Spinor squares, G-structures and Fierz potentials

Calin Lazaroiu

Department of Theoretical Physics, NIPNE

April 6, 2021
(1) Real spinor squares
(2) Constrained Generalized Killing spinors of real type
(3) Application to $\operatorname{Spin}(7)$ structures
(4) Generalizations

Real spinor squares

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q) and dimension $d=p+q$. Let $\Lambda(M) \stackrel{\text { def. }}{=} \wedge T^{*} M$ be the exterior bundle of M and consider the geometric product of (M, g) :

$$
\diamond \stackrel{\text { def. }}{=} \sum_{k=0}^{d}(-1)^{\left[\frac{k+1}{2}\right]} \Delta_{k}: \Lambda(M) \times \Lambda(M) \rightarrow \Lambda(M)
$$

where:

$$
\Delta_{k} \stackrel{\text { def. }}{=} \frac{1}{k!} g^{a_{1} b_{1}} \ldots g^{a_{k} b_{k}} \overleftarrow{\iota}_{a_{k}} \ldots \overleftarrow{\iota}_{a_{1}} \wedge \vec{\iota}_{b_{1}} \ldots \vec{\iota}_{b_{k}}
$$

are the generalized products. $(\Lambda(M), \diamond)$ is a bundle of unital associative algebras (called the Kahler-Atiyah bundle of (M, g)) which is naturally isomorphic with the Clifford bundle $\mathrm{Cl}\left(T^{*} M, g^{*}\right)$ of the cotangent bundle of M through the Chevalley-Riesz isomorphism $\Psi:(\Lambda(M), \diamond) \xrightarrow{\sim} \mathrm{Cl}\left(T^{*} M, g^{*}\right)$.

Definition

The Kähler-Atiyah trace is the linear functional:

$$
\mathcal{S}: \Lambda(M) \rightarrow \mathcal{C}^{\infty}(M) \quad, \quad \omega \mapsto 2^{\frac{d}{2}} \omega^{(0)}
$$

which satisfies:

$$
\mathcal{S}(1)=N \stackrel{\text { def. }}{=} 2^{\frac{d}{2}} \text { and } \mathcal{S}\left(\omega_{1} \diamond \omega_{2}\right)=\mathcal{S}\left(\omega_{2} \diamond \omega_{1}\right) \quad \forall \omega_{1}, \omega_{2} \in \Lambda(M)
$$

We say that spinors on (M, g) have real (or normal simple) type if the real Clifford algebra $\mathrm{Cl}(p, q)$ is isomorphic with a real matrix algebra, which happens iff $p-q \equiv_{8} 0,2$ (which we assume from now on). In this case, d is even and we have $\operatorname{Cl}(p, q) \simeq \operatorname{Mat}(N, \mathbb{R})$. Moreover, there exists a unique (up to isomorphism) simple $\mathrm{Cl}(p, q)$-module Σ, which has dimension N and the corresponding representation is an isomorphism of unital algebras $\gamma: \operatorname{Cl}(p, q) \xrightarrow{\sim} \operatorname{End}(\Sigma)$. Let $V=\mathbb{R}^{p+q}$ and:

- π be the standard automorphism of $\mathrm{Cl}(p, q)$, which satisfies $\left.\pi\right|_{v}=-\mathrm{id} v$
- τ be the standard anti-automorphism of $\mathrm{Cl}(p, q)$, which satisfies $\left.\tau\right|_{v}=\mathrm{id}_{v}$
- $\hat{\tau} \stackrel{\text { def. }}{=} \pi \circ \tau=\tau \circ \pi$ be the twisted anti-automorphism.

Let (S, Γ) be a real spinor bundle (i.e. a bundle of irreducible Clifford modules) on (M, g), where $\Gamma: \operatorname{Cl}\left(T^{*} M, g^{*}\right) \rightarrow E n d(S)$ is the structure morphism which gives the (dualized) Clifford multiplication. Then Γ is an isomorphism since $p-q \equiv{ }_{8} 0,2$. Consider the isomorphism of bundles algebras:

$$
\Psi_{\Gamma} \stackrel{\text { def. }}{=} \Gamma \circ \Psi:(\Lambda(M), \diamond) \xrightarrow{\sim}(E n d(S), \circ)
$$

Let $\operatorname{tr}: \operatorname{End}(S) \rightarrow \mathbb{R}_{M}$ be the fiberwise trace.

