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Real spinor squares

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q) and

dimension d = p + q. Let Λ(M)
def.
= ∧T ∗M be the exterior bundle of M and

consider the geometric product of (M, g):

� def.
=

d∑
k=0

(−1)[ k+1
2 ]∆k : Λ(M)× Λ(M)→ Λ(M) ,

where:

∆k
def.
=

1

k!
g a1b1 . . . g akbk←−ι ak . . .

←−ι a1 ∧ −→ι b1 . . .
−→ι bk

are the generalized products. (Λ(M), �) is a bundle of unital associative
algebras (called the Kahler-Atiyah bundle of (M, g)) which is naturally
isomorphic with the Clifford bundle Cl(T ∗M, g∗) of the cotangent bundle of M
through the Chevalley-Riesz isomorphism Ψ : (Λ(M), �) ∼−→ Cl(T ∗M, g∗).

Definition

The Kähler-Atiyah trace is the linear functional:

S : Λ(M)→ C∞(M) , ω 7→ 2
d
2 ω(0) .

which satisfies:

S(1) = N
def.
= 2

d
2 and S(ω1 � ω2) = S(ω2 � ω1) ∀ω1, ω2 ∈ Λ(M) .
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We say that spinors on (M, g) have real (or normal simple) type if the real
Clifford algebra Cl(p, q) is isomorphic with a real matrix algebra, which
happens iff p − q ≡8 0, 2 (which we assume from now on). In this case, d is
even and we have Cl(p, q) ' Mat(N,R). Moreover, there exists a unique (up
to isomorphism) simple Cl(p, q)-module Σ, which has dimension N and the
corresponding representation is an isomorphism of unital algebras
γ : Cl(p, q)

∼−→ End(Σ). Let V = Rp+q and:

π be the standard automorphism of Cl(p, q), which satisfies π|V = −idV

τ be the standard anti-automorphism of Cl(p, q), which satisfies τ |V = idV

τ̂
def.
= π ◦ τ = τ ◦ π be the twisted anti-automorphism.

Let (S , Γ) be a real spinor bundle (i.e. a bundle of irreducible Clifford modules)
on (M, g), where Γ : Cl(T ∗M, g∗)→ End(S) is the structure morphism which
gives the (dualized) Clifford multiplication. Then Γ is an isomorphism since
p − q ≡8 0, 2. Consider the isomorphism of bundles algebras:

ΨΓ
def.
= Γ ◦Ψ : (Λ(M), �) ∼−→ (End(S), ◦) .

Let tr : End(S)→ RM be the fiberwise trace.

Proposition

Let (S , Γ) be a real spinor bundle. Then:

S(ω) = tr(ΨΓ(ω)) ∀ω ∈ Ω(M) .
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Theorem (Harvey)

Σ admits two non-degenerate bilinear pairings B+ : Σ× Σ→ R and
B− : Σ× Σ→ R (each determined up to multiplication by a non-zero real
number) such that:

B+(γ(x)(ξ1), ξ2) = B+(ξ1, γ(τ(x))(ξ2)) ,

B−(γ(x)(ξ1), ξ2) = B−(ξ1, γ(τ̂(x))(ξ2))

for all x ∈ Cl(p, q) and ξ1, ξ2 ∈ Σ. The symmetry properties of B± are:

k mod 4 0 1 2 3
B+ Symmetric Symmetric Skew-

symmetric
Skew-
symmetric

B− Symmetric Skew-
symmetric

Skew-
symmetric

Symmetric

where k
def.
= d

2
. In addition, if Bs (with s ∈ {−1, 1}) is symmetric, then it is of

split signature unless pq = 0, in which case Bs is definite.

Definition

The sign factor s is called the adjoint type of Bs . The symmetry type of an
admissible bilinear form B is denoted by σ ∈ {−1, 1}. If σ = +1 then B is
symmetric whereas if σ = −1 then B is skew-symmetric.

Calin Lazaroiu Spinor squares, G-structures and Fierz potentials 5/17



Definition

Let (S , Γ) be a real spinor bundle on (M, g), where Γ : Cl(T ∗M, g∗)→ End(S)
is the structure morphism which gives the (dualized) Clifford multiplication. A
non-degenerate bilinear pairing B on S is called admissible if
Bm : Sm × Sm → R is an admissible pairing on the simple Clifford module
(Sm, Γm) for all m ∈ M. A (real) paired spinor bundle on (M, g) is a triplet
S = (S , Γ,B), where (S , Γ) is a real spinor bundle on (M, g) and B is an
admissible pairing on S .

