p(M);N) \ni \Delta \mapsto \Delta \circ \operatorname{J}^p(M).$

The previous isomorphisms can be generalized to multi-additive mappings as

$$\operatorname{Hom}_{R}(M_{1},\cdots,M_{k};\operatorname{Diff}_{p}(N))\simeq\operatorname{Diff}_{p}(M_{1},\cdots,M_{k};N),$$
(1)

 $\operatorname{Diff}_p(M_1, \cdots, M_k; N) \simeq \operatorname{Hom}_R(\operatorname{J}^p(M_1), \cdots, \operatorname{J}^p(M_k); N).$ (2)

A central role among d.o. is played by the first-order d.o., and moreover, by the derivations. With the previous notations, one denote by D(N), the subset of $\text{Diff}_1(N)$ consisting of additive mappings enjoying the Leibniz rule

$$\Delta(a_1 a_2) = a_1 \Delta a_2 + (\Delta a_1) a_2$$

Contrary to $\text{Diff}_1(N)$, which is an R-module, D(N) is only an Abelian group with respect to punctual addition. At this point it is useful to introduce the definitions associated with arbitrary additive subsets of the module N, $S \subset N$,

$$D(S \subset N) := \{\Delta \in D(N) : \operatorname{Im} \Delta \subseteq S\},$$
(3)

$$\operatorname{Diff}_p(S \subset N) := \{\Delta \in \operatorname{Diff}_p(N) : \operatorname{Im} \Delta \subseteq S\}.$$
 (4)

When S is submodule, $S \leq N$, then

$$D(S \subset N) = D(S), \quad \text{Diff}_p(S \subset N) = \text{Diff}_p(S).$$

The previous definitions further lead to the inclusion

$$D(S \subset N) \subset \text{Diff}_1(S \subset N),$$
 (5)

that produces

$$D_k(N) \subset D_{k-1}(\operatorname{Diff}_1)(N) \subset D_{k-2}((\operatorname{Diff}_1)^2(N)) \subset \cdots \subset (\operatorname{Diff}_1)^k(N),$$
 (6)

Here, recursive definitions were used

$$D_k(N) = D\left\{D_{k-1}(N) \subset (\text{Diff}_1)^{k-1}(N)\right\}, D_0(N) = N, D_1(N) = D(N).$$
(7)

As the reference module N is arbitrary, then, for any $k\in\mathbb{N}^{\times},$ one can display the sequence of inclusion of functors

$$D_k \subset D_{k-1}(\operatorname{Diff}_1) \subset D_{k-2}(\operatorname{Diff}_1^2) \subset \dots \subset \operatorname{Diff}_1^k, \tag{8}$$

or, equivalently

$$D_k \xrightarrow{\alpha_k} D_{k-1}(\operatorname{Diff}_1) \xrightarrow{\alpha_{k-1}} D_{k-2}(\operatorname{Diff}_1^2) \xrightarrow{\alpha_{k-2}} \cdots \xrightarrow{\alpha_0} \operatorname{Diff}_1^k.$$
 (9)

The inclusion of functors α_k , together with the composition of d.o.

$$\operatorname{Diff}_1(\operatorname{Diff}_l) \xrightarrow{\beta_l} \operatorname{Diff}_{l+1}$$

further yields the functors

$$S_{k+l}^{k}: D_{k}\left(\mathrm{Diff}_{l}\right) \xrightarrow{\alpha_{k}\left(\mathrm{Diff}_{l}\right)} D_{k-1}\left(\mathrm{Diff}_{1}\left(\mathrm{Diff}_{l}\right)\right) \xrightarrow{D_{k-1}\left(\beta_{l}\right)} D_{k-1}\left(\mathrm{Diff}_{l+1}\right)$$

which, for each $k \in \mathbb{N}^{\times}$, produce the sequences

$$S_k(N): 0 \to D_k(N) \xrightarrow{S_k^k} D_{k-1}(\operatorname{Diff}_1(N)) \xrightarrow{S_k^{k-1}} \cdots \xrightarrow{S_k^0} \operatorname{Diff}_k(N) \xrightarrow{\pi_k(N)} N$$

The previous sequence $S_k(N)$ is the well-known Spencer complex, found to be exact in its last two factors. This means that $S_1(N)$ is always exact. It has been shown that there are rings for which $S_k(N)$ are exact for an arbitrary module N.

- Algebraic part
- Geometric context

Here, the modules in the previous part are naturally associated with vector bundles over a given manifold M. This is because for any vector bundle $E \to M$, the set of its smooth sections $\Gamma(E)$ is a module over the associative, commutative, and unitary algebra $\mathcal{F}(M) := \mathcal{C}^{\infty}(M; \mathbb{R})$. If $F \to M$ is another vector bundle, one adopts for the $\mathcal{F}(M)$ -module of d.o. of order p the notation $\mathrm{Diff}_p(E;F)$. Here, d.o. are \mathbb{R} -linear mappings that verify

$$\delta_{a_0} \cdots \delta_{a_p} \Delta = 0, \quad \delta_a \Delta := [\Delta, a].$$
⁽¹⁰⁾

According to general algebraic description, the module of $p\mbox{-order d.o.}$ coincides with the module of sections

$$\operatorname{Diff}_{p}(E;F) = \Gamma\left(\operatorname{diff}_{k}(E;F)\right), \quad \operatorname{diff}_{k}(E;F) = \left(J^{k}E\right)^{\star} \otimes F \qquad (11)$$

Obviously, if previously one makes the replacement $F \longrightarrow \mathbb{R}_M$, with \mathbb{R}_M the trivial line bundle over M, $\mathbb{R}_M := \mathbb{R} \times M$,

then the identification is manifest

$$J_k E := \operatorname{diff}_k(E; \mathbb{R}_M) = \left(J^k E\right)^\star.$$

To express the Spencer sequences, definition (10) exhibits for each p-order d.o. $\Delta,$ the multi-derivation

$$\sigma_{\Delta} \in \operatorname{Diff}_1(\mathbb{R}_M, \cdots, \mathbb{R}_M; L(E; F))$$

known as the symbol of Δ , which is symmetric in its entries. With the help of this, the Spencer sequence of \mathbb{R} -vector spaces reads

$$0 \to \operatorname{Diff}_{p-1}(E;F) \longrightarrow \operatorname{Diff}_p(E;F) \xrightarrow{\sigma} \Gamma(\vee^p TM \otimes E^{\star} \otimes F) \to 0, \quad (12)$$

or, equivalently

$$0 \leftarrow \Gamma(J^{p-1}E) \longleftarrow \Gamma(J^{p}E) \xleftarrow{\gamma} \Gamma(\vee^{p}T^{\star}M \otimes E) \leftarrow 0.$$
(13)

In the second short sequence, one used the notation γ for the <code>co-symbol</code>

$$\gamma(\mathrm{d}a_1 \vee \cdots \vee \mathrm{d}a_p \otimes e) := (\delta_{a_p} \cdots \delta_{a_1} j^p) e \tag{14}$$

Remark

For p = 1 the short sequences (12) and (13) are also exact, but as \mathbb{R} -vector spaces.

