Spinor squares, G-structures and Fierz potentials

Calin Lazaroiu

Department of Theoretical Physics, NIPNE

April 6, 2021

2 Constrained Generalized Killing spinors of real type

Real spinor squares

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q) and dimension d = p + q. Let $\Lambda(M) \stackrel{\text{def.}}{=} \Lambda T^*M$ be the exterior bundle of M and consider the geometric product of (M, g):

$$\diamond \stackrel{\mathrm{def.}}{=} \sum_{k=0}^d (-1)^{\left[\frac{k+1}{2}\right]} \Delta_k : \Lambda(M) \times \Lambda(M) \to \Lambda(M) \quad,$$

where:

$$\Delta_k \stackrel{\text{def.}}{=} \frac{1}{k!} g^{\mathfrak{s}_1 b_1} \dots g^{\mathfrak{s}_k b_k} \overleftarrow{\iota}_{\mathfrak{s}_k} \dots \overleftarrow{\iota}_{\mathfrak{s}_1} \wedge \overrightarrow{\iota}_{b_1} \dots \overrightarrow{\iota}_{b_k}$$

are the generalized products. $(\Lambda(M), \diamond)$ is a bundle of unital associative algebras (called the Kahler-Atiyah bundle of (M, g)) which is naturally isomorphic with the Clifford bundle $\operatorname{Cl}(T^*M, g^*)$ of the cotangent bundle of M through the Chevalley-Riesz isomorphism $\Psi : (\Lambda(M), \diamond) \xrightarrow{\sim} \operatorname{Cl}(T^*M, g^*)$.

Definition

The Kähler-Atiyah trace is the linear functional:

$$\mathcal{S} \colon \Lambda(M) \to \mathcal{C}^{\infty}(M) \ , \ \omega \mapsto 2^{\frac{d}{2}} \omega^{(0)}$$

which satisfies:

$$\mathcal{S}(1) = \mathbf{N} \stackrel{\text{def.}}{=} 2^{\frac{d}{2}} \text{ and } \mathcal{S}(\omega_1 \diamond \omega_2) = \mathcal{S}(\omega_2 \diamond \omega_1) \ \forall \omega_1, \omega_2 \in \Lambda(\mathbf{M})$$

We say that spinors on (M, g) have *real* (or *normal simple*) *type* if the real Clifford algebra $\operatorname{Cl}(p, q)$ is isomorphic with a real matrix algebra, which happens iff $p - q \equiv_8 0, 2$ (which we assume from now on). In this case, d is even and we have $\operatorname{Cl}(p, q) \simeq \operatorname{Mat}(N, \mathbb{R})$. Moreover, there exists a unique (up to isomorphism) simple $\operatorname{Cl}(p, q)$ -module Σ , which has dimension N and the corresponding representation is an isomorphism of unital algebras $\gamma : \operatorname{Cl}(p, q) \xrightarrow{\sim} \operatorname{End}(\Sigma)$. Let $V = \mathbb{R}^{p+q}$ and:

- π be the standard automorphism of Cl(p, q), which satisfies $\pi|_V = -id_V$
- au be the standard anti-automorphism of $\operatorname{Cl}(p,q)$, which satisfies $au|_V = \operatorname{id}_V$
- $\hat{\tau} \stackrel{\text{def.}}{=} \pi \circ \tau = \tau \circ \pi$ be the twisted anti-automorphism.

Let (S, Γ) be a real spinor bundle (i.e. a bundle of irreducible Clifford modules) on (M, g), where $\Gamma : \operatorname{Cl}(T^*M, g^*) \to End(S)$ is the structure morphism which gives the (dualized) Clifford multiplication. Then Γ is an isomorphism since $p - q \equiv_8 0, 2$. Consider the isomorphism of bundles algebras:

$$\Psi_{\Gamma} \stackrel{\text{def.}}{=} \Gamma \circ \Psi : (\Lambda(M), \diamond) \xrightarrow{\sim} (End(S), \circ) \ .$$

Let $\operatorname{tr} : End(S) \to \mathbb{R}_M$ be the fiberwise trace.