Proposition

Let (S, Γ) be a real spinor bundle. Then:

$$
\mathcal{S}(\omega)=\operatorname{tr}\left(\Psi_{\Gamma}(\omega)\right) \quad \forall \omega \in \Omega(M)
$$

Theorem (Harvey)

Σ admits two non-degenerate bilinear pairings $\mathscr{B}_{+}: \Sigma \times \Sigma \rightarrow \mathbb{R}$ and $\mathscr{B}_{-}: \Sigma \times \Sigma \rightarrow \mathbb{R}$ (each determined up to multiplication by a non-zero real number) such that:

$$
\begin{aligned}
\mathscr{B}_{+}\left(\gamma(x)\left(\xi_{1}\right), \xi_{2}\right) & =\mathscr{B}_{+}\left(\xi_{1}, \gamma(\tau(x))\left(\xi_{2}\right)\right) \\
\mathscr{B}_{-}\left(\gamma(x)\left(\xi_{1}\right), \xi_{2}\right) & =\mathscr{B}_{-}\left(\xi_{1}, \gamma(\hat{\tau}(x))\left(\xi_{2}\right)\right)
\end{aligned}
$$

for all $x \in \mathrm{Cl}(p, q)$ and $\xi_{1}, \xi_{2} \in \Sigma$. The symmetry properties of $\mathscr{B}_{ \pm}$are:

k mod 4	0	1	2	3
\mathscr{B}_{+}	Symmetric	Symmetric	Skew- symmetric	Skew- symmetric
\mathscr{B}_{-}	Symmetric	Skew- symmetric	Skew- symmetric	Symmetric

where $k \stackrel{\text { def. }}{=} \frac{d}{2}$. In addition, if \mathscr{B}_{s} (with $s \in\{-1,1\}$) is symmetric, then it is of split signature unless $p q=0$, in which case \mathscr{B}_{s} is definite.

Definition

The sign factor s is called the adjoint type of \mathscr{B}_{s}. The symmetry type of an admissible bilinear form \mathscr{B} is denoted by $\sigma \in\{-1,1\}$. If $\sigma=+1$ then \mathscr{B} is symmetric whereas if $\sigma=-1$ then \mathscr{B} is skew-symmetric.

Definition

Let (S, Γ) be a real spinor bundle on (M, g), where $\Gamma: \mathrm{Cl}\left(T^{*} M, g^{*}\right) \rightarrow \operatorname{End}(S)$ is the structure morphism which gives the (dualized) Clifford multiplication. A non-degenerate bilinear pairing \mathscr{B} on S is called admissible if $\mathscr{B}_{m}: S_{m} \times S_{m} \rightarrow \mathbb{R}$ is an admissible pairing on the simple Clifford module $\left(S_{m}, \Gamma_{m}\right)$ for all $m \in M$. A (real) paired spinor bundle on (M, g) is a triplet $S=(S, \Gamma, \mathscr{B})$, where (S, Γ) is a real spinor bundle on (M, g) and \mathscr{B} is an admissible pairing on S.

Since M is connected, the symmetry and adjoint type $\sigma, s \in\{-1,1\}$ of the admissible pairings \mathscr{B}_{m} are constant on M and are called the symmetry type and adjoint type of \mathscr{B} and (S, Γ, \mathscr{B}).

Definition

We say that (M, g) is strongly spin if it admits a $\operatorname{Spin}_{0}(p, q)$-structure, which we call a strong spin structure. In this case, a real spinor bundle (S, Γ) on (M, g) is called strong if it is associated to a strong spin structure.

When (M, g) is strongly spin, then it is strongly orientable in the sense that its orthonormal coframe bundle admits a reduction to an $\mathrm{SO}_{0}\left(V^{*}, h^{*}\right)$-bundle.