Among the first-order differential operators, the derivations play a central role in what follows. Let $E \longrightarrow M$ be a vector bundle. An first-order d.o. $\Delta \in \text{Diff}_1(E; E)$ is said to be a derivation if

$$\sigma_{\Delta} = X_{\Delta} \otimes \mathrm{id}_{\Gamma(E)}.$$

The set of derivations corresponding to the considered vector bundle $E \longrightarrow M$ is denoted with $\mathcal{D}E$. This is the module of sections in the vector bundle

$$DE \longrightarrow M,$$

whose fiber at $x, x \in M$, $(DE)_x$ consisting of \mathbb{R} -linear maps $\delta : \Gamma(E) \to E_x$ enjoying of a unique vector $X_\delta \in T_x M$ such that

$$\delta(f\mu) = (X_{\delta}f)\mu_x + f(x)\delta\mu, \quad f \in \mathcal{F}(M), \quad \mu \in \Gamma(E),$$
(15)

i.e.,

$$\mathcal{D}E = \Gamma(DE).$$

The vector bundle $DE \longrightarrow M$ is a Lie algebroid, the well-known Atyiah/ gauge algebroid, whose anchor associates to each derivation its symbol

$$(DE)_x \ni \delta \mapsto X_\delta \in T_x M$$

and bracket, the standard commutator

$$\left[\Delta,\Delta'\right] := \Delta \circ \Delta' - \Delta' \circ \Delta.$$

It is the vector-bundle version of the ordinary tangent bundle Lie algebroid $TM \longrightarrow M$. It is also functorial [3] with respect to VB^{reg}.

Let $E \longrightarrow M$ and $F \longrightarrow N$ be two vector bundles and $(\phi, \underline{\phi})$ be a regular morphism

i.e. it an isomorphism on fibers. In this framework, it is well-defined the $\ensuremath{\mathsf{pull}}\xspace$ back

$$\phi^*: \Gamma(F) \to \Gamma(E),$$

via

$$\Gamma(F) \ni \mu \mapsto (\phi^* \mu)_x := \phi_x^{-1}(\mu_{\underline{\phi}(x)}), \quad x \in M$$

and the map $\phi_*: DE \to DF$ defined on fibers via

$$(\phi_{*,x}\delta)(\mu):=\phi_x(\delta(\phi^*\mu)),\quad \mu\in\Gamma(F).$$

which is proved to be a Lie algebroid map [3,4].

Of a very importance in the sequel will be line bundles. These are vector bundles with 1-dimensional fibers. The category of line bundles, Line, possesses products, pull-back [5], and there exist the homogenization and dehomogenization functors to \mathbb{R}^{\times} -principal bundles [6]. Also, for line bundles $L \longrightarrow M$, there exists the equality

$$\operatorname{Diff}_1(L) = \mathcal{D}L.$$

For trivial line bundle, $L \longrightarrow \mathbb{R}_M$, the module of sections reduces to

$$\Gamma(\mathbb{R}_M) = \mathcal{F}(M),$$

while the vector bundle of derivations become

$$D\mathbb{R}_M = TM \oplus \mathbb{R}_M.$$

• Differential operators

- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

Definition

A Lie algebroid is a triple $(A, [\cdot, \cdot], \rho)$ consisting of a vector bundle $A \to M$, an \mathbb{R} -Lie algebra structure on $\Gamma(A)$, and a vector bundle map, $\rho : A \to TM$, such that

$$\left[\alpha,f\beta\right]=\left(\rho\left(\alpha\right)f\right)\beta+f\left[\alpha,\beta\right],\quad\alpha,\beta\in\Gamma\left(A\right),f\in\mathcal{F}\left(M\right).$$

Theorem

Let $A \rightarrow M$ be a vector bundle. Then the following ingredients are equivalent:

- $\textbf{ I ie algebroid structure, } ([\bullet, \bullet], \rho), \text{ on } A \to M;$
- ② a Gerstenhaber algebra structure, $[\bullet, \bullet]_A$, on the graded algebra $\mathcal{A}_A^{\bullet} := \Gamma(\wedge^{\bullet}A)$;

At the second point of the previous theorem, the Gerstenhaber structure is just the adaptation of Schouten bracket [7] to Lie algebroids, i.e., it is the derivative extension of the bracket $[\bullet, \bullet]$ 'living' on $\Gamma(A)$, to the graded algebra \mathcal{A}_A^{\bullet} , via the elementary rules

$$[P, Q \land R]_{A} = [P, Q]_{A} \land R + (-)^{(|P|-1)|Q|}Q \land [P, R]_{A},$$
(16)
$$[P, Q]_{A} = -(-)^{(|P|-1)(|Q|-1)}[Q, P]_{A},$$
(17)

for homogeneous elements. The third point in the theorem is the lifting of de Rham calculus to Lie algebroids

$$\langle \mathbf{d}_{A}\tilde{\omega}, \alpha_{0} \wedge \dots \wedge \alpha_{p} \rangle = \sum_{j=0}^{p} (-)^{j} \rho(\alpha_{j}) \langle \tilde{\omega}, \alpha_{0} \wedge \dots \stackrel{j}{\wedge} \dots \wedge \alpha_{p} \rangle$$

$$+ \sum_{0 \leq i < j \leq p} (-)^{i+j} \langle \tilde{\omega}, [\alpha_{i}, \alpha_{j}] \wedge \alpha_{0} \wedge \dots \stackrel{i}{\wedge} \dots \stackrel{j}{\wedge} \dots \wedge \alpha_{p} \rangle.$$
(18)

Example

For the tangent Lie algebroid $(TM, [\bullet, \bullet]\,, \tau_M)$, the Gerstenhaber algebra is that of the multi-vector fields

 $\mathfrak{X}^{\bullet}(M),$

equipped with the standard Schouten-Nijenhuis bracket

 $[\![\bullet,\bullet]\!]$

while the differential one is the well-known de Rham complex

 $\Lambda^{\bullet}(M),$

supplied with de Rham differential

d.