Proposition

Let (S, Γ) be a real spinor bundle. Then:

 $\mathcal{S}(\omega) = \operatorname{tr}(\Psi_{\Gamma}(\omega)) \quad \forall \omega \in \Omega(M)$.

Theorem (Harvey)

 Σ admits two non-degenerate bilinear pairings $\mathscr{B}_+ \colon \Sigma \times \Sigma \to \mathbb{R}$ and $\mathscr{B}_- \colon \Sigma \times \Sigma \to \mathbb{R}$ (each determined up to multiplication by a non-zero real number) such that:

$$\begin{aligned} \mathscr{B}_+(\gamma(x)(\xi_1),\xi_2) &= \mathscr{B}_+(\xi_1,\gamma(\tau(x))(\xi_2)) \ , \\ \mathscr{B}_-(\gamma(x)(\xi_1),\xi_2) &= \mathscr{B}_-(\xi_1,\gamma(\hat{\tau}(x))(\xi_2)) \end{aligned}$$

for all $x \in Cl(p, q)$ and $\xi_1, \xi_2 \in \Sigma$. The symmetry properties of \mathscr{B}_{\pm} are:

k mod 4	0	1	2	3
\mathscr{B}_+	Symmetric	Symmetric	Skew-	Skew-
			symmetric	symmetric
\mathscr{B}_{-}	Symmetric	Skew-	Skew-	Symmetric
		symmetric	symmetric	

where $k \stackrel{\text{def.}}{=} \frac{d}{2}$. In addition, if \mathscr{B}_s (with $s \in \{-1, 1\}$) is symmetric, then it is of split signature unless pq = 0, in which case \mathscr{B}_s is definite.

Definition

The sign factor s is called the *adjoint type* of \mathscr{B}_s . The symmetry type of an admissible bilinear form \mathscr{B} is denoted by $\sigma \in \{-1, 1\}$. If $\sigma = +1$ then \mathscr{B} is symmetric whereas if $\sigma = -1$ then \mathscr{B} is skew-symmetric.

Definition

Let (S, Γ) be a real spinor bundle on (M, g), where $\Gamma : \operatorname{Cl}(T^*M, g^*) \to End(S)$ is the structure morphism which gives the (dualized) Clifford multiplication. A non-degenerate bilinear pairing \mathscr{B} on S is called **admissible** if $\mathscr{B}_m : S_m \times S_m \to \mathbb{R}$ is an admissible pairing on the simple Clifford module (S_m, Γ_m) for all $m \in M$. A (real) *paired spinor bundle* on (M, g) is a triplet $S = (S, \Gamma, \mathscr{B})$, where (S, Γ) is a real spinor bundle on (M, g) and \mathscr{B} is an admissible pairing on S.

Since *M* is connected, the symmetry and adjoint type $\sigma, s \in \{-1, 1\}$ of the admissible pairings \mathscr{B}_m are constant on *M* and are called the *symmetry type* and *adjoint type* of \mathscr{B} and (S, Γ, \mathscr{B}) .

Definition

We say that (M, g) is strongly spin if it admits a $\text{Spin}_0(p, q)$ -structure, which we call a strong spin structure. In this case, a real spinor bundle (S, Γ) on (M, g) is called strong if it is associated to a strong spin structure.

When (M, g) is strongly spin, then it is *strongly orientable* in the sense that its orthonormal coframe bundle admits a reduction to an $SO_0(V^*, h^*)$ -bundle.