Since M is connected, the symmetry and adjoint type σ, s ∈ {−1, 1} of the
admissible pairings Bm are constant on M and are called the symmetry type
and adjoint type of B and (S , Γ,B).

Definition

We say that (M, g) is strongly spin if it admits a Spin0(p, q)-structure, which
we call a strong spin structure. In this case, a real spinor bundle (S , Γ) on
(M, g) is called strong if it is associated to a strong spin structure.

When (M, g) is strongly spin, then it is strongly orientable in the sense that its
orthonormal coframe bundle admits a reduction to an SO0(V ∗, h∗)-bundle.
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Proposition

Suppose that (M, g) is strongly spin and let (S , Γ) be a strong real spinor
bundle on (M, g). Then every admissible pairing on (Σ, γ) extends to an
admissible pairing B on (S , Γ). Moreover, the Levi-Civita connection ∇g of
(M, g) lifts to a unique connection on S (denoted ∇S and called the spinorial
connection of S), which acts by module derivations:

∇S
X (α · ε) = (∇g

Xα) · ε+ α · (∇S
X ε) ∀α ∈ Ω(M) ∀ε ∈ Γ(S) ∀X ∈ X(M)

and is compatible with B:

X [B(ε1, ε2)] = B(∇S
X ε1, ε2) + B(ε1,∇S

X ε2) ∀ε1, ε2 ∈ Γ(S) ∀X ∈ X(M) .

Definition

The signed squaring maps of a paired vector bundle (S ,B) are the quadratic
maps E± : S → End(S) defined through:

E±(ξ) = ±ξ ⊗ ξ∗ ∀ξ ∈ S ,

where ξ∗
def.
= B(−, ξ) ∈ S∗ is the linear functional dual to ξ relative to B. The

map E+ is called the positive squaring map of (Σ,B), while E− is called the
negative squaring map of (Σ,B).
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Definition

Let S = (S , γ,B) be a paired spinor bundle on M. The signed spinor squaring
maps of S are the quadratic maps:

E±S
def.
= Ψ−1

Γ ◦ E± : S → Λ(M) ,

where E± : S → End(S) are the signed squaring maps of (S ,B). Given a
spinor ξ ∈ Γ(M,S), the polyforms E+

S (ξ) and E−S (ξ) = −E+
S (ξ) are called the

positive and negative squares of ξ relative to the admissible pairing B. A
polyform ω ∈ Λ(M) is called a signed square of ξ if ω = E+

S (ξ) or ω = E−S (ξ).

The fiber maps E±S are fiberwise quadratic and 2:1 away from the zero section
of S (where they branch). Their images Z±(M) are subsets of the total space
of Λ(M) and fiber over M with cone fibers. We have Z−(M) = −Z+(M) and
Z+(M) ∩ Z−(M) = 0Λ(M). The fiberwise sign action of Z2 on S permutes the
sheets of these covers (fixing the zero section), hence E±S give bijections from
S/Z2 to Z±(M) as well as a single bijection:

ÊS : S/Z2
∼→ Z(M)/Z2 ,

where Z(M)
def.
= Z+(M) ∪ Z−(M) and Z2 acts by sign multiplication.
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The sets Ż±(M)
def.
= Z±(M) \ 0Λ(M) are connected submanifolds of the total

space of Λ(M) and the restrictions:

Ė±S : Ṡ → Ż±(M) (1)

of E±S away from the zero section are 2:1 fiber surjections.

Let Z±(M)
def.
= E±S (Γ(M, S)) ⊂ Ω(M) and set Z(M)

def.
= Z+(M) ∪ Z−(M).

Then Z−(M) = −Z+(M) and Z+(M) ∩ Z−(M) = {0} and we have strict
inclusions Z±(M) ⊂ Γ(M,Z±(M)) and Z(M) ⊂ Γ(M,Z(M)). The signed
spinor squaring maps restrict to two-to-one surjections:

Ė±S :
·
Γ(M, S)→ Ż±(M) .

Moreover, E±S induce the same bijection:

ÊS : Γ(M, S)/Z2
∼→ Z(M)/Z2 .