 $(TM\times \mathbb{R}, [\![\bullet,\bullet]\!], \rho)$ with

$$[\![(X,f),(Y,g)]\!]:=([X,Y],Xg-Yf),\quad \rho\left(X,f\right):=X.$$

By means of the isomorphisms

$$\Gamma\left(\wedge^{r+1}\left(TM\times\mathbb{R}\right)\right)\simeq\mathfrak{X}^{r+1}(M)\times\mathfrak{X}^{r}(M),$$

its Gerstenhaber algebra structure $[\![\bullet,\bullet]\!]$ reads

$$\llbracket (P,Q),(R,S) \rrbracket = \left(\left[P,R \right], \left[P,S \right] + (-)^r \left[Q,R \right] \right).$$

Invoking the isomorphisms

$$\Gamma\left(\wedge^{r+1}(TM\times\mathbb{R})^*\right)\simeq\Omega^{r+1}(M)\times\Omega^r(M),$$

the homological degree 1 derivation, $\mathbf{d},$ reads

$$\mathbf{d}(\omega,\alpha) := (\mathrm{d}\omega,\mathrm{d}\alpha), \quad (\omega,\alpha) \in \Omega^{k}(M) \times \Omega^{k-1}(M).$$

Definition

Let (A, L) be a pair consisting of a VB $A \to M$ and a LB $L \to M$. A triplet $([\cdot, \cdot], \rho, \nabla)$, where $([\cdot, \cdot], \rho)$ is a Lie algebroid structure on $A \to M$ and ∇ is a flat A-connection on the line bundle $L \to M$, is called a Jacobi/Kirillov [8] algebroid.

Theorem

Let (A, L) be a pair as before. Denoting by $A_L := A \otimes L^*$ the total space of the VB $A \otimes_M L^*$, the following data are equivalent [9]:

- **(**) a Jacobi algebroid structure, $([\bullet, \bullet], \rho, \nabla)$, on the pair (A, L);
- 2 a Gerstenhaber-Jacobi algebra structure, $([\bullet, \bullet]_{A,L}, X_{\bullet}^{(A,L)})$, on the graded module $\mathcal{L}_{A,L}^{\bullet} := \Gamma(\wedge^{\bullet}A_L \otimes L)[1]$ over the graded algebra $\mathcal{A}_{A,L}^{\bullet} := \Gamma(\wedge^{\bullet}A_L);$
- a homological degree 1 graded derivation, $d_{A,L}$ covering d_A , acting on the graded $\tilde{\mathcal{A}}_A^{\bullet}$ -module $\tilde{\mathcal{L}}_{A,L}^{\bullet} := \Gamma(\wedge^{\bullet}A^* \otimes L)$.

The second description in the previous theorem is realized via the relations

$$\left[\alpha,\beta\right]_{A,L} = \left[\alpha,\beta\right], \quad X_{\alpha}^{(A,L)}f = \rho\left(\alpha\right)f, \quad \left[\alpha,e\right]_{A,L} = \nabla_{\alpha}e, \tag{19}$$

with

$$\alpha,\beta\in\Gamma\left(A\right),\quad f\in\mathcal{F}\left(M\right),\quad e\in\Gamma\left(L\right),$$

while the third one is implemented via

$$(d_{A,L}e)(\alpha) = \nabla_{\alpha}e, \quad \alpha \in \Gamma(A), e \in \Gamma(L),$$

$$d_{A,L}(\tilde{\omega} \wedge \omega) = (d_{A}\tilde{\omega}) \wedge \omega + (-)^{k}\tilde{\omega} \wedge d_{A,L}\omega, \quad \tilde{\omega} \in \tilde{\mathcal{A}}^{k}_{A}, \omega \in \tilde{\mathcal{L}}^{\bullet}_{A,L}$$
(20)
(20)

Let \mathcal{M}_1 and \mathcal{M}_2 be two graded left modules over the graded and associative algebras \mathcal{A}_1 and \mathcal{A}_2 respectively. A graded module map/ morphism is a graded \mathbb{R} -linear map $\psi : \mathcal{M}_1 \to \mathcal{M}_2$ covering a graded algebra map $\psi : \mathcal{A}_1 \to \mathcal{A}_2$ such that

$$\psi(a \cdot m) = \underline{\psi}(a) \cdot \psi(m).$$

Let $(\psi, \underline{\psi})$ be a degree zero graded module map as previously. A degree k graded \mathbb{R} -liniar map $X : \mathcal{A}_1 \to \mathcal{A}_2$ is said to be a degree k graded derivation covering ψ if

$$X(ab) = X(a)\underline{\psi}(b) + (-)^{k|a|}\underline{\psi}(a)X(b).$$

By definition, a degree k derivation covering ψ , of symbol X is a degree k graded \mathbb{R} -linear map $\Box: \mathcal{M}_1 \to \mathcal{M}_2$ satisfying

$$\Box(a \cdot m) = X(a) \cdot \psi(m) + (-)^{k|a|} \underline{\psi}(a) \cdot \Box m$$

By definition, a Gerstenhaber-Jacobi algebra is a graded module \mathcal{L} over a graded algebra \mathcal{L} which is equipped with a graded Lie algebra structure $\llbracket \bullet, \bullet \rrbracket$ and a graded Lie algebra map

$$\mathbb{X}:\mathcal{L}\longrightarrow \mathrm{Der}(\mathcal{A}),$$

that for homogeneous elements verify

$$[\![l, a \cdot l']\!] = X_l(a) \cdot l' + (-)^{|l||a|} a \cdot [\![l, l']\!].$$

When the line bundle is trivial, $L = \mathbb{R}_M$, then the concept of Jacobi algebroid reduces to that of a Lie algebroid with a 1-cocycle [9], as the structure is completely given by a 1-cocycle

$$\Gamma(A) \ni \alpha \mapsto \nabla_{\alpha} = \rho(\alpha) + \langle \omega_{\nabla}, \alpha \rangle \in \mathcal{D}\mathbb{R}_{M} = \mathfrak{X}^{1}(M) \oplus \mathcal{F}(M)$$
(22)

Moreover, the flatness of A-connection (22) is equivalent

$$\mathrm{d}_A\omega_\nabla = 0. \tag{23}$$

Here, the graded module $\mathcal{L}_{A,L}^{\bullet}$ become

$$\mathcal{A}_{A,L}^{\bullet} = \mathcal{A}_{A}^{\bullet} := \Gamma \left(\wedge^{\bullet} A \right), \quad \mathcal{L}_{A,L}^{\bullet} = \mathcal{A}_{A}^{\bullet} \left[1 \right],$$

while the Gerstenhaber-Jacobi algebra structure $\left([\bullet, \bullet]_{A,L}, X_{\bullet}^{(A,L)} \right)$ reduces to $\left([\bullet, \bullet]_A^{\nabla}, X_{\bullet}^{\nabla} \right)$, where $[\alpha, f]_A^{\nabla} = \nabla_{\alpha} f, \quad [\alpha, \beta]_A^{\nabla} = [\alpha, \beta], \quad X_{\alpha}^{\nabla} f = \rho(\alpha) f.$ (24)
Finally, the
$$\tilde{\mathcal{A}}_{A}^{\bullet} := \Gamma(\wedge^{\bullet}A^{*})$$
-module $\tilde{\mathcal{L}}_{A,L}^{\bullet} := \Gamma(\wedge^{\bullet}A^{*} \otimes L)$ reads
 $\tilde{\mathcal{L}}_{A,L}^{\bullet} = \tilde{\mathcal{A}}_{A}^{\bullet},$ (25)

while the homological derivation $d_{A,L}$ (covering d_A) becomes d_A^{∇}

$$\mathbf{d}_{A}^{\nabla}\omega = \mathbf{d}_{A}\omega + \omega_{\nabla} \wedge \omega.$$
⁽²⁶⁾