Proposition

Suppose that (M, g) is strongly spin and let (S, Γ) be a strong real spinor bundle on (M, g). Then every admissible pairing on (Σ, γ) extends to an admissible pairing \mathscr{B} on (S, Γ) . Moreover, the Levi-Civita connection ∇^{g} of (M, g) lifts to a unique connection on S (denoted ∇^{S} and called the spinorial connection of S), which acts by module derivations:

 $\nabla^{S}_{X}(\alpha \cdot \epsilon) = (\nabla^{g}_{X}\alpha) \cdot \epsilon + \alpha \cdot (\nabla^{S}_{X}\epsilon) \quad \forall \alpha \in \Omega(M) \ \forall \epsilon \in \Gamma(S) \ \forall X \in \mathfrak{X}(M)$

and is compatible with \mathcal{B} :

$$X[\mathscr{B}(\epsilon_1,\epsilon_2)] = \mathscr{B}(\nabla^S_X \epsilon_1,\epsilon_2) + \mathscr{B}(\epsilon_1,\nabla^S_X \epsilon_2) \quad \forall \epsilon_1,\epsilon_2 \in \Gamma(S) \quad \forall X \in \mathfrak{X}(M)$$

Definition

The signed squaring maps of a paired vector bundle (S, \mathscr{B}) are the quadratic maps $\mathcal{E}_{\pm} : S \to End(S)$ defined through:

$$\mathcal{E}_{\pm}(\xi) = \pm \xi \otimes \xi^* \quad orall \xi \in \mathcal{S} \;\;,$$

where $\xi^* \stackrel{\text{def.}}{=} \mathscr{B}(-,\xi) \in S^*$ is the linear functional dual to ξ relative to \mathscr{B} . The map \mathcal{E}_+ is called the **positive squaring map** of (Σ, \mathscr{B}) , while \mathcal{E}_- is called the *negative squaring map* of (Σ, \mathscr{B}) .

Definition

Let $S = (S, \gamma, \mathscr{B})$ be a paired spinor bundle on *M*. The signed spinor squaring maps of S are the quadratic maps:

$$\mathcal{E}^{\pm}_{\mathsf{S}} \stackrel{\mathrm{def.}}{=} \Psi_{\Gamma}^{-1} \circ \mathcal{E}_{\pm} : S \to \Lambda(M)$$
 ,

where $\mathcal{E}_{\pm} : S \to End(S)$ are the signed squaring maps of (S, \mathscr{B}) . Given a spinor $\xi \in \Gamma(M, S)$, the polyforms $\mathcal{E}_{S}^{+}(\xi)$ and $\mathcal{E}_{S}^{-}(\xi) = -\mathcal{E}_{S}^{+}(\xi)$ are called the positive and negative squares of ξ relative to the admissible pairing \mathscr{B} . A polyform $\omega \in \Lambda(M)$ is called a signed square of ξ if $\omega = \mathcal{E}_{S}^{+}(\xi)$ or $\omega = \mathcal{E}_{S}^{-}(\xi)$.

The fiber maps \mathcal{E}_{S}^{\pm} are fiberwise quadratic and 2:1 away from the zero section of *S* (where they branch). Their images $Z^{\pm}(M)$ are subsets of the total space of $\Lambda(M)$ and fiber over *M* with cone fibers. We have $Z^{-}(M) = -Z^{+}(M)$ and $Z^{+}(M) \cap Z^{-}(M) = 0_{\Lambda(M)}$. The fiberwise sign action of \mathbb{Z}_{2} on *S* permutes the sheets of these covers (fixing the zero section), hence \mathcal{E}_{S}^{\pm} give bijections from S/\mathbb{Z}_{2} to $Z^{\pm}(M)$ as well as a single bijection:

$$\hat{\mathcal{E}}_{\mathsf{S}}: S/\mathbb{Z}_2 \stackrel{\sim}{
ightarrow} Z(M)/\mathbb{Z}_2$$
 ,

where $Z(M) \stackrel{\text{def.}}{=} Z^+(M) \cup Z^-(M)$ and \mathbb{Z}_2 acts by sign multiplication.

