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Motivation

Volterra equations are fundamental in biological modelling. It appears on many very
different forms:

in evolutionary biology as replicator equation (a kind of “Schrodinger equation”
for biology)

at the molecular level, genetic circuits and neuronal circuits are modelled by
Volterra equations

virus dynamics, population (prey-predator) dynamics, epidemic dynamics

in fluids and plasma recently the incoherent discrete solitons are modelled by
Volterra equations

In general, mathematical models in biology are given by equations which are strongly
nonlinear and dissipative. So, one cannot have symmetries and conservatuions laws.
So we are forced to find patterns and regularities. Some Volterra equations can be
considered perturbed integrable equations.
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Simple examples:

population dynamics. Let us consider an infinite/finite/periodic chain of species
of individuals, indexed by n having the Nn(t) number of individuals. They
increase when interact with the individuals in the species n + 1 and decrease
when interact with ones in the n − 1 according to the rule:

dNn

dt
= (1 + Nn)(Nn+1 − Nn−1)

or in general
dNn

dt
= F (Nn)(Nn+1 − Nn−1)

genetic network/circuit: the gene n is activated by the gene n + 1 and repressed
by the gene n − 1. The equation that governs the time evolution of the protein
production for the gene n is given by:

dpn

dt
=

a + bpn+1

1 + pn+1
+

b + apn−1

1 + pn−1
− λpn

where

f (pi ) =
a + bpi

1 + pi

is the promoter-activity function of the gene “i ′′ and it is activated for b > a
and repressed for b < a. Also λ is the protein degradation rate. Making the
substitution Mn = 1/(1 + pn) we find

dMn/dt = (b − a)M2
n (Mn+1 −Mn−1) + perturbation(b, a, λ)
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Integrability vs Singularities

Question: how do we study these types of equations? They are differential-difference
form and hard to apply methods of hamiltonian mechanics (to get invariants for
example).
On the other hand we want patterns, regular dynamics (nonlinear equations have in
general chaotic dynamics),

First step is to detect possible equations which are not
chaotic. This can be done by the singularity analysis considerind the equations in the
complex plane
In order to avoid butterfly effect on the Riemann sheets of some branch points of the
solutions we impose that in t the singular part to be at most poles
On the other hand the equations are discrete. It means that we have iterations. If the
iterations does not develop indeterminacies and after a finite number of iterations the
singular behaviour is confined then we are in a situation of a possible non-chaotic
equation which obey the singularity confining criterion. To ilustrate this let us
consider,

u̇n = un(un+1 − un−1)

which can be written as a 2-point mapping,

P1 × P1 3 (un, vn)→ (un+1, vn+1) ∈ P1 × P1

whose points are depeding on t:
un+1 = vn (1)

vn+1 =
v̇n

vn
+ un (2)
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It is obvious that if (un, vn) have no movable critical singularities, then the same will
be true for (un+1, vn+1). Let us consider the simplest case, in a neighbourhood of t, to
have a simple zero for vn and regular un. Thus the curve (un, 0) goes to a point
(0,∞) which means loosing a degree of freedom (curve blow-down process). More
precisely, starting as above from (τ = t − t0),

un = a0 + a1τ + O(τ2), vn = ατ + βτ2 + O(τ3)

(
a0

ατ + ...

)
→
(

ατ + ...
τ−1 + β/α+ a0 + ...

)
→

→
(

τ−1 + β/α+ a0 + ...
−τ−1 + β/α+ a0 + ...

)
→
(
−τ−1 + β/α+ a0 + ...
γ(a0, α, β)τ + ...

)
→
(

γ(a0, α, β)τ + ...
f (a0, α, β) + ...

)
where γ, f are some finite expressions containing the parameters a0, α, β etc. So in a
small neighbourhood of t0 (where τ ≈ 0) we can write

...→ regular→
(

a0

0

)
→
(

0
∞

)
→
(
∞
−∞

)
→
(
−∞

0

)
→
(

0
f (a0, α, β)

)
→ regular

So the initial curve blows down to three points and then blows up to another curve
containing initial parameters. In this way the singularity confinement is satisfied.
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This singularity pattern is crucial. It helps us to find a substitution which solves
explicitly the equation
Indeed one can see immediately that for both un, vn the pattern is

un(t) : ...regular→ 0→∞→∞→ 0→ regular...

vn−1(t) : ...regular→ 0→∞→∞→ 0→ regular...