By direct computation it can be proved that homological derivation (26) coincides with de Rham differential associated with graded Lie algebra structure written previously, i.e.,

$$\langle \mathbf{d}_{A}^{\nabla}\omega, \alpha_{0} \wedge \dots \wedge \alpha_{p} \rangle = \sum_{j=0}^{p} (-)^{j} \left[\alpha_{j}, \langle \omega, \alpha_{0} \wedge \dots \wedge \alpha_{p} \rangle \right]_{A}^{\nabla}$$
$$+ \sum_{0 \leq i < j \leq p} (-)^{i+j} \langle \omega, [\alpha_{i}, \alpha_{j}]_{A}^{\nabla} \wedge \alpha_{0} \wedge \dots \wedge \alpha_{p} \rangle .$$
(27)

As for any manifold, there exists a natural Lie algebroid; one can naturally associate a Jacobi algebroid (DL,L) with any line bundle $L \to M$ Let $L \to M$ be a line bundle. The DL-flat connection is just the tautological representation

$$\nabla: DL \to DL, \quad \nabla_{\Box} e := \Box e, \quad \Box \in \mathcal{D}L, e \in \Gamma(L).$$
 (28)

According to Theorem 6, if we adopt the notations

$$[\bullet,\bullet] := [\bullet,\bullet]_{DL}, \quad \sigma := \rho_{DL}, \tag{29}$$

the Jacobi algebroid structure $([\bullet, \bullet], \sigma, \nabla)$ is equivalent to the Gerstenhaber-Jacobi algebra one $([\bullet, \bullet] := [\bullet, \bullet]_{DL,L}, X_{\bullet} := X_{\bullet}^{(DL,L)})$, on the graded $\mathcal{A}_{DL,L}^{\bullet} := \Gamma(\wedge^{\bullet}DL_{L})$ -module $\mathcal{L}_{DL,L}^{\bullet} := \Gamma(\wedge^{\bullet}DL_{L} \otimes L)$ [1]. At this stage, it is useful to express the previous abstract Gerstenhaber-Jacobi algebra in a more convenient form that allows computations. This assumes both the realization of the algebra $\mathcal{A}_{DL,L}^{\bullet}$ and of the \mathbb{R} -vector space $\mathcal{L}_{DL,L}^{\bullet}$.

In view of this, one uses the implication

$$(J^{1}L)^{*} \otimes L \simeq DL \Rightarrow DL_{L} := DL \otimes L^{*} \simeq J_{1}L := (J^{1}L)^{*}.$$
 (30)

which, in the light of the general algebraic discussion, further leads to

$$\Gamma\left(\wedge^{\bullet} J_{1}L\right) \simeq \operatorname{Diff}_{1}^{\bullet}\left(L;\mathbb{R}_{M}\right),\tag{31}$$

and, in addition

$$\mathcal{L}_{DL,L}^{\bullet} \simeq \mathcal{D}^{\bullet}L[1] := \operatorname{Diff}_{1}^{\bullet}(L;L)[1] \Leftrightarrow \mathcal{L}_{DL,L}^{k} \simeq \mathcal{D}^{k+1}L, \quad k \ge -1.$$
(32)

The Gerstenhaber-Jacobi bracket can be written in terms of Gerstenhaber inner multiplication [13]

$$\Box \circ \bigtriangleup (e_1, \dots, e_{k+l+1}) := \sum_{\sigma \in S(l+1,k)} (-)^{\sigma} \Box \left(\bigtriangleup (e_{\sigma(1)}, \dots, e_{\sigma(l+1)}), e_{\sigma(l+2)}, \dots, e_{\sigma(k+l+1)} \right)$$

as

$$\llbracket \Box, \bigtriangleup \rrbracket := (-)^{kl} \Box \circ \bigtriangleup - \bigtriangleup \circ \Box, \quad \Box \in \mathcal{D}^{k+1}L, \bigtriangleup \in \mathcal{D}^{l+1}L.$$
(33)

To introduce the derivative representation of the module $\mathcal{D}^{\bullet}L$ on the graded algebra $\operatorname{Diff}_{1}^{\bullet}(L;\mathbb{R}_{M})$, \mathbb{X}_{\bullet} , firstly one defines the *symbol map*

$$\sigma_{\Box}(f)(e_1,\ldots,e_k)e := \Box(fe,e_1,\ldots,e_k) - f\Box(e,e_1,\ldots,e_k), \qquad (34)$$

that is a multi-differential, $\sigma_{\Box}(f) \in \text{Diff}_{1}^{k}(L; \mathbb{R}_{M})$. With these specifications at hand, the derivative representation reads

$$\begin{aligned} \mathbb{X}_{\Box} \left(\tilde{\Delta} \right) (e_1, \dots, e_{k+l}) &= \\ (-)^{k(l-1)} \sum_{\sigma \in S(l,k)} (-)^{\sigma} \sigma_{\Box} \left(\tilde{\Delta} \left(e_{\sigma(1)}, \dots, e_{\sigma(l)} \right) \right) \left(e_{\sigma(l+1)}, \dots, e_{\sigma(l+k)} \right) \\ &- \sum_{\sigma \in S(k+1,l-1)} (-)^{\sigma} \tilde{\Delta} \left(\Box \left(e_{\sigma(1)}, \dots, e_{\sigma(k+1)} \right), e_{\sigma(k+2)}, \dots, e_{\sigma(k+l)} \right). \end{aligned}$$

Finally, de Rham complex associated with the Jacobi algebroid (DL, L) is known as *der-complex* associated with the line bundle $L \to M$ and is commonly denoted by $(\Omega_L^{\bullet}, d_L)$. The elements of the graded $\tilde{\mathcal{A}}_{DL}^{\bullet} := \Gamma (\wedge^{\bullet} (DL)^*)$ -module $\Omega_L^{\bullet} := \tilde{\mathcal{L}}_{DL,L}^{\bullet} := \Gamma (\wedge^{\bullet} (DL)^* \otimes L)$ are known as *L-valued Atiyah forms*. Here, the homological degree 1 derivation acts

$$\langle \mathbf{d}_L e, \Box \rangle := \Box e, \quad e \in \Gamma(L), \Box \in \mathcal{D}L,$$
(35)

$$d_{L}\left(\tilde{\omega}\wedge\omega\right) = d_{DL}\tilde{\omega}\wedge\omega + \left(-\right)^{k}\tilde{\omega}\wedge d_{L}\omega, \quad \tilde{\omega}\in\tilde{\mathcal{A}}_{DL}^{k}, \omega\in\Omega_{L}^{\bullet}.$$
 (36)