The sets $\dot{Z}^{\pm}(M) \stackrel{\text{def.}}{=} Z^{\pm}(M) \setminus 0_{\Lambda(M)}$ are connected submanifolds of the total space of $\Lambda(M)$ and the restrictions:

$$\dot{\mathcal{E}}_{\mathsf{S}}^{\pm} : \dot{\mathsf{S}} \to \dot{\mathsf{Z}}^{\pm}(\mathsf{M})$$
 (1)

of \mathcal{E}_{S}^{\pm} away from the zero section are 2:1 fiber surjections. Let $\mathfrak{Z}^{\pm}(M) \stackrel{\text{def.}}{=} \mathcal{E}_{S}^{\pm}(\Gamma(M,S)) \subset \Omega(M)$ and set $\mathfrak{Z}(M) \stackrel{\text{def.}}{=} \mathfrak{Z}^{+}(M) \cup \mathfrak{Z}^{-}(M)$. Then $\mathfrak{Z}^{-}(M) = -\mathfrak{Z}^{+}(M)$ and $\mathfrak{Z}^{+}(M) \cap \mathfrak{Z}^{-}(M) = \{0\}$ and we have strict inclusions $\mathfrak{Z}^{\pm}(M) \subset \Gamma(M, \mathbb{Z}^{\pm}(M))$ and $\mathfrak{Z}(M) \subset \Gamma(M, \mathbb{Z}(M))$. The signed spinor squaring maps restrict to two-to-one surjections:

$$\dot{\mathcal{E}}^{\pm}_{\mathsf{S}}: \mathsf{\Gamma}(M, \mathcal{S})
ightarrow \dot{\mathfrak{Z}}^{\pm}(M)$$

Moreover, \mathcal{E}_{S}^{\pm} induce the same bijection:

$$\widehat{\mathcal{E}}_{\mathsf{S}}: \mathsf{\Gamma}(M, \mathcal{S})/\mathbb{Z}_2 \stackrel{\sim}{ o} \mathfrak{Z}(M)/\mathbb{Z}_2$$

Finally, let $\Gamma(M, S) = \Gamma(M, \dot{S})$ be the set of nowhere-vanishing sections of Sand $\dot{Z}^{\pm}(M) \stackrel{\text{def.}}{=} \dot{\Gamma}(M, Z^{\pm}(M)) = \Gamma(M, \dot{Z}^{\pm}(M))$ be the set of those polyforms in $Z^{\pm}(M)$ which are nowhere-vanishing and define $\dot{Z}(M) \stackrel{\text{def.}}{=} \dot{Z}^{+}(M) \cup \dot{Z}^{-}(M)$. Notice that $\dot{Z}^{+}(M) \cap \dot{Z}^{-}(M) = \emptyset$.

Proposition

Suppose that (M,g) is strongly spin and let $S = (S, \Gamma, \mathscr{B})$ be a strong paired spinor bundle associated to a $\operatorname{Spin}_0(V^*, h^*)$ -structure \mathfrak{Q} on (M,g). Then every nowhere-vanishing polyform $\alpha \in \mathcal{Z}(M)$ determines a cohomology class $c_{\mathfrak{Q}}(\alpha) \in H^1(M, \mathbb{Z}_2)$ which encodes the obstruction to existence of a globally-defined spinor $\epsilon \in \Gamma(M, S)$ (which is necessarily nowhere-vanishing) such that $\alpha \in \{\mathcal{E}^+_S(\epsilon), \mathcal{E}^-_S(\epsilon)\}$. More precisely, such ϵ exists iff $c_{\mathfrak{Q}}(\alpha) = 0$. In particular, we have:

$$\dot{\mathfrak{Z}}(M) = \{ \alpha \in \dot{\mathcal{Z}}(M) \mid c_{\mathfrak{Q}}(\alpha) = 0 \} \text{ and } \dot{\mathfrak{Z}}^{\pm}(M) = \{ \alpha \in \dot{\mathcal{Z}}^{\pm}(M) \mid c_{\mathfrak{Q}}(\alpha) = 0 \} .$$

Definition

The cohomology class $c_{\mathfrak{Q}}(\alpha) \in H^1(M, \mathbb{Z}_2)$ of the previous proposition is called the *spinor class* of the nowhere-vanishing polyform $\alpha \in \mathfrak{Z}(M)$.