So exist a function Fn which is holomorphic and un, vn are expressed as ratios of
products of such functions. Hence let us consider that un has a function Fn in the
numerator and this Fn passes through 0, so un = 0. Because un+1, un+2 are infinite
then the denominator of un must have Fn−1,Fn−2. Then un+3 = 0 so at the
numerator we have Fn−3. Accordingly one can write

un =
FnFn−3

Fn−1Fn−2

and introducing in the equation we find the bilinear form:

E(Fn · Fn) ≡ (∂tFn−1)Fn−2 − Fn−1(∂tFn−2)− FnFn−3 + Fn−1Fn−2 = 0

Fn is holomorphic, equation is bilinear so the solutions will be a series of exponentials
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Let:
Fn(t) = 1 + εfn + ε2gn + ε3hn + ....

O(ε) : ∂t(fn−1 − fn−2)− fn − fn−3 + fn−1 + fn−2 = 0

O(ε2) : ∂t(gn−1 − gn−2)− gn − gn−3 + gn−1 + gn−2 = E(fn · fn)

O(ε3) : ∂t(hn−1 − hn−2)− hn − hn−3 + hn−1 + hn−2 = E(fn · gn)

So at the first order take fn = ekn+ωt .
We get the dispersion relation

ω(k) = (1 + e−3k − e−k − e−2k )/(e−k − e−2k ) = 2 sinh k

and all other terms can be zero. So one solution is

Fn = 1 + ekn+ωt

so, the Volterra equation will have the 1-discrete soliton solution

un =
(1 + ekn+ωt)(1 + ek(n−3)+ωt)

(1 + ek(n−1)+ωt)(1 + ek(n−2)+ωt)
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For 2-modes solution fn = ek1n+ω1t + ek2n+ω2t , we can no longer take gn = 0. In fact
this imposes gn = eA12e(k1+k2)n+(ω1+ω2)t with

eA12 =

(
sinh(k1 − k2)/4

sinh(k1 + k2)/4)

)2

which means we have interaction of modes and the 2-discrete soliton solution

Fn = 1 + ek1n+ω1t + ek2n+ω2t + eA12e(k1+k2)n+(ω1+ω2)t

For N = 3

Fn = 1+
3∑

i=1

eki n+ωi t+
∑
i<j

eAij e(ki+kj )n+(ωi+ωj )t+eA12+A13+A23e(k1+k2+k3)n+(ω1+ω2+ω3)t

For N-modes the solution will be

Fn(t) =
∑

µ1,...,µN∈{0,1}
exp

 N∑
i=1

µi (kin + ωi (ki )t) +
N∑
i<j

Aijµiµj


and all interaction terms are factorized in two-modes interactions i.e. bilinear
integrability≡ existence of discrete N-soliton solution.
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From the structure of 2-soliton solution we can extract the information about the
scattering process. This is done in a frame comoving with the one of the solitons and
letting the other soliton to go to spatial infinity as |t| → ∞ Let us write the 2-soliton
as:

Fn = 1 + eη1 + eη2 + eA12eη1+η2

where ηi = kin + ωi t.

Let us consider η1 fixed and for

η2 → −∞, Fn → 1 + eη1

η2 →∞, Fn → eη2 (1 + eη1−η2 + e−η2 + eη1+A12 ) ≡ 1 + eA12+η1

The soliton speed is −ω1/k1 = −2 sinh k1/k1 and the location of the soliton 1 changes
with ∆n1 = −A12/k1.
The interaction is in fact atractive, namely the faster one advances and the slower one
is retarded. Moreover, during the collisions the amplitude decreases.
This shows that the full interaction process is nonlinear.
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Higher order Volterra systems: Bogoyavlenski lattices