The homological derivation enjoys two strong properties: i) it *agrees* with the first-order prolongation and ii) it is *acyclic*. i) This is expressed by

 $\langle \mathbf{d}_L e, \Box \rangle = \langle \Box, j^1 e \rangle,$

where the L-pairing between DL and J^1L resulting from the isomorphism $DL\simeq (J^1L)^*\otimes L$ reads

$$\langle \bullet, \bullet \rangle : \mathcal{D}L \times \Gamma(J^1L) \to \Gamma(L), \quad \langle \Box, j^1e \rangle := \Box e.$$
 (37)

ii) The acyclicity [13] of the homological derivation d_L is done by the existence of a contracting homotopy for id_{Ω} , with respect to d_L

$$\iota_{\mathrm{id}_{\Gamma(L)}}^{(DL,L)} \mathrm{d}_L + \mathrm{d}_L \iota_{\mathrm{id}_{\Gamma(L)}}^{(DL,L)} = i d_{\Omega}_L^{\bullet}.$$

For trivial line bundle, the Jacobi algebroid $(TM \oplus \mathbb{R}, \mathbb{R}_M)$ structure reduces to

$$\begin{split} \left[\left(X,f\right) ,\left(Y,g\right) \right] &= \left(\left[X,Y\right] ,Xg-Yf\right) ,\quad \left(X,f\right) ,\left(Y,g\right) \in\mathfrak{X}^{1}\left(M\right) \oplus\mathcal{F}\left(M\right) ,\\ \sigma \left(\left(X,f\right) \right) &=X,\quad \left(X,f\right) \in\mathfrak{X}^{1}\left(M\right) \oplus\mathcal{F}\left(M\right) ,\\ \nabla _{\left(X,f\right) }h=Xh+fh,\quad \left(X,f\right) \in\mathfrak{X}^{1}\left(M\right) \oplus\mathcal{F}\left(M\right) ,h\in\mathcal{F}\left(M\right) . \end{split}$$

Here, to introduce the Gerstenhaber-Jacobi structure over the Diff ${}^{\bullet}_1(\mathbb{R}_M;\mathbb{R}_M)$ one uses

$$\mathfrak{X}^{k}(M) \oplus \mathfrak{X}^{k-1}(M) \simeq \operatorname{Diff}_{1}^{k}(\mathbb{R}_{M};\mathbb{R}_{M}), \quad (P,Q) \longleftrightarrow P + Q \wedge \operatorname{id}, \quad (38)$$

where

$$(P + Q \land id) (f_1, \dots, f_k) := P(f_1, \dots, f_k) + \sum_{j=1}^k (-)^{k-j} Q(f_1, \dots, \widehat{f_j}, \dots, f_k)$$

The Gerstenhaber-Jacobi structure [15] $\left(\llbracket \bullet, \bullet \rrbracket^{(0,1)}, \mathbb{X}^{(0,1)}_{\bullet} \right)$ consists in

$$[P + Q \land id, R + S \land id]^{(0,1)} = [P, R] + p(-)^r P \land S - rQ \land R + ([P, S] + (-)^r [Q, R] + (p - r) Q \land S) \land id,$$

and

$$\mathbb{X}^{(0,1)}_{P+Q\wedge\mathrm{id}}\left(R+S\wedge\mathrm{id}\right) = \llbracket P+Q\wedge\mathrm{id}, R+S\wedge\mathrm{id}\rrbracket^{(0,1)} - Q\wedge R - (Q\wedge S)\wedge\mathrm{id}.$$

Here, the $1\text{-}\mathsf{cocycle}$ becomes

$$\omega_{\nabla} = (0,1) \in \Gamma \left((TM \oplus \mathbb{R})^* \right) = \Omega^1(M) \oplus \mathcal{F}(M),$$

while the der-complex $\Omega^{ullet}_{\mathbb{R}_M}$ is represented as

$$\Omega^{k}(M) \oplus \Omega^{k-1}(M) \simeq \Omega^{k}_{\mathbb{R}_{M}}, \quad \begin{pmatrix} {}^{(k)}(\omega, {}^{(k-1)}) \\ \omega, {}^{(k)} \end{pmatrix} \longleftrightarrow {}^{(k)}(\omega, {}^{(k-1)}) \land \mathrm{id}, \quad (39)$$

with

$$\begin{pmatrix} {}^{(k)}_{\omega} + {}^{(k-1)}_{\omega} \wedge \operatorname{id} \end{pmatrix} ((X_1, f_1), \dots, (X_k, f_k)) := \langle {}^{(k)}_{\omega}, X_1 \wedge \dots \wedge X_k \rangle + \\ + \sum_{j=1}^k (-)^{k-j} \langle {}^{(k-1)}_{\omega}, X_1 \wedge \dots \wedge X_k \rangle f_j.$$
(40)

Furthermore, the homological derivation of degree 1 in der-complex, $\mathbf{d}^{(0,1)},$ becomes

$$\mathbf{d}^{(0,1)} \begin{pmatrix} {}^{(k)}_{\omega} + {}^{(k-1)}_{\omega} \wedge \mathrm{id} \end{pmatrix} = \mathrm{d}^{(k)}_{\omega} + \left(\mathrm{d}^{(k-1)}_{\omega} + (-)^{k} {}^{(k)}_{\omega} \right) \wedge \mathrm{id}.$$
(41)

Eugen-Mihaita CIOROIANU (UCv)

Jacobi-like structure

• Differential operators

• Lie&Jacobi algebroids: Schouten&Cartan perspectives

• Integrability results

- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

There are three main results that are commonly invoked when one addresses the integrability problem associated with various Jacobi structures. First, remember that if \mathcal{E} is a everywhere defined smooth distribution on a manifold, $\mathcal{E} \subseteq TM$, then it is said to be *completely integrable* if for any $x \in M$ there exists a submanifold $x \in N \subseteq M$ such that

$$T_y N = \mathcal{E}_y, \quad y \in N.$$

Theorem (Stefan, Sussmann)

Let \mathcal{E} be a distribution as before, $G_{\mathcal{E}}$ be the family of diffeomorphisms generated by \mathcal{E} , and $\tilde{\mathcal{E}}$ be the $G_{\mathcal{E}}$ -invariant distribution associated with the original one. Then $\tilde{\mathcal{E}}$ is completely integrable [14,15], with the leaf topology identical with that generated by the starting distribution $\tilde{\mathcal{E}}$.