Proposition

Suppose that (M,g) is strongly spin and a let \mathfrak{Q} be a $\operatorname{Spin}_0(V^*, h^*)$ -structure on (M,g). For every nowhere-vanishing polyform $\alpha \in \dot{\mathcal{Z}}(M)$, there exists a unique $\operatorname{Spin}_0(V^*, h^*)$ -structure \mathfrak{Q}' such that $c_{\mathfrak{Q}'}(\alpha) = 0$.

Definition

Let (S, Γ) be a real spinor bundle on (M, g) and \mathcal{D} be an arbitrary connection on S. A section $\epsilon \in \Gamma(M, S)$ is called *generalized Killing spinor (GKS) with* respect to \mathcal{D} if:

$$\mathcal{D}\epsilon = 0$$
 . (2)

A linear constraint datum for (S, Γ) is a pair $(\mathcal{W}, \mathcal{Q})$, where \mathcal{W} is a real vector bundle over M and $\mathcal{Q} \in \Gamma(M, End(S) \otimes \mathcal{W}) \simeq \Gamma(M, Hom(S, S \otimes \mathcal{W}))$. Given such a datum, the condition:

$$Q(\epsilon) = 0 \tag{3}$$

is called the *linear constraint* on ϵ defined by Q. We say that ϵ is a (real) constrained generalized Killing spinor (CGKS) if it satisfies the system formed by (2) and (3).

Suppose that (M, g) is strongly spin and (S, Γ) is a strong real spinor bundle. Then $\mathcal{D} = \nabla^S - \mathcal{A}$ with $\mathcal{A} \in \Omega^1(End(S))$, where ∇^S is the spinorial connection on S. The CGKS equations become:

$$abla^{S}\epsilon = \mathcal{A}\epsilon \ , \ \mathcal{Q}(\epsilon) = 0$$

and their solutions are called CGK spinors *relative to* $(\mathcal{A}, \mathcal{W}, \mathcal{Q})$. The space of CGK spinors is finite-dimensional and such a spinor vanishes at a point iff it vanishes identically.

Theorem

Suppose that (M, g) is strongly spin and let $S = (S, \Gamma, \mathscr{B})$ be a paired spinor bundle associated to the $\operatorname{Spin}_0(V^*, h^*)$ -structure \mathfrak{Q} and whose admissible form \mathscr{B} has adjoint type s. Let $\mathcal{A} \in \Omega^1(M, \operatorname{End}(S))$ and (\mathcal{W}, Q) be a linear constraint datum for (S, Γ) . Then the following statements are equivalent:

(b) There exists a nontrivial constrained generalized Killing spinor $\epsilon \in \Gamma(M, S)$ with respect to $(\mathcal{A}, \mathcal{W}, \mathcal{Q})$.

(b) There exists a nowhere-vanishing polyform $\alpha \in \Omega(M)$ with vanishing cohomology class $c_{\Omega}(\alpha)$ which satisfies the following algebraic and differential equations for every polyform $\beta \in \Omega(M)$:

$$\alpha \diamond \beta \diamond \alpha = \mathcal{S}(\alpha \diamond \beta) \alpha \quad , \quad (\pi^{\frac{1-s}{2}} \circ \tau)(\alpha) = \sigma_s \alpha \quad , \tag{4}$$

$$\nabla^{g} \alpha = \hat{\mathcal{A}} \diamond \alpha + \alpha \diamond (\pi^{\frac{1-s}{2}} \circ \tau)(\hat{\mathcal{A}}) \quad , \quad \hat{\mathcal{Q}} \diamond \alpha = 0$$
(5)