Proposition

Suppose that (M, g) is strongly spin and let (S, Γ) be a strong real spinor bundle on (M, g). Then every admissible pairing on (Σ, γ) extends to an admissible pairing \mathscr{B} on (S, Γ). Moreover, the Levi-Civita connection ∇^{g} of (M, g) lifts to a unique connection on S (denoted ∇^{S} and called the spinorial connection of S), which acts by module derivations:

$$
\nabla_{X}^{S}(\alpha \cdot \epsilon)=\left(\nabla_{X}^{g} \alpha\right) \cdot \epsilon+\alpha \cdot\left(\nabla_{X}^{S} \epsilon\right) \quad \forall \alpha \in \Omega(M) \quad \forall \epsilon \in \Gamma(S) \quad \forall X \in \mathfrak{X}(M)
$$

and is compatible with \mathscr{B} :

$$
X\left[\mathscr{B}\left(\epsilon_{1}, \epsilon_{2}\right)\right]=\mathscr{B}\left(\nabla_{X}^{S} \epsilon_{1}, \epsilon_{2}\right)+\mathscr{B}\left(\epsilon_{1}, \nabla_{X}^{S} \epsilon_{2}\right) \quad \forall \epsilon_{1}, \epsilon_{2} \in \Gamma(S) \quad \forall X \in \mathfrak{X}(M)
$$

Definition

The signed squaring maps of a paired vector bundle (S, \mathscr{B}) are the quadratic maps $\mathcal{E}_{ \pm}: S \rightarrow \operatorname{End}(S)$ defined through:

$$
\mathcal{E}_{ \pm}(\xi)= \pm \xi \otimes \xi^{*} \quad \forall \xi \in S
$$

where $\xi^{*} \stackrel{\text { def. }}{=} \mathscr{B}(-, \xi) \in S^{*}$ is the linear functional dual to ξ relative to \mathscr{B}. The map \mathcal{E}_{+}is called the positive squaring map of (Σ, \mathscr{B}), while \mathcal{E}_{-}is called the negative squaring map of (Σ, \mathscr{B}).

Definition

Let $S=(S, \gamma, \mathscr{B})$ be a paired spinor bundle on M. The signed spinor squaring maps of S are the quadratic maps:

$$
\mathcal{E}_{\mathrm{S}}^{ \pm} \stackrel{\text { def. }}{=} \Psi_{\Gamma}^{-1} \circ \mathcal{E}_{ \pm}: S \rightarrow \Lambda(M)
$$

where $\mathcal{E}_{ \pm}: S \rightarrow \operatorname{End}(S)$ are the signed squaring maps of (S, \mathscr{B}). Given a spinor $\xi \in \Gamma(M, S)$, the polyforms $\mathcal{E}_{\mathrm{S}}^{+}(\xi)$ and $\mathcal{E}_{\mathrm{S}}^{-}(\xi)=-\mathcal{E}_{\mathrm{S}}^{+}(\xi)$ are called the positive and negative squares of ξ relative to the admissible pairing \mathscr{B}. A polyform $\omega \in \Lambda(M)$ is called a signed square of ξ if $\omega=\mathcal{E}_{\mathrm{S}}^{+}(\xi)$ or $\omega=\mathcal{E}_{\mathrm{S}}^{-}(\xi)$.

The fiber maps $\mathcal{E}_{\mathrm{S}}^{ \pm}$are fiberwise quadratic and 2:1 away from the zero section of S (where they branch). Their images $Z^{ \pm}(M)$ are subsets of the total space of $\Lambda(M)$ and fiber over M with cone fibers. We have $Z^{-}(M)=-Z^{+}(M)$ and $Z^{+}(M) \cap Z^{-}(M)=0_{\Lambda(M)}$. The fiberwise sign action of \mathbb{Z}_{2} on S permutes the sheets of these covers (fixing the zero section), hence $\mathcal{E}_{S}^{ \pm}$give bijections from S / \mathbb{Z}_{2} to $Z^{ \pm}(M)$ as well as a single bijection:

$$
\hat{\mathcal{E}}_{\mathrm{S}}: S / \mathbb{Z}_{2} \xrightarrow{\sim} Z(M) / \mathbb{Z}_{2},
$$

where $Z(M) \stackrel{\text { def. }}{=} Z^{+}(M) \cup Z^{-}(M)$ and \mathbb{Z}_{2} acts by sign multiplication.