Theorem (Stefan, Sussmann)

With the data previously specified, the following properties are equivalent:

- **1** Distribution \mathcal{E} is $G_{\mathcal{E}}$ -invariant;
- 2 Distributions \mathcal{E} and $\tilde{\mathcal{E}}$ coincides, $\mathcal{E} = \tilde{\mathcal{E}}$;
- I Distribution \mathcal{E} is completely integrable;

Oistribution E is involutive and its rank is constant along the flow lines of its sections.

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results

Jacobi structures

- Twisted Jacobi structures
- Jacobi structures with background
- References

By definition, a Jacobi bundle consists in a line bundle $L \to M$ endowed with a bracket

$$\left\{ \bullet, \bullet \right\} : \Gamma \left(L \right) \times \Gamma \left(L \right) \to \Gamma \left(L \right),$$

that enjoys the properties:

- It is **ℝ**-linear and skew-symmetric;
- It verifies the Jacobi identity i.e.

$$\{s_1, \{s_2, s_3\}\} + \text{circular} = 0, \quad s_1, s_2, s_3 \in \Gamma(L)$$
(42)

• It is local i.e.

$$\operatorname{supp}\{s_1, s_2\} \subset \operatorname{supp} s_1 \cap \operatorname{supp} s_2, \quad s_1, s_2 \in \Gamma(L)$$
(43)

In this unified context, a Jacobi bundle consists in a line bundle $L\to M$ endowed with a first-order bi-differential operator

$$J \in \mathcal{D}^2 L$$

that verifies Maurer-Cartan equation

$$\llbracket J, J \rrbracket := -2J \circ J = 0.$$
 (44)

The connection between the bracket and the bi-differential operator \boldsymbol{J} simply reads

$$\{s_1, s_2\} := J(s_1, s_2), \quad s_1, s_2 \in \Gamma(L).$$
(45)

When the line bundle is trivial, the bi-differential operator $J \in D^2 \mathbb{R}_M$ is expressed in terms a pair (Π, E) as $J = \Pi - E \wedge id$. With this expression at hand, the Gerstenhaber-Jacobi bracket implies

$$[\Pi,\Pi] + 2\Pi \wedge E = 0, \quad [\Pi,E] = 0.$$
(46)

With this expression of the bi-differential operator J, the \mathbb{R} -Lie algebra structure over $\mathcal{F}(M)$, $\{\bullet, \bullet\}$, reduces to the well-known Jacobi bracket

$$\{f,g\} = i_{\Pi} \left(\mathrm{d}f \wedge \mathrm{d}g \right) + i_E \left(f \mathrm{d}g - g \mathrm{d}f \right), \quad f,g \in \mathcal{F}(M).$$

Jacobi structures

By means of the vector bundle morphism

$$\hat{J}: J^{1}L \wedge J^{1}L \to L, \quad \langle \hat{J}, j^{1}\lambda \wedge j^{1}\rho \rangle := J(\lambda, \rho),$$
(47)

the Jacobi bundle $(L \rightarrow M, J)$ is said to be transitive if

$$\operatorname{Im}\left(\sigma\circ\hat{J}^{\sharp}\right)=TM.$$

Example

A hyperplane distribution ${\cal K}$ on M is said to be a contact structure on M if its'curvature'

 $\omega_{\mathcal{K}}: \mathcal{K} \times \mathcal{K} \to TM/\mathcal{K}, \quad \langle \omega_{\mathcal{K}}, X \wedge Y \rangle := [X,Y] \mod \mathcal{K}$

is non-degenerate. It defines a unique Jacobi bundle $(TM/\mathcal{K}\to M,J_\mathcal{K})$ which is transitive.

Eugen-Mihaita CIOROIANU (UCv)

Example

An lcs structure on a given line bundle $L \to M$ is a pair (∇, Ω) consisting in a representation ∇ of the tangent Lie algebroid $TM \to M$ on a line bundle and a non-degenerate L-valued 2-form $\Omega \in \Omega^2(M; L)$ which is closed with respect to the homological degree 1 derivation d_{∇} associated with the Jacobi algebroid structure $([\bullet, \bullet], \nabla)$ on the pair (TM, L),

$$d_{\nabla}\Omega = 0.$$

It defines a unique transitive Jacobi bundle $(L \rightarrow M, J)$ with

$$J(\lambda,\mu) := \langle \Omega, \Omega^{\sharp}(\mathrm{d}_{\nabla}\mu) \wedge \Omega^{\sharp}(\mathrm{d}_{\nabla}\lambda) \rangle.$$

Theorem

Let $(L \to M, J)$ be a transitive Jacobi bundle. Then the following alternative holds.

- If the base manifold is even-dimensional then the considered Jacobi bundle is equivalent to a locally conformal symplectic structure on the same line bundle.
- If the base manifold is odd-dimensional then the considered Jacobi bundle is equivalent to a contact structure displaying the same line bundle.

Theorem

The characteristic distribution of a Jacobi bundle is completely integrable with the characteristic leaves either locally conformal symplectic manifolds or contact ones.

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

A twisted Jacobi bundle consists in a line bundle $L \to M$ endowed with a first-order bi-differential operator

$$J \in \mathcal{D}^2 L$$

which 'nilpotency' (44) is 'twisted' via the closed Atiyah 3-form

$$\Phi \in \Omega_L^3, \quad \mathrm{d}_L \Phi = 0 \Leftrightarrow \Phi = \mathrm{d}_L \Omega, \tag{48}$$

i.e.

$$\llbracket J, J \rrbracket = 2 \left(\wedge^3 \hat{J}^{\sharp} \right)^* \mathrm{d}_L \Omega.$$
(49)

Also here, the twisted Jacobi bundle $(L \rightarrow M, J, \Omega)$ is said to be transitive if

$$\operatorname{Im}\left(\sigma\circ\hat{J}^{\sharp}\right)=TM.$$

The structure is invariant under the transformation

$$\Omega \longrightarrow \Omega + \mathrm{d}_L \tilde{\Omega},$$

which means that in the trivial line bundle case [16], one can choose

 $\Omega=\omega\in\Omega^2(M),$

and

$$\frac{1}{2} [\Pi, \Pi] + E \wedge \Pi = \wedge^3 \Pi^{\sharp} \mathrm{d}\omega + \wedge^2 \Pi^{\sharp} \omega \wedge E,$$
$$[E, \Pi] = -\left(\wedge^2 \Pi^{\sharp} i_E \mathrm{d}\omega + \Pi^{\sharp} i_E \omega \wedge E\right).$$

Example

A hyperplane distribution \mathcal{K} together with a 2-form $\psi \in \Gamma(\wedge^2 \mathcal{K}^* \otimes L)$, $L := TM/\mathcal{K}$ is said to be a twisted contact structure on M if

$$\omega_{\mathcal{K}} + \psi \in \Gamma\left(\wedge^2 \mathcal{K}^* \otimes L\right)$$

is non-degenerate. It defines a unique twisted Jacobi bundle $(L \to M, J_{\mathcal{K},\psi}, \Omega_{\mathcal{K},\psi})$ which is transitive.