or, equivalently, satisfies the equations:

$$\alpha \diamond \alpha = \mathcal{S}(\alpha) \alpha , \ (\pi^{\frac{1-s}{2}} \circ \tau)(\alpha) = \sigma_s \alpha , \ \alpha \diamond \beta \diamond \alpha = \mathcal{S}(\alpha \diamond \beta) \alpha ,$$
 (6)

$$\nabla^{g} \alpha = \hat{\mathcal{A}} \diamond \alpha + \alpha \diamond (\pi^{\frac{1-s}{2}} \circ \tau)(\hat{\mathcal{A}}) \quad , \quad \hat{\mathcal{Q}} \diamond \alpha = 0 \quad , \tag{7}$$

for some fixed polyform $\beta \in \Omega(M)$ such that $S(\alpha \diamond \beta) \neq 0$.

If $\epsilon \in \Gamma(M, S)$ is chiral of chirality $\mu \in \{-1, 1\}$, then we have to add the condition:

$$*(\pi \circ \tau)(\alpha) = \mu \alpha$$

The polyform α as above is determined by ϵ through the relation:

$$\alpha = \mathcal{E}^{\kappa}_{\mathsf{S}}(\epsilon)$$

for some $\kappa \in \{-1, 1\}$. Moreover, α satisfying the conditions above determines a nowhere-vanishing real spinor ϵ satisfying this relation, which is unique up to sign.

Application to Spin(7) structures

Let (M, g) be a Riemannian spin 8-manifold whose geometric product \diamond we denote by juxtaposition. The volume form ν satisfies $\nu^2 = 1$ and is *twisted central*, i.e. we have $\nu \omega = \pi(\omega)\nu$ for all $\omega \in \Omega(M)$. A bundle *S* of simple real Clifford modules has rank N = 16 and the structure morphism $\gamma : \Lambda(M) \rightarrow End(S)$ is an isomorphism. Up to constant scaling, *S* has two admissible pairings \mathscr{B}_+ and \mathscr{B}_- , which are symmetric and of opposite adjoint types. We work with the *fundamental pairing* $\mathscr{B} \stackrel{\text{def.}}{=} \mathscr{B}_+$, which can be taken to be a scalar product. The adjointness condition amounts to:

$$\gamma(\omega)^t = \gamma(\tau(\omega)) \;\; orall \omega \in \Omega(M) \;\;,$$

where t is the \mathscr{B} -transpose. We have $S = S^+ \oplus S^-$, where S^{\pm} are the bundles of spinors of chiralities ± 1 , which are the eigensubbundles of $\gamma(\nu)$.

Proposition

Giving a section $\xi \in \Gamma(M, S)$ which satisfies $\mathscr{B}(\xi, \xi) = 1$ amounts to giving a global endomorphism $E \in \Gamma(M, End(S))$ which satisfies:

$$E^2 = E$$
 , $E^t = E$, $tr(E) = 1$.

Namely, any such ξ defines such an endomorphism E and any such E defines such a ξ , which is determined up to sign by the condition:

$$E_{\xi,\xi} = E$$

Define $\check{E} \stackrel{\text{def.}}{=} \gamma^{-1}(E) \in \Omega(M)$. We have:

$$\check{E}_{\xi,\xi} \stackrel{\text{def.}}{=} \gamma^{-1}(E_{\xi,\xi}) =_U \sum_{k=0}^8 \frac{1}{k!} \mathscr{B}(\xi, \gamma_{a_1...a_k}\xi) e^{a_1...a_k}$$

Proposition

Giving a section $\xi \in \Gamma(M, S)$ which satisfies $\mathscr{B}(\xi, \xi) = 1$ amounts to giving an inhomogeneous form $\check{E} \in \Omega(M)$ which satisfies:

$$\check{E}^2 = \check{E} \quad , \quad \tau(\check{E}) = \check{E} \quad , \quad \mathcal{S}(\check{E}) = 1 \quad . \tag{8}$$

Namely, any $\xi \in \Gamma(M, S)$ defines such a form and any such form defines a section ξ , which is determined up to sign by the condition:

$$\check{E}_{\xi,\xi}=\check{E}$$
 .