Finally, let
·
Γ(M, S) = Γ(M, Ṡ) be the set of nowhere-vanishing sections of S

and Ż±(M)
def.
=
·
Γ(M,Z±(M)) = Γ(M, Ż±(M)) be the set of those polyforms

in Z±(M) which are nowhere-vanishing and define

Ż(M)
def.
= Ż+(M) ∪ Ż−(M). Notice that Ż+(M) ∩ Ż−(M) = ∅.
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Proposition

Suppose that (M, g) is strongly spin and let S = (S , Γ,B) be a strong paired
spinor bundle associated to a Spin0(V ∗, h∗)-structure Q on (M, g). Then every
nowhere-vanishing polyform α ∈ Ż(M) determines a cohomology class
cQ(α) ∈ H1(M,Z2) which encodes the obstruction to existence of a
globally-defined spinor ε ∈ Γ(M,S) (which is necessarily nowhere-vanishing)
such that α ∈ {E+

S (ε), E−S (ε)}. More precisely, such ε exists iff cQ(α) = 0. In
particular, we have:

·
Z(M) = {α ∈ Ż(M) | cQ(α) = 0} and

·
Z
±

(M) = {α ∈ Ż±(M) | cQ(α) = 0} .

Definition

The cohomology class cQ(α) ∈ H1(M,Z2) of the previous proposition is called

the spinor class of the nowhere-vanishing polyform α ∈
·
Z(M).

Proposition

Suppose that (M, g) is strongly spin and a let Q be a Spin0(V ∗, h∗)-structure
on (M, g). For every nowhere-vanishing polyform α ∈ Ż(M), there exists a
unique Spin0(V ∗, h∗)-structure Q′ such that cQ′(α) = 0.
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Constrained generalized Killing spinors

Definition

Let (S , Γ) be a real spinor bundle on (M, g) and D be an arbitrary connection
on S . A section ε ∈ Γ(M, S) is called generalized Killing spinor (GKS) with
respect to D if:

Dε = 0 . (2)

A linear constraint datum for (S , Γ) is a pair (W,Q), where W is a real vector
bundle over M and Q ∈ Γ(M,End(S)⊗W) ' Γ(M,Hom(S , S ⊗W)). Given
such a datum, the condition:

Q(ε) = 0 (3)

is called the linear constraint on ε defined by Q. We say that ε is a (real)
constrained generalized Killing spinor (CGKS) if it satisfies the system formed
by (2) and (3).

Suppose that (M, g) is strongly spin and (S , Γ) is a strong real spinor bundle.
Then D = ∇S −A with A ∈ Ω1(End(S)), where ∇S is the spinorial connection
on S . The CGKS equations become:

∇Sε = Aε , Q(ε) = 0

and their solutions are called CGK spinors relative to (A,W,Q). The space of
CGK spinors is finite-dimensional and such a spinor vanishes at a point iff it
vanishes identically.
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Theorem

Suppose that (M, g) is strongly spin and let S = (S, Γ,B) be a paired spinor bundle associated to
the Spin0(V ∗, h∗)-structure Q and whose admissible form B has adjoint type s. Let

A ∈ Ω1(M, End(S)) and (W,Q) be a linear constraint datum for (S, Γ). Then the following
statements are equivalent:

(a) There exists a nontrivial constrained generalized Killing spinor ε ∈ Γ(M, S) with respect to
(A,W,Q).

(b) There exists a nowhere-vanishing polyform α ∈ Ω(M) with vanishing cohomology class
cQ(α) which satisfies the following algebraic and differential equations for every polyform
β ∈ Ω(M):

α � β � α = S(α � β)α , (π
1−s

2 ◦ τ)(α) = σs α , (4)

∇g
α = Â � α + α � (π

1−s
2 ◦ τ)(Â) , Q̂ � α = 0 (5)

or, equivalently, satisfies the equations:

α � α = S(α)α , (π
1−s

2 ◦ τ)(α) = σs α , α � β � α = S(α � β)α , (6)

∇g
α = Â � α + α � (π

1−s
2 ◦ τ)(Â) , Q̂ � α = 0 , (7)

for some fixed polyform β ∈ Ω(M) such that S(α � β) 6= 0.

If ε ∈ Γ(M, S) is chiral of chirality µ ∈ {−1, 1}, then we have to add the condition:

∗ (π ◦ τ)(α) = µα .

The polyform α as above is determined by ε through the relation:

α = EκS (ε)

for some κ ∈ {−1, 1}. Moreover, α satisfying the conditions above determines a
nowhere-vanishing real spinor ε satisfying this relation, which is unique up to sign.
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Application to Spin(7) structures

Let (M, g) be a Riemannian spin 8-manifold whose geometric product � we
denote by juxtaposition. The volume form ν satisfies ν2 = 1 and is twisted
central, i.e. we have νω = π(ω)ν for all ω ∈ Ω(M). A bundle S of simple real
Clifford modules has rank N = 16 and the structure morphism
γ : Λ(M)→ End(S) is an isomorphism. Up to constant scaling, S has two
admissible pairings B+ and B−, which are symmetric and of opposite adjoint

types. We work with the fundamental pairing B
def.
= B+, which can be taken

to be a scalar product. The adjointness condition amounts to:

γ(ω)t = γ(τ(ω)) ∀ω ∈ Ω(M) ,

where t is the B-transpose. We have S = S+ ⊕ S−, where S± are the bundles
of spinors of chiralities ±1, which are the eigensubbundles of γ(ν).