The sets $\dot{Z}^{ \pm}(M) \stackrel{\text { def. }}{=} Z^{ \pm}(M) \backslash 0_{\Lambda(M)}$ are connected submanifolds of the total space of $\Lambda(M)$ and the restrictions:

$$
\begin{equation*}
\dot{\mathcal{E}}_{\mathrm{S}}^{ \pm}: \dot{S} \rightarrow \dot{Z}^{ \pm}(M) \tag{1}
\end{equation*}
$$

of $\mathcal{E}_{\mathrm{s}}^{ \pm}$away from the zero section are 2:1 fiber surjections.
Let $\mathfrak{Z}^{ \pm}(M) \stackrel{\text { def. }}{=} \mathcal{E}_{\mathrm{S}}^{ \pm}(\Gamma(M, S)) \subset \Omega(M)$ and set $\mathfrak{Z}(M) \stackrel{\text { def. }}{=} \mathfrak{Z}^{+}(M) \cup \mathfrak{Z}^{-}(M)$. Then $\mathfrak{Z}^{-}(M)=-\mathfrak{Z}^{+}(M)$ and $\mathfrak{Z}^{+}(M) \cap \mathfrak{Z}^{-}(M)=\{0\}$ and we have strict inclusions $\mathfrak{Z}^{ \pm}(M) \subset \Gamma\left(M, Z^{ \pm}(M)\right)$ and $\mathfrak{Z}(M) \subset \Gamma(M, Z(M))$. The signed spinor squaring maps restrict to two-to-one surjections:

$$
\dot{\mathcal{E}}_{\mathrm{s}}^{ \pm}: \dot{\Gamma}(M, S) \rightarrow \dot{\mathfrak{J}}^{ \pm}(M)
$$

Moreover, $\mathcal{E}_{\mathrm{S}}^{ \pm}$induce the same bijection:

$$
\hat{\mathcal{E}}_{S}: \Gamma(M, S) / \mathbb{Z}_{2} \xrightarrow{\sim} \mathcal{Z}(M) / \mathbb{Z}_{2} .
$$

Finally, let $\Gamma(M, S)=\Gamma(M, \dot{S})$ be the set of nowhere-vanishing sections of S and $\dot{\mathcal{Z}}^{ \pm}(M) \stackrel{\text { def. }}{=} \cdot \Gamma\left(M, Z^{ \pm}(M)\right)=\Gamma\left(M, \dot{Z}^{ \pm}(M)\right)$ be the set of those polyforms in $Z^{ \pm}(M)$ which are nowhere-vanishing and define $\dot{\mathcal{Z}}(M) \stackrel{\text { def. }}{=} \dot{\mathcal{Z}}^{+}(M) \cup \dot{\mathcal{Z}}^{-}(M)$. Notice that $\dot{\mathcal{Z}}^{+}(M) \cap \dot{\mathcal{Z}}^{-}(M)=\emptyset$.

Proposition

Suppose that (M, g) is strongly spin and let $\mathrm{S}=(S, \Gamma, \mathscr{B})$ be a strong paired spinor bundle associated to a $\operatorname{Spin}_{0}\left(V^{*}, h^{*}\right)$-structure \mathfrak{Q} on (M, g). Then every nowhere-vanishing polyform $\alpha \in \dot{\mathcal{Z}}(M)$ determines a cohomology class $c_{\mathfrak{Q}}(\alpha) \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ which encodes the obstruction to existence of a globally-defined spinor $\epsilon \in \Gamma(M, S)$ (which is necessarily nowhere-vanishing) such that $\alpha \in\left\{\mathcal{E}_{\mathrm{s}}^{+}(\epsilon), \mathcal{E}_{\mathrm{s}}^{-}(\epsilon)\right\}$. More precisely, such ϵ exists iff $\mathcal{C Q}_{\mathfrak{Z}}(\alpha)=0$. In particular, we have:

$$
\dot{\mathfrak{Z}}(M)=\left\{\alpha \in \dot{\mathfrak{Z}}(M) \mid c_{\mathfrak{Q}}(\alpha)=0\right\} \text { and } \dot{\mathfrak{Z}}^{ \pm}(M)=\left\{\alpha \in \dot{\mathcal{Z}}^{ \pm}(M) \mid c_{\mathfrak{Q}}(\alpha)=0\right\}
$$

Definition

The cohomology class $c_{\mathbb{2}}(\alpha) \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ of the previous proposition is called the spinor class of the nowhere-vanishing polyform $\alpha \in \mathfrak{Z}(M)$.