We want to study higher order (generalisations) of Volterra equations. We are going
to consider the following examples

u̇n = un(
N∑
j=1

un+j −
N∑
j=1

un−j ) (3)

then the first multiplicative Bogoyavlenski equation (mB1),

u̇n = un(
N∏
j=1

un+j −
N∏
j=1

un−j ) (4)

the second multiplicative Bogoyavlenski one (mB2)

u̇n = u2
n(

N∏
j=1

un+j −
N∏
j=1

un−j ). (5)

and finally the third multiplicative Bogoyavlensii lattice (B3) which is a new equation

u̇n = un(un − a)(
N∏
j=1

un+j −
N∏
j=1

un−j ) (6)
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Singularities and bilinear forms

Take N = 3 for the first equation. The system can be written as:

u1,n+1 = u2,n, u2,n+1 = u3,n (7)

u3,n+1 = u4,n (8)

u4,n+1 = u5,n (9)

u5,n+1 = u6,n (10)

u6,n+1 = u̇4,n/u4,n + u1,n + u2,n + u3,n − u5,n − u6,n (11)

and consider all ui,n, i = 1, 2, 3, 5, 6 are regular and initially have the finite values
un,i = fi + O(τ), except u4,n = ατ + O(τ2).

f1
f2
f3
0
f5
f6

→

∗
∗
0
∗
∗
∞

→

∗
0
∗
∗
∞
∞

→


0
∗
∗
∞
∞
∗

→

∗
∗
∞
∞
∗
∗

→

→


∗
∞
∞
∗
∗
0

→

∞
∞
∗
∗
0
∗

→

∞
∗
∗
0
∗
∗

→

∗
∗
0
∗
∗
∗
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This is a confined pattern since the codimensions of subvarities are the in the following
sequence:

1→ 2→ 3→ 3→ 2→ 3→ 3→ 2→ 1

The backward evolution is again regular. This singularity pattern is giving the relation
with entire functions Fn needed for bilinear form.

One can see immediately that if we
see the orbit of u4,n we have

0→ ∗ → ∗ → ∞→∞→ ∗ → ∗ → 0

and accordingly one can write:

un =
Fn−3Fn+4

FnFn+1

In general

u1,n+1 = u2,n (12)

u2,n+1 = u3,n (13)

· · · (14)

u2N−1,n = u2N,n (15)

u2N,n =
u̇N+1,n

uN+1,n
+
∑N

k=1 uk,n −
∑2N

k=N+2 uk,n (16)

Now if ui,n = fi + O(τ) regular for i = 1, ..,N,N + 2, ...2N and singularity enters
through uN+1,n = aτ + O(τ2) we will obtain a strictly confining pattern in 2N + 1
steps.
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The bilinear form can be recovered from the substitution given by singularity analysis

un = Fn+1+NFn−N/FnFn+1

namely,

DtFn+1 · Fn + FnFn+1 = Fn+1+NFn−N (17)

where Dm
t a · b = ∂my a(t + y)b(t − y)|y=0 is the Hirota bilinear operator.

Down-shifting a half integer and taking into account that
exp(mDn)a · b = a(n + m)b(n −m) we can write in a nicer way,(

Dte
1
2
Dn + e

1
2
Dn − e( 1

2
+N)Dn

)
Fn · Fn = 0

The general M-discrete soliton solution (we say M to avoid confusion with N the
number of terms in the equation) has the form:

Fn(t) =
∑

µ1,...,µM∈{0,1}
exp

 M∑
i=1

µi (kin + ωi t) +
M∑
i<j

Aijµiµj

 (18)

with the dispersion relation and interaction phase given by

ωi (ki ) =
2 sinh(kiN/2) sinh(ki (N + 1)/2)

sinh(ki/2)

expAij =
− cosh((ki − kj )/2) + cosh(1/2(ki − kj )(1 + 2N)) + (−ωi + ωj ) sinh((ki − kj )/2)

cosh((ki + kj )/2)− cosh(1/2(ki + kj )(1 + 2N)) + (ωi + ωj ) sinh((ki + kj )/2)

Adrian Stefan Carstea



The bilinear form can be recovered from the substitution given by singularity analysis

un = Fn+1+NFn−N/FnFn+1

namely,
DtFn+1 · Fn + FnFn+1 = Fn+1+NFn−N (17)

where Dm
t a · b = ∂my a(t + y)b(t − y)|y=0 is the Hirota bilinear operator.