Example

A twisted lcs structure on a given line bundle $L \to M$ is pair $((\nabla, \Omega), \omega)$ consisting in a representation ∇ of the tangent Lie algebroid $TM \to M$ on a line bundle, a non-degenerate L-valued 2-form $\Omega \in \Omega^2(M; L)$ and an L-valued 2-form $\omega \in \Omega^2(M; L)$ which verify the compatibility condition

 $d_{\nabla}\Omega = d_{\nabla}\omega.$

It defines a unique transitive twisted Jacobi bundle $(L \rightarrow M, J, d_D \sigma^* \omega)$ with

 $J(\lambda,\mu) := \langle \Omega, \Omega^{\sharp}(\mathrm{d}_{\nabla}\mu) \wedge \Omega^{\sharp}(\mathrm{d}_{\nabla}\lambda) \rangle.$

Theorem

Let $(L \to M, J, \Omega)$ be a twisted Jacobi bundle, which is transitive. Then the following alternative holds.

- If the base manifold is even-dimensional then the considered Jacobi bundle is equivalent to a twisted locally conformal symplectic structure on the same line bundle.
- If the base manifold is odd-dimensional then the considered Jacobi bundle is equivalent to a twisted contact structure displaying the same line bundle.

Theorem

The characteristic distribution of a twisted Jacobi bundle is completely integrable [17] with the characteristic leaves either twisted locally conformal symplectic manifolds or twisted contact ones.

- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

Finally, a Jacobi bundle with background consists in a line bundle $L\to M$ endowed with a first-order bi-differential operator

$$J \in \mathcal{D}^2 L$$

whose 'nilpotency' (44) is 'broken' via an Atiyah 3-form

$$\Phi \in \Omega_L^3, \tag{50}$$

i.e.

$$\llbracket J, J \rrbracket = 2 \left(\wedge^3 \hat{J}^{\sharp} \right)^* \Phi.$$
(51)

For trivial line bundle situation, the Atyiah 3-form

$$\Phi = \phi + \omega \wedge \mathrm{id}, \quad \phi \in \Omega^3(M), \omega \in \Omega^2(M).$$
(52)

By inserting the previous data in structure equation, one derives [18]

$$\frac{1}{2}\left[\Pi,\Pi\right] + E \wedge \Pi = \wedge^3 \Pi^{\sharp} \phi + \wedge^2 \Pi^{\sharp} \omega \wedge E,$$
(53)

$$[E,\Pi] = -\left(\wedge^2 \Pi^{\sharp} i_E \phi + \Pi^{\sharp} i_E \omega \wedge E\right)$$
(54)

Jacobi structures with background

The bi-differential operator \boldsymbol{J} exhibits the correspondence

$$\Gamma(L) \ni e \mapsto \triangle_e \in \mathcal{D}^1 L, \quad \triangle_e := -\llbracket J, e \rrbracket := \hat{J}^{\sharp}(j^1 e),$$

which displays Hamiltonian derivations. Theirs symbols

$$X_e := \sigma(\triangle_e)$$

are the well-known Hamiltonian vector fields. If we use the notation

$$\{e_1, e_2\} := J(e_1, e_2) = \triangle_{e_1} e_2, \quad e_1, e_2 \in \Gamma(L),$$
(55)

then

$$\begin{split} [\triangle_{e_1}, \triangle_{e_2}] &= \triangle_{\{e_1, e_2\}} + \hat{J}^{\sharp} \left(\iota^{(DL,L)}_{\triangle_{e_2}} \iota^{(DL,L)}_{\triangle_{e_1}} \Phi \right), \\ [X_{e_1}, X_{e_2}] &= X_{\{e_1, e_2\}} + \sigma \circ \hat{J}^{\sharp} \left(\iota^{(DL,L)}_{\triangle_{e_2}} \iota^{(DL,L)}_{\triangle_{e_1}} \Phi \right). \end{split}$$

The category of Jacobi bundles with background is completed by morphisms of Jacobi bundles with background, i.e., Jacobi maps. Let $(L_i \to M_i, J_i, \Psi_i)$, i = 1, 2 be two Jacobi bundles with background. A regular vector bundle morphism (i.e. fiber-wise isomorphism) $\varphi : L_1 \to L_2$ covering $\underline{\varphi} \in \mathcal{C}^{\infty}(M_1, M_2)$ is said to be a Jacobi map iff

$$\varphi^*\{\lambda,\mu\}_2 = \{\varphi^*\lambda,\varphi^*\mu\}_1, \quad \lambda,\mu\in\Gamma(L_2).$$
(56)

Previously, by φ^* we denoted the pull-back associated with the given regular vector bundle morphism

$$\varphi^* : \Gamma(L_2) \to \Gamma(L_1), \quad (\varphi^*\mu)(x) := (\varphi_x)^{-1} \mu\left(\underline{\varphi}(x)\right), \quad x \in M_1.$$

Let $(L_i \to M_i)$, i = 1, 2 be two line bundles and $(\varphi, \underline{\varphi})$ be a regular morphism between them. We define the pull-back to $\varphi^* : \Gamma(J^1L_2) \to \Gamma(J^1L_1)$ as

$$\varphi^*\left(j^1e_2\right) := j^1\left(\varphi^*e_2\right), \quad e_2 \in \Gamma(L_2)$$

and extend it via $\mathbb R\text{-linearity}$ and semi-linearity to the whole module $\Gamma(J^1L_2)$ as

$$\varphi^*\left(fj^1e_2\right) := (\underline{\varphi}^*f)j^1\left(\varphi^*e_2\right), \quad f \in \mathcal{F}(M_2), e_2 \in \Gamma(L_2).$$