Proposition

Suppose that (M, g) is strongly spin and a let \mathfrak{Q} be a $\operatorname{Spin}_{0}\left(V^{*}, h^{*}\right)$-structure on (M, g). For every nowhere-vanishing polyform $\alpha \in \dot{\mathcal{Z}}(M)$, there exists a unique $\operatorname{Spin}_{0}\left(V^{*}, h^{*}\right)$-structure \mathfrak{Q}^{\prime} such that $\mathfrak{c}_{\mathfrak{Q}^{\prime}}(\alpha)=0$.

Constrained generalized Killing spinors

Definition

Let (S, Γ) be a real spinor bundle on (M, g) and \mathcal{D} be an arbitrary connection on S. A section $\epsilon \in \Gamma(M, S)$ is called generalized Killing spinor (GKS) with respect to \mathcal{D} if:

$$
\begin{equation*}
\mathcal{D} \epsilon=0 . \tag{2}
\end{equation*}
$$

A linear constraint datum for (S, Γ) is a pair $(\mathcal{W}, \mathcal{Q})$, where \mathcal{W} is a real vector bundle over M and $\mathcal{Q} \in \Gamma(M, \operatorname{End}(S) \otimes \mathcal{W}) \simeq \Gamma(M, \operatorname{Hom}(S, S \otimes \mathcal{W}))$. Given such a datum, the condition:

$$
\begin{equation*}
\mathcal{Q}(\epsilon)=0 \tag{3}
\end{equation*}
$$

is called the linear constraint on ϵ defined by \mathcal{Q}. We say that ϵ is a (real) constrained generalized Killing spinor (CGKS) if it satisfies the system formed by (2) and (3).

Suppose that (M, g) is strongly spin and (S, Γ) is a strong real spinor bundle. Then $\mathcal{D}=\nabla^{S}-\mathcal{A}$ with $\mathcal{A} \in \Omega^{1}(\operatorname{End}(S))$, where ∇^{S} is the spinorial connection on S. The CGKS equations become:

$$
\nabla^{S} \epsilon=\mathcal{A} \epsilon \quad, \quad \mathcal{Q}(\epsilon)=0
$$

and their solutions are called CGK spinors relative to $(\mathcal{A}, \mathcal{W}, \mathcal{Q})$. The space of CGK spinors is finite-dimensional and such a spinor vanishes at a point iff it vanishes identically.

Theorem

Suppose that (M, g) is strongly spin and let $\mathrm{S}=(S, \Gamma, \mathscr{B})$ be a paired spinor bundle associated to the $\operatorname{Spin}_{0}\left(V^{*}, h^{*}\right)$-structure \mathfrak{Q} and whose admissible form \mathscr{B} has adjoint type s. Let $\mathcal{A} \in \Omega^{1}(M, \operatorname{End}(S))$ and (\mathcal{W}, Q) be a linear constraint datum for (S, Γ). Then the following statements are equivalent:
(a) There exists a nontrivial constrained generalized Killing spinor $\epsilon \in \Gamma(M, S)$ with respect to $(\mathcal{A}, \mathcal{W}, \mathcal{Q})$.
(b) There exists a nowhere-vanishing polyform $\alpha \in \Omega(M)$ with vanishing cohomology class $c_{\mathfrak{Q}}(\alpha)$ which satisfies the following algebraic and differential equations for every polyform $\beta \in \Omega(M):$

$$
\begin{align*}
& \alpha \diamond \beta \diamond \alpha=\mathcal{S}(\alpha \diamond \beta) \alpha, \quad\left(\pi^{\frac{1-s}{2}} \circ \tau\right)(\alpha)=\sigma_{s} \alpha \tag{4}\\
& \nabla^{g} \alpha=\hat{\mathcal{A}} \diamond \alpha+\alpha \diamond\left(\pi^{\frac{1-s}{2}} \circ \tau\right)(\hat{\mathcal{A}}), \quad \hat{\mathcal{Q}} \diamond \alpha=0 \tag{5}
\end{align*}
$$