Down-shifting a half integer and taking into account that
exp(mDn)a · b = a(n + m)b(n −m) we can write in a nicer way,(

Dte
1
2
Dn + e

1
2
Dn − e( 1

2
+N)Dn

)
Fn · Fn = 0

The general M-discrete soliton solution (we say M to avoid confusion with N the
number of terms in the equation) has the form:

Fn(t) =
∑

µ1,...,µM∈{0,1}
exp

 M∑
i=1

µi (kin + ωi t) +
M∑
i<j

Aijµiµj

 (18)

with the dispersion relation and interaction phase given by

ωi (ki ) =
2 sinh(kiN/2) sinh(ki (N + 1)/2)

sinh(ki/2)

expAij =
− cosh((ki − kj )/2) + cosh(1/2(ki − kj )(1 + 2N)) + (−ωi + ωj ) sinh((ki − kj )/2)

cosh((ki + kj )/2)− cosh(1/2(ki + kj )(1 + 2N)) + (ωi + ωj ) sinh((ki + kj )/2)

Adrian Stefan Carstea



The bilinear form can be recovered from the substitution given by singularity analysis

un = Fn+1+NFn−N/FnFn+1

namely,
DtFn+1 · Fn + FnFn+1 = Fn+1+NFn−N (17)

where Dm
t a · b = ∂my a(t + y)b(t − y)|y=0 is the Hirota bilinear operator.

Down-shifting a half integer and taking into account that
exp(mDn)a · b = a(n + m)b(n −m) we can write in a nicer way,(

Dte
1
2
Dn + e

1
2
Dn − e( 1

2
+N)Dn

)
Fn · Fn = 0

The general M-discrete soliton solution (we say M to avoid confusion with N the
number of terms in the equation) has the form:

Fn(t) =
∑

µ1,...,µM∈{0,1}
exp

 M∑
i=1

µi (kin + ωi t) +
M∑
i<j

Aijµiµj

 (18)

with the dispersion relation and interaction phase given by

ωi (ki ) =
2 sinh(kiN/2) sinh(ki (N + 1)/2)

sinh(ki/2)

expAij =
− cosh((ki − kj )/2) + cosh(1/2(ki − kj )(1 + 2N)) + (−ωi + ωj ) sinh((ki − kj )/2)

cosh((ki + kj )/2)− cosh(1/2(ki + kj )(1 + 2N)) + (ωi + ωj ) sinh((ki + kj )/2)

Adrian Stefan Carstea



Multiplicative mB1 equation:
Here we have o more complicated situation where the confined patterns are not visible
when starting from simple singularities. Let us consider the even N case and take
N = 2. The equation has the form

u̇n = un(un+1un+2 − un−1un−2)

which can be written as a mapping from (P1)4 to itself:

U1,n+1 = U2,n (19)

U2,n+1 = U3,n (20)

U3,n+1 = U4,n (21)

U4,n+1 =
∂tU3,n+U1,nU2,nU3,n

U3,nU4,n
(22)

The simplest sources of singularities can be simple zeros of U3,n or U4,n so we can
write initially,

U3,n = a0τ + O(τ2)

or U4,n = α0τ +O(τ2) and U1,n,U2,n,U4,n or U3,n are regular.

In the first case we find
the following anti-confining pattern (where (a1, a2, a0τ, a4)T is the initial condition)
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0
∞
0
∞

→

∞
0
∞
∗

→


0
∞
∗
0

→

∞
∗
0
∗

→

∗
0
∗
∗

→ ...

→


a1

a2

0
a4

→

∗
0
∗
∞

→


0
∗
∞
0

→

∗
∞
0
∞

→

∞
0
∞
0

→ ....

Starting with U4 we go to essentially the same situation, an anti-confining pattern.
This picture can be easily generalised for any N. These type of patterns usually are
related to linearisable systems and they have no use in solving the equation.