Definition

The derivations $riangle_1 \in \mathcal{D}L_1$ and $riangle_2 \in \mathcal{D}L_2$ are said to be (φ, φ) -related if

$$\varphi_*(\triangle_1) = \triangle_2$$

Theorem

Le $t(L_i \to M_i, J_i, \Psi_i)$, i = 1, 2 be two Jacobi bundles with background. A regular vector bundle morphism (i.e. fiber-wise isomorphism) $\varphi : L_1 \to L_2$ covering $\varphi \in C^{\infty}(M_1, M_2)$ is a Jacobi map iff

$$\hat{J}_2^{\sharp} = D\varphi \circ \hat{J}_1^{\sharp} \circ \varphi^*.$$

Theorem

Let $(L_i \to M_i, J_i, \Psi_i)$, i = 1, 2 be two Jacobi bundles with background. A regular vector bundle morphism (i.e. fiber-wise isomorphism) $\varphi : L_1 \to L_2$ covering $\underline{\varphi} \in \mathcal{C}^{\infty}(M_1, M_2)$ is a Jacobi map iff for any section $e_2 \in \Gamma(L_2)$, the Hamiltonian derivations $\Delta_{\varphi^*e_2}$ and Δ_{e_2} are (φ, φ) -related

$$\varphi_*(\triangle_{\varphi^*e_2}) = \triangle_{e_2}.$$

Jacobi structures with background

A Jacobi bundle with background $(L \to M, J, \Phi)$ is said to be transitive if $\mathrm{Im}\left(\sigma\circ\hat{J}^{\sharp}\right)=TM.$

Example

An lcs structure with background on a given line bundle $L \to M$ is pair $((\nabla, \Omega), (\phi, \omega))$ consisting in a representation ∇ of the tangent Lie algebroid $TM \to M$ on a line bundle, a non-degenerate L-valued 2-form $\Omega \in \Omega^2(M;L)$ an L-valued 3-form $\phi \in \Omega^3(M;L)$ and an L-valued 2-form which verify the compatibility condition

$$d_{\nabla}\Omega = d_{\nabla}\omega + \phi.$$

It defines a unique transitive Jacobi bundle with background $(L\to M,J,{\rm d}_D\sigma^*\omega+\sigma^*\phi)$ with

 $J(\lambda,\mu) := \langle \Omega, \Omega^{\sharp}(\mathrm{d}_{\nabla}\mu) \wedge \Omega^{\sharp}(\mathrm{d}_{\nabla}\lambda) \rangle.$

Jacobi structures with background

Starting with the Spencer short exact sequence

$$\Gamma\left(T^*M\otimes L\right):=\Omega^1(M;L) \xrightarrow{\gamma} \Gamma(J^1L) \xrightarrow{\pi_{1,0}} \Gamma(L)$$

(which particulary splits as short exact sequence of \mathbb{R} -vector spaces by the first-order prolongation $j^1 : \Gamma(L) \to \Gamma(J^1L)$) we consistently define the bi-symbol of $J, \tilde{J} \in \Gamma(\wedge^2(T^*M \otimes L)^* \otimes L)$, via

$$\langle \tilde{J}, \eta \wedge \theta \rangle := \langle \hat{J}, \gamma(\eta) \wedge \gamma(\theta) \rangle, \quad \eta, \theta \in \Omega^1(M; L)$$

The bi-symbol \tilde{J} , combined with the pairing $L^* \otimes L = \mathbb{R}_M$ display the vector bundle morphism

$$\tilde{J}^{\sharp}: T^*M \otimes L \to TM, \quad \langle \theta_2, \tilde{J}^{\sharp}(\theta_1 \otimes e_1) \rangle e_2 := \langle \tilde{J}, (\theta_1 \otimes e_1) \wedge (\theta_2 \otimes e_2) \rangle$$
(57)

which enjoys

$$\tilde{J}^{\sharp} = \sigma \circ \hat{J}^{\sharp} \circ \gamma.$$
(58)

Theorem

Let $(L \to M, J, \Phi)$ be a Jacobi bundle with background. Then, the following conditions are equivalent:

- \hat{J} is non-degenerate, and
- the base manifold M is odd-dimensional and the Jacobi structure is transitive.

Theorem

Let $(L \to M, J, \Phi)$ be a Jacobi bundle with background. Then, the following conditions are equivalent:

- the bi-symbol \tilde{J} is non-degenerate, and
- the base manifold M is even-dimensional and the Jacobi structure is transitive.

Theorem

Let $(L \to M, J, \Psi)$ be a Jacobi bundle with background, which is transitive. Then the following alternative holds.

- If the base manifold is even-dimensional then the considered Jacobi bundle is equivalent to a locally conformal symplectic structure with background on the same line bundle.
- If the base manifold is odd-dimensional then the considered Jacobi bundle is equivalent to a twisted contact structure displaying the same line bundle.

Theorem

The characteristic distribution of a Jacobi bundle with background is completely integrable with the characteristic leaves either locally conformal symplectic manifolds with background or twisted contact ones.
- Differential operators
- Lie&Jacobi algebroids: Schouten&Cartan perspectives
- Integrability results
- Jacobi structures
- Twisted Jacobi structures
- Jacobi structures with background
- References

References

- 1 A.M. Vinogradov, J. Soviet Math. 17 (1981) 1624
- 2 A.M. Vinogradov, Soviet Math. Dokl. 13 (1972) 1058
- 3 L. Vitagliano, J. Sympl. Geom. 16 (2018) 485
- 4 P. Higgins, K. Mackenzie, J. Algebra 129 (19990) 194
- 5 J.C. Schnitzer, *Local and Global Properties of Jacobi Related Geometries*, PhD Thesis
- 6 A.M. Blaga, M.A. Salazar, A.G. Tortorella, C. Vizman, Int. Math. Res. Not. 22 (2020) 8818
- 7 C.M. Marle, J. Geom and Phys. 23 (1997) 350
- 8 J. Grabowski, J. Geom. Phys. 68 (2013) 27
- 9 A.G. Tortorella, *Deformations of Coisotropic Submanifolds in Jacobi Manifolds*, PhD Thesis
- 10 D. Iglesias and J. C. Marrero, Comptes Rendus Acad. Sci. Paris 331 (2000) 125
- J. Nestruev, Smooth manifolds and observables, volume 220 of Grad. Texts in Math. Springer-Verlag, 2003

Eugen-Mihaita CIOROIANU (UCv)

Jacobi-like structure

- 12 J. Grabowski and G. Marmo, J. Phys. A: Math. and Gen. 34 (2001) 49
- 13 V.N. Rubtsov, Russian Math. Surveys 35 (1980) 190
- 14 P. Stefan, Bull. Amer. Math. Soc. 80 (1974) 1142
- 15 H. J. Sussmann, Trans. Amer. Math. Soc. 180 (1973) 171
- 16 J. M. Nunes da Costa, F. Petalidou, J. Phys. A: Math. Gen. 39 (2006) 10449
- J. M. Nunes da Costa, F. Petalidou, *Characteristic foliation of twisted Jacobi manifolds*, in: Iglesias Ponte, D.et al., Proceedings of XV Fall Workshop on Geometry and Physics, Tenerife, 2006, Publ. de la RSME 11 (2007) 322
- 18 E.M. Cioroianu, C. Vizman, *Int. J. Mod. Geom. Meth. Phys* **17** (2020) 2050063