Proposition

Giving a section ξ ∈ Γ(M, S) which satisfies B(ξ, ξ) = 1 amounts to giving a
global endomorphism E ∈ Γ(M,End(S)) which satisfies:

E 2 = E , E t = E , tr(E) = 1 .

Namely, any such ξ defines such an endomorphism E and any such E defines
such a ξ, which is determined up to sign by the condition:

Eξ,ξ = E .
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Define Ě
def.
= γ−1(E) ∈ Ω(M). We have:

Ěξ,ξ
def.
= γ−1(Eξ,ξ) =U

8∑
k=0

1

k!
B(ξ, γa1...ak ξ)ea1...ak .

Proposition

Giving a section ξ ∈ Γ(M, S) which satisfies B(ξ, ξ) = 1 amounts to giving an
inhomogeneous form Ě ∈ Ω(M) which satisfies:

Ě 2 = Ě , τ(Ě) = Ě , S(Ě) = 1 . (8)

Namely, any ξ ∈ Γ(M, S) defines such a form and any such form defines a
section ξ, which is determined up to sign by the condition:

Ěξ,ξ = Ě .

Furthermore, we have the equivalence

γ(ν)ξ = ±ξ ⇐⇒ Ěν = ±Ě ,

i.e. ξ has chirality ±1 iff. Ě is twisted (anti)self-dual.
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Proposition

When ξ has positive chirality, relations (8) amount to the requirement that Ě
takes the form:

Ě =
1

16
(1 + Φ + ν) ,

where Φ ∈ Ω4(M) is a self-dual four-form on M which satisfies:

Φ2 = 12Φ + 14ν + 14 .

Moreover Φ has the following expansion in any local orthonormal frame defined
on an open subset U ⊂ M:

Φ =U
1

4!
B(ξ, γa1...a4ξ)ea1...a4 ∈ Ω4(M) . (9)

It is well-known that a positive-chirality Majorana-Weyl spinor of ξ ∈ Γ(M,S+)
determines a Spin(7)+ structure on M which is compatible with the metric of
M and whose calibration Φ is the selfdual four-form which is given in any local
coordinate frame by relation (9). Conversely, any metric-compatible Spin(7)+

structure on M calibrated by Φ determines a positive chirality spinor
ξ ∈ Γ(M, S+) (unique up to a sign) through the condition that Φ has the form
(9) in any local orthonormal frame. Hence Proposition 4. implies:
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Theorem

A four-form Φ ∈ Ω4(M) is the calibration of a metric-compatible Spin(7)+

structure on (M, g) iff. it is self-dual and satisfies:

Φ2 = 12Φ + 14ν + 14 . (10)

Expanding the geometric product gives:

Φ2 = Φ ∧ Φ = Φ∆2Φ + ||Φ||2 .

Hence condition (10) amounts to the system of equations:

||Φ||2 = 14 , Φ∆2Φ + 12Φ = 0 , Φ ∧ Φ = 14ν . (11)

Solutions of (10) are the critical points of the Fierz potential W : Ω(M)→ R
defined through:

W(Φ)
def.
= Tr

[1

3
Φ3− 6Φ2− 14(1 + ν)Φ

]
=

∫
M

ν
[1

3
Φ3− 6Φ2− 14(1 + ν)Φ

](0)
,

where Tr : Ω(M)→ R is given by:

Tr(ω) =
1

16

∫
M

S(ω)ν =

∫
M

ω(0)ν .
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Generalizations

The framework of spinor squaring maps can be extended away from the case
p − q ≡8 0, 2. This is considerably more complicated due to the fact that, in
general, the so-called Schur bundle of a bundle of Clifford modules can be a
complex or quaternionic line bundle rather than a real line bundle (the so-called
complex and quaternionic cases). In general, this leads to a description of
’cosmooth stratified G-structures’ as critical points of Fierz potentials defined
on spaces of differential forms in terms of the geometric product. An example
of this occurs for G2-structures (in which case the Schur bundle is a complex
line bundle).

Calin Lazaroiu Spinor squares, G-structures and Fierz potentials 17/17


	Real spinor squares
	Constrained Generalized Killing spinors of real type
	Application to Spin(7) structures
	Generalizations