In the
case of N odd the situation is even worse. The patterns are totally non-confined For
example in the case of N = 3

U1,n+1 = U2,n, U2,n+1 = U3,n (23)

U3,n+1 = U4,n, U4,n+1 = U5,n (24)

U5,n+1 = U6,n (25)

U6,n+1 =
∂tU4,n+U1,nU2,nU3,nU4,n

U4,nU5,nU6,n
(26)

Adrian Stefan Carstea



...


0
∞
0
∞

→

∞
0
∞
∗

→


0
∞
∗
0

→

∞
∗
0
∗

→

∗
0
∗
∗

→ ...

→


a1

a2

0
a4

→

∗
0
∗
∞

→


0
∗
∞
0

→

∗
∞
0
∞

→

∞
0
∞
0

→ ....

Starting with U4 we go to essentially the same situation, an anti-confining pattern.
This picture can be easily generalised for any N. These type of patterns usually are
related to linearisable systems and they have no use in solving the equation. In the
case of N odd the situation is even worse. The patterns are totally non-confined For
example in the case of N = 3

U1,n+1 = U2,n, U2,n+1 = U3,n (23)

U3,n+1 = U4,n, U4,n+1 = U5,n (24)

U5,n+1 = U6,n (25)

U6,n+1 =
∂tU4,n+U1,nU2,nU3,nU4,n

U4,nU5,nU6,n
(26)

Adrian Stefan Carstea



If the source of singularity is either U6,n = a0τ + O(τ2) or U5,n = a1τ + O(τ2) or
U4,n = a2τ + O(τ2) we have nonconfined patterns with forward evolution to zeros and
infinities in the column and backward evolution with finite elements i.e. forward
evolution is:


f1
f2
f3
f4
f5
0

→

∗
∗
∗
∗
0
∞

→

∗
∗
∗
0
∞
∗

→

∗
∗
0
∞
∗
∗

→

∗
0
∞
∗
∗
∞

→

→


0
∞
∗
∗
∞
0

→

∞
∗
∗
∞
0
0

→

∗
∗
∞
0
0
∞

→

∗
∞
0
0
∞
0

→

∞
0
0
∞
0
0

→ ...points
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Interaction of singularities and recovering of bilinear forms

Very recently was shown the lattice KdV equation can have many types of singularities
and superposition or interaction of singularities were analysed. In order to see if this
happens in our examples, we are going to analyse again the mB1 lattice for N = 2
(system (30)-(33)). Let us consider the following expansions:

U1,n = a1 + b1τ + c1τ
2 + O(τ3)

U2,n = a2 + b2τ + c2τ
2 + O(τ3)

U3,n = a3τ + b3τ
2 + c3τ

3 + O(τ4)

U4,n =
a4

τ
+ b4 + c4τ + O(τ2)

So one singularity is produced from U3,n=0 and another one from U4,n =∞. We will
find the following strictly confining singularity pattern

a1

a2

0
∞

→

∗
0
∞
∗

→


0
∞
∗
∞

→

→


∞
∗
∞
0

→

∗
∞
0
∗

→

∞
0
∗
∗

→


0
∗
∗
∗

→

∗
∗
∗
∗

→ ....
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In the case of N = 3 for the system (34)-(39) we start again from the “interacting”
expansions:

U1,n = f1 + g1τ + h1τ
2 + O(τ3)

U2,n = f2 + g2τ + h2τ
2 + O(τ3)

U3,n = f3 + g3τ + h3τ
2 + O(τ4)

U4,n = f4τ + g4τ
2 + O(τ3)

U5,n =
f5

τ
+ g5 + h5τ + O(τ2)

U6,n = f6 + g6τ + h6τ
2 + O(τ2)

and we find the following pattern:
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0
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0
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∗
0
∞
∗
∗
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0
∞
∗
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∞
∗
∗
∞
0
∗

→

→



∞
∗
∗
∞
0
∗
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∞
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∗
∗
∗
∗

→ ...regular
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In the even case the orbit of let us say U1,n we find