or, equivalently, satisfies the equations:

$$
\begin{gather*}
\alpha \diamond \alpha=\mathcal{S}(\alpha) \alpha, \quad\left(\pi^{\frac{1-s}{2}} \circ \tau\right)(\alpha)=\sigma_{s} \alpha, \quad \alpha \diamond \beta \diamond \alpha=\mathcal{S}(\alpha \diamond \beta) \alpha, \tag{6}\\
\nabla^{g} \alpha=\hat{\mathcal{A}} \diamond \alpha+\alpha \diamond\left(\pi^{\frac{1-s}{2}} \circ \tau\right)(\hat{\mathcal{A}}) \quad, \quad \hat{\mathcal{Q}} \diamond \alpha=0, \tag{7}
\end{gather*}
$$

for some fixed polyform $\beta \in \Omega(M)$ such that $\mathcal{S}(\alpha \diamond \beta) \neq 0$.
If $\epsilon \in \Gamma(M, S)$ is chiral of chirality $\mu \in\{-1,1\}$, then we have to add the condition:

$$
*(\pi \circ \tau)(\alpha)=\mu \alpha
$$

The polyform α as above is determined by ϵ through the relation:

$$
\alpha=\mathcal{E}_{\mathrm{S}}^{\kappa}(\epsilon)
$$

for some $\kappa \in\{-1,1\}$. Moreover, α satisfying the conditions above determines a nowhere-vanishing real spinor ϵ satisfying this relation, which is unique up to sign.

Application to $\operatorname{Spin}(7)$ structures

Let (M, g) be a Riemannian spin 8-manifold whose geometric product \diamond we denote by juxtaposition. The volume form ν satisfies $\nu^{2}=1$ and is twisted central, i.e. we have $\nu \omega=\pi(\omega) \nu$ for all $\omega \in \Omega(M)$. A bundle S of simple real Clifford modules has rank $N=16$ and the structure morphism $\gamma: \Lambda(M) \rightarrow \operatorname{End}(S)$ is an isomorphism. Up to constant scaling, S has two admissible pairings \mathscr{B}_{+}and \mathscr{B}_{-}, which are symmetric and of opposite adjoint types. We work with the fundamental pairing $\mathscr{B} \stackrel{\text { def. }}{=} \mathscr{B}_{+}$, which can be taken to be a scalar product. The adjointness condition amounts to:

$$
\gamma(\omega)^{t}=\gamma(\tau(\omega)) \quad \forall \omega \in \Omega(M)
$$

where ${ }^{t}$ is the \mathscr{B}-transpose. We have $S=S^{+} \oplus S^{-}$, where $S^{ \pm}$are the bundles of spinors of chiralities ± 1, which are the eigensubbundles of $\gamma(\nu)$.

Proposition

Giving a section $\xi \in \Gamma(M, S)$ which satisfies $\mathscr{B}(\xi, \xi)=1$ amounts to giving a global endomorphism $E \in \Gamma(M, \operatorname{End}(S))$ which satisfies:

$$
E^{2}=E, \quad E^{t}=E, \quad \operatorname{tr}(E)=1
$$

Namely, any such ξ defines such an endomorphism E and any such E defines such a ξ, which is determined up to sign by the condition:

$$
E_{\xi, \xi}=E
$$

Define $\check{E} \stackrel{\text { def. }}{=} \gamma^{-1}(E) \in \Omega(M)$. We have:

$$
\check{E}_{\xi, \xi} \stackrel{\text { def. }}{=} \gamma^{-1}\left(E_{\xi, \xi}\right)=u \sum_{k=0}^{8} \frac{1}{k!} \mathscr{B}\left(\xi, \gamma_{a_{1} \ldots a_{k}} \xi\right) e^{a_{1} \ldots a_{k}} .
$$

Proposition

Giving a section $\xi \in \Gamma(M, S)$ which satisfies $\mathscr{B}(\xi, \xi)=1$ amounts to giving an inhomogeneous form $\check{E} \in \Omega(M)$ which satisfies:

$$
\begin{equation*}
\check{E}^{2}=\check{E} \quad, \quad \tau(\check{E})=\check{E} \quad, \quad \mathcal{S}(\check{E})=1 . \tag{8}
\end{equation*}
$$