Furthermore, we have the equivalence

$$\gamma(
u)\xi = \pm \xi \iff \check{E}
u = \pm \check{E}$$
 ,

i.e. ξ has chirality ± 1 iff. \check{E} is twisted (anti)self-dual.

Proposition

When ξ has positive chirality, relations (8) amount to the requirement that \check{E} takes the form:

$$\check{{\sf E}} = rac{1}{16} (1 + \Phi +
u) \;\; ,$$

where $\Phi \in \Omega^4(M)$ is a self-dual four-form on M which satisfies:

$$\Phi^2 = 12\Phi + 14\nu + 14$$

Moreover Φ has the following expansion in any local orthonormal frame defined on an open subset $U \subset M$:

$$\Phi =_U \frac{1}{4!} \mathscr{B}(\xi, \gamma_{a_1 \dots a_4} \xi) e^{a_1 \dots a_4} \in \Omega^4(M) \quad . \tag{9}$$

It is well-known that a positive-chirality Majorana-Weyl spinor of $\xi \in \Gamma(M, S^+)$ determines a $\operatorname{Spin}(7)_+$ structure on M which is compatible with the metric of M and whose calibration Φ is the selfdual four-form which is given in any local coordinate frame by relation (9). Conversely, any metric-compatible $\operatorname{Spin}(7)_+$ structure on M calibrated by Φ determines a positive chirality spinor $\xi \in \Gamma(M, S^+)$ (unique up to a sign) through the condition that Φ has the form (9) in any local orthonormal frame. Hence Proposition 4. implies:

Theorem

A four-form $\Phi \in \Omega^4(M)$ is the calibration of a metric-compatible $\text{Spin}(7)_+$ structure on (M, g) iff. it is self-dual and satisfies:

$$\Phi^2 = 12\Phi + 14\nu + 14 \quad . \tag{10}$$

Expanding the geometric product gives:

$$\Phi^2 = \Phi \wedge \Phi = \Phi \Delta_2 \Phi + ||\Phi||^2 \ .$$

Hence condition (10) amounts to the system of equations:

$$||\Phi||^2 = 14$$
 , $\Phi\Delta_2\Phi + 12\Phi = 0$, $\Phi\wedge\Phi = 14\nu$. (11)

Solutions of (10) are the critical points of the *Fierz potential* $\mathcal{W} : \Omega(M) \to \mathbb{R}$ defined through:

$$\mathcal{W}(\Phi) \stackrel{\mathrm{def.}}{=} \mathrm{Tr} \big[\frac{1}{3} \Phi^3 - 6 \Phi^2 - 14(1+\nu) \Phi \big] = \int_M \nu \big[\frac{1}{3} \Phi^3 - 6 \Phi^2 - 14(1+\nu) \Phi \big]^{(0)}$$

where $\operatorname{Tr} : \Omega(M) \to \mathbb{R}$ is given by:

$$\operatorname{Tr}(\omega) = \frac{1}{16} \int_{M} \mathcal{S}(\omega) \nu = \int_{M} \omega^{(0)} \nu$$

The framework of spinor squaring maps can be extended away from the case $p - q \equiv_8 0, 2$. This is considerably more complicated due to the fact that, in general, the so-called Schur bundle of a bundle of Clifford modules can be a complex or quaternionic line bundle rather than a real line bundle (the so-called complex and quaternionic cases). In general, this leads to a description of 'cosmooth stratified G-structures' as critical points of Fierz potentials defined on spaces of differential forms in terms of the geometric product. An example of this occurs for G_2 -structures (in which case the Schur bundle is a complex line bundle).