0→∞→ ∗ →∞→ 0

showing exactly the bilinear substitution for the bilinear form

U1,n =
Fn−2Fn+2

Fn−1Fn+1

In the odd case the orbit of U1,n gives the following pattern,

∗ → 0→∞→ ∗ → ∗ → ∞→ 0→ ∗

and the corresponding bilinear substitution:

U1,n =
Fn−2Fn+3

Fn−1Fn+2

These substitutions can be easily generalised to any N.
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So for the general odd case, N = 2ν + 1 we have as above the following substitution:

un(t) =
Fn+ν+2Fn−ν−1

Fn−νFn+ν+1
(27)

and one can see immediately that,

2ν+1∏
i=1

un+i =
Fn−ν−1Fn+3ν+3

F 2
n+ν+1

,
2ν+1∏
i=1

un−i =
Fn−3ν−2Fn+ν+2

F 2
n−ν

.

Introducing in (mB1) we get:

∂t

(
Fn+ν+2Fn−ν−1

Fn−νFn+ν+1

)
=

F 2
n−νFn−ν−1Fn+3ν+3 − F 2

n+ν+1Fn+ν+2Fn−3ν−2

F 2
n−νF

2
n+ν+1

(28)

The LHS can be written in the form:

∂t

(
Fn+ν+2Fn−ν−1

Fn−νFn+ν+1

)
=

Fn−ν−1Fn−νDtFn+ν+2 · Fn+ν+1 + Fn+ν+2Fn+ν+1DtFn−ν−1 · Fn−ν

F 2
n−νF

2
n+ν+1

Introducing in (28) we find the following quadrilinear expression:

Fn−ν−1Fn−ν(DtFn+ν+2 · Fn+ν+1 + Fn−νFn+3ν+3) = (29)

= Fn+ν+2Fn+ν+1(DtFn−ν−1 · Fn−ν + Fn+ν+1Fn−3ν−2)
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This quadrilinear expression is correct provided the following bilinear forms holds (
showing that first factors in LHS is equal with the second factor in RHS and viceversa):

DtFn+ν+1 · Fn+ν+2 + Fn−νFn+3ν+3 = Fn+ν+2Fn+ν+1

DtFn−ν−1 · Fn−ν + Fn+ν+1Fn−3ν−2 = Fn−ν−1Fn−ν

These two bilinear forms are in fact identical since the second is the down-shift of the
first with (2ν + 1) steps. So down-shifting the first one with (ν + 1) steps we get the
final bilinear form of mB1:

DtFn · Fn+1 + Fn−2ν−1F2ν+2 − FnFn+1 = 0 (30)
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In the case of N = 2ν even we consider the following substitution:

un(t) =
Fn+ν+1Fn−ν−1

Fn−νFn+ν
(31)

Using the same procedures as above we find

Fn+ν+1Fn+ν(DtFn−ν−1 · Fn−ν + Fn+νFn−3ν−1) =

Fn−ν−1Fn−ν(DtFn+ν · Fn+ν+1 + Fn−νFn+3ν+1)

Finally the bilinear form is

DtFn · Fn+1 + Fn−2νFn+2ν+1 − FnFn+1 = 0 (32)

One can see immediately that the bilinear forms are identical for N odd and even and
it is also the same with the one of (aB) (up to a sign of time):

DtFn · Fn+1 + Fn−NFn+N+1 − FnFn+1 = 0 (33)

The multisoliton solution is the same as in the additive case.
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In the case of mB2 lattice we have the same situation. We take the case N = 2

U1,n+1 = U2,n, U2,n+1 = U3,n, U3,n+1 = U4,n (34)

U4,n+1 =
∂tU3,n+U1,nU2,nU

2
3,n

U2
3,nU4,n

(35)

and consider the following initial “interacting” singularity pattern:

U1,n = a1 + O(τ), U2,n = a2 + O(τ)

U3,n = a3τ + b3τ
2 + c3τ

3 + O(τ4),U4,n =
a4

τ
+ b4 + c4τ + O(τ2).