Namely, any $\xi \in \Gamma(M, S)$ defines such a form and any such form defines a section ξ, which is determined up to sign by the condition:

$$
\check{E}_{\xi, \xi}=\check{E}
$$

Furthermore, we have the equivalence

$$
\gamma(\nu) \xi= \pm \xi \Longleftrightarrow \check{E} \nu= \pm \check{E}
$$

i.e. ξ has chirality ± 1 iff. \check{E} is twisted (anti)self-dual.

Proposition

When ξ has positive chirality, relations (8) amount to the requirement that \check{E} takes the form:

$$
\check{E}=\frac{1}{16}(1+\Phi+\nu)
$$

where $\Phi \in \Omega^{4}(M)$ is a self-dual four-form on M which satisfies:

$$
\Phi^{2}=12 \Phi+14 \nu+14
$$

Moreover Φ has the following expansion in any local orthonormal frame defined on an open subset $U \subset M$:

$$
\begin{equation*}
\Phi=u \frac{1}{4!} \mathscr{B}\left(\xi, \gamma_{a_{1} \ldots a_{4}} \xi\right) e^{a_{1} \ldots a_{4}} \in \Omega^{4}(M) \tag{9}
\end{equation*}
$$

It is well-known that a positive-chirality Majorana-Weyl spinor of $\xi \in \Gamma\left(M, S^{+}\right)$ determines a $\operatorname{Spin}(7)_{+}$structure on M which is compatible with the metric of M and whose calibration Φ is the selfdual four-form which is given in any local coordinate frame by relation (9). Conversely, any metric-compatible Spin(7) + structure on M calibrated by Φ determines a positive chirality spinor $\xi \in \Gamma\left(M, S^{+}\right)$(unique up to a sign) through the condition that Φ has the form (9) in any local orthonormal frame. Hence Proposition 4. implies:

Theorem

A four-form $\Phi \in \Omega^{4}(M)$ is the calibration of a metric-compatible $\operatorname{Spin}(7)_{+}$ structure on (M, g) iff. it is self-dual and satisfies:

$$
\begin{equation*}
\Phi^{2}=12 \Phi+14 \nu+14 \tag{10}
\end{equation*}
$$

Expanding the geometric product gives:

$$
\Phi^{2}=\Phi \wedge \Phi=\Phi \Delta_{2} \Phi+\|\Phi\|^{2}
$$

Hence condition (10) amounts to the system of equations:

$$
\begin{equation*}
\|\Phi\|^{2}=14 \quad, \quad \Phi \Delta_{2} \Phi+12 \Phi=0 \quad, \quad \Phi \wedge \Phi=14 \nu \tag{11}
\end{equation*}
$$

Solutions of (10) are the critical points of the Fierz potential $\mathcal{W}: \Omega(M) \rightarrow \mathbb{R}$ defined through:
$\mathcal{W}(\Phi) \stackrel{\text { def. }}{=} \operatorname{Tr}\left[\frac{1}{3} \Phi^{3}-6 \Phi^{2}-14(1+\nu) \Phi\right]=\int_{M} \nu\left[\frac{1}{3} \Phi^{3}-6 \Phi^{2}-14(1+\nu) \Phi\right]^{(0)}$,
where $\operatorname{Tr}: \Omega(M) \rightarrow \mathbb{R}$ is given by:

$$
\operatorname{Tr}(\omega)=\frac{1}{16} \int_{M} \mathcal{S}(\omega) \nu=\int_{M} \omega^{(0)} \nu
$$

The framework of spinor squaring maps can be extended away from the case $p-q \equiv_{8} 0,2$. This is considerably more complicated due to the fact that, in general, the so-called Schur bundle of a bundle of Clifford modules can be a complex or quaternionic line bundle rather than a real line bundle (the so-called complex and quaternionic cases). In general, this leads to a description of 'cosmooth stratified G-structures' as critical points of Fierz potentials defined on spaces of differential forms in terms of the geometric product. An example of this occurs for G_{2}-structures (in which case the Schur bundle is a complex line bundle).