We will find the following strictly confining pattern:

...


a1

a2

0
∞

→

∗
0
∞
∞

→


0
∞
∞
0

→

∞
∞
0
∗

→

∞
0
∗
∗

→

→


0
∗
∗
∗

→ ...regular

One can easily see the orbit of U2,n (or anyone of them) having the form,

∗ → 0→∞→∞→ 0→ ∗

which gives

U2,n =
Fn−1Fn+2

FnFn+1
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For the solution we consider the following nonlinear substitution

un =
Fn−1Fn+N

FnFn+N−1
. (36)

which gives the following relations:

u2
n

N∏
i=1

un+i =
F 2
n−1Fn+2NFn

F 2
n F

2
n+N−1

u2
n

N∏
i=1

un−i =
F 2
n+NFn−N−1Fn+N−1

F 2
n F

2
n+N−1

Also

u̇n = ∂t

(
Fn−1Fn+N

FnFn+N−1

)
=

Fn−1FnDtFn+N · Fn+N−1 + Fn+NFn+N−1DtFn−1 · Fn

F 2
nF

2
n+N−1

Introducing all these relations in the mB2 we find:

Fn−1Fn(DtFn+N · Fn+N−1 − Fn−1Fn+2N) = Fn+NFn+N−1(DtFn · Fn−1 − Fn+NFn−N−1)

Accordingly the bilinear form will be

DtFn−1 · Fn − Fn+NFn−N−1 − FnFn−1 = 0 (37)

with the following multisoliton solution

Fn(t) =
∑

µ1,...,µM∈{0,1}
exp

 M∑
i=1

µi (kin + ωi t) +
M∑
i<j

Aijµiµj

 ,

ωi = −2 cosh[(kiN)/2] cosh[ki/2 + (kiN)/2]cosech[ki/2],

expAij = −
((cosh[ki/2− kj/2] + cosh[ki/2− kj/2 + kiN − kjN] + (ωi − ωj ) sinh[ki/2− kj/2])

(cosh[ki/2 + kj/2] + cosh[ki/2 + kj/2 + kiN + kjN] + (ωi + ωj ) sinh[ki/2 + kj/2]))
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Bilinear Integrability of mB3 lattice

u̇n = un(un − a)(
N∏
j=1

un+j −
N∏
j=1

un−j ) (38)

In the case N = 2 the system is completely integrable but for general N is not known.
For simplicity consider the case N = 2:

U1,n+1 = U2,n,U2,n+1 = U3,n

U3,n+1 = U4,n

U4,n+1 =
U̇3,n + U1,nU2,nU3,n(U3,n − a)

U4,nU3,n(U3,n − a)
(39)

Now we have two possible sources of singularities z = a, t = 0, z = 0. We are
interested in finding strictly confining patterns to obtain bilinear forms. So let us start
with singularity entering through U3,n = a. If τ = t − t0(n) is the singularity manifold
and

U1,n = a0 + a1τ + ..., U2,n = b0 + b1τ + ...,

U3,n = a + c1τ + c2τ
2 + ...

U4,n = d0 + d1τ + ...

then we will have the following confining singularity pattern
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x0

y0

a
t0

→

∗
a
∗
∞

→


a
∗
∞
0

→

∗
∞
0
∗

→

∞
0
∗
∗

→


0
∗
∗
∗



For the other source entering through U4,n = 0.

U1,n = a0 + a1τ + ...,

U2,n = b0 + b1τ + ...,

U3,n = c0 + c1τ + c2τ
2 + ...

U4,n = d1τ + d2τ
2 + ...

we have the following singularity pattern
x0

y0

z0

0

→

∗
∗
0
∞

→

∗
0
∞
∗

→


0
∞
∗
a

→

∞
∗
a
∗

→

∗
a
∗
∗
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So one can see that we have to main confined singularity patterns (for the orbit of
U3,n and for simplicity we call it un):

(a, ∗,∞, 0) and (0,∞, ∗, a)

From the first pattern we have that un =∞, un−1 = finite, un−2 = a. This means
that exists a tau-function F whose zeroes give the infinite value of un. So,

un = a + p
Fn+2

Fn

. On the other hand because un =∞, un+1 = 0 we have

un = q
Fn−1

Fn

where p and q are for the moment arbitary functions depending on the second tau
function Gn. So

un = a + p
Fn+2

Fn
= q

Fn−1

Fn

Now for the second pattern we introduce the second tau-function Gn in the same way

un = r
Gn+1

Gn
= a + s

Gn−2

Gn

where r , s are functions depending on the first tau-function Fn. These two
representations are compatible if

un = a + µ
Gn−2Fn+2

GnFn
= ν

Gn+1Fn−1

GnFn

where µ, ν are now arbitrary constants.
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For simplicity we put µ = a, ν = 2a and we get the first bilinear equation

Gn−2Fn+2 + GnFn − 2Gn+1Fn−1 = 0 (40)

In order to get the second bilinear equation we introduce in the nonlinear equation
the two representations of un and we find

a
d

dt
(1+

Gn−2Fn+2

GnFn
) = a

d

dt
(
Gn−2

Fn

Fn+2

Gn
) = a

Fn+2

Gn

DtGn−2 · Fn

F 2
n

−a
Gn−2

Fn

DtGn · Fn+2

G2
n

=

= 8a4 Gn+1Fn−1

GnFn

Gn−2Fn+2

GnFn

(
Gn+2FnGn+3Fn+1

Gn+1Fn+1Gn+2Fn+2
−

GnFn−2Gn−1Fn−3

Gn−1Fn−1Gn−2Fn−2

)

After simplification (and rescaling time with 1/8a3) we get the following cuadrilinear
form:

GnFn+2(DtGn−2 · Fn + Gn+1Fn−3) = Gn−2Fn(DtGn · Fn+2 + Gn+3Fn−1)

From this we find the bilinear form by identifying the parantheses with the opposite
factors in both sides.

DtGn−1 · Fn+1 + Gn+2Fn−2 = Gn−1Fn+1 (41)

which is the second bilinear equation.
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We can do the same machinery in the general case (arbitary N) with the analog
ansatz:

un = a + µ
Gn−NFn+N

GnFn
= ν

Gn+1Fn−1

GnFn

And we find the following general bilinear system:

Gn−NFn+N + GnFn − 2Gn+1Fn−1 = 0 (42)

DtGn−N · Fn + Gn+1Fn−N−1 = Gn−NFn (43)

This system admits at least the 3-soliton solution

G = 1 + eη1 + eη2 + eη3 +
∑
i<j

Aije
ηi+ηj + A12A13A23e

η1+η2+η3

F = 1+eη1+φ1 +eη2+φ2 +eη3+φ3 +
∑
i<j

Aije
ηi+ηj+φi+φj +A12A13A23e

η1+η2+η3+φ1+φ2+φ3

provided that

ωi =
e−Nki (−1 + eNki )(−1 + eki+Nki )

2(−1 + eki )
, eφi =

eki−Nki (−1− eNki + 2eki+Nki )

(−2 + eki + eki+Nki )

The interaction term is:

Aij =
(eki − eki (1+N) − ekj + ekj+ki (1+N) + ekj (1+N) − eki+kj (1+N))

(−1 + eki + ekjN − ekjN+ki (1+N) − eki+kj (1+N) + e(ki+kj )(1+N))
×

×
(ekiN − eki (1+N) − ekjN + ekjN+ki (1+N) + ekj (1+N) − ekiN+kj (1+N))

(−1 + ekiN + ekj − ekj+ki (1+N) − ekiN+kj (1+N) + e(ki+kj )(1+N))
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Conclusions:
1. Higher Volterra equations can display solitonic phenomenology

2. Singularity analysis is much harder when the order is high. Nonconfining and
weakly confining patterns may appear. However the intreraction of singularities may
give confining patterns.
3.The more singularity patterns appear the bigger number of tau-functions are
involved.
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1. Higher Volterra equations can display solitonic phenomenology
2. Singularity analysis is much harder when the order is high. Nonconfining and
weakly confining patterns may appear. However the intreraction of singularities may
give confining patterns.

3.The more singularity patterns appear the bigger number of tau-functions are
involved.
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