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Primordial Black Holes (PBH)

Formed in Early Universe:

Large enough fluctuations during inflation can seed PBHs

Cosmological inflation: Period of very fast expansion of space

in the Early Universe (faster than speed of light)

⇒ homogeneity and isotropy observed today
10/28/2014 inflation.gif (351×233)
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PBHs can contribute to Dark Matter (DM):

Sufficient abundance of PBHs: natural candidate for DM

( Depending on the model: from a fraction to all of DM... )

Composition of the Universe today Galactic rotation curves

(from CMB observations and other sources) (early evidence for DM)

[Orbital Velocity vs

Distance from Galactic Center]

A - prediction due to visible matter only , B - observation



Observational evidence for PBHs?:

LIGO/Virgo Collaboration: (first detection: LIGO in 2015)

So far, observed Gravitational Waves (GW) from about

50 binary Black Hole (BH) mergers

From GW data: can determine characteristics of BHs

(mass, redshift, spin)

Analysis of the data:

arXiv:2008.12320 [astro-ph.CO], arXiv:2010.13811 [astro-ph.CO], arXiv:2102.03809 [astro-ph.CO],

arXiv:2105.03349 [gr-qc], arXiv:2106.13769 [astro-ph.CO], arXiv:2110.06815 [astro-ph.CO], ...

→ indications that fraction of BHs are primordial



Theoretical understanding of PBH-generation:

• Single-field inflationary models:

More conventional, but PBH-formation is a challenge...

• Multi-field cosmological inflation:

– Motivated by quantum gravity

( string compact.: even number of scalars ; swampland conjectures... )

– Leads to new phenomena

Goal:

PBH-generation from certain class of two-field models

(due to solutions of the EoM, which exhibit sharp turns in field space)



Two-field Cosmological Models

Action:

S =

∫
d4x

√
− det g

[
R

2
− 1

2
GIJ(φ) gµν ∂µφ

I ∂νφ
J − V (φ)

]
,

gµν(x) - spacetime metric , µ, ν = 0, ..., 3

GIJ(φ) - field space metric , I, J = 1, 2

Standard background Ansatze:

ds2
g = −dt2 + a(t)2d~x2 , φI = φI0(t) ,

- Hubble parameterH(t) ≡ ȧ(t)

a(t)



Conceptual note:

In single-field models potential V (φ) plays key role:

Always: field redefinition → canonical kinetic term

(Can transfer complexity to the potential)

In multi-field models:

Cannot redefine away the curvature of GIJ !

(I.e., kinetic term becomes important !)

⇒ Can have: - Genuine two (or multi-) field trajectories

even when ∂φIV = 0 for some I

- New phenomena due to non-geodesic

motion in field space



Characteristics of a background trajectory:

Background trajectory (φ1
0(t), φ2

0(t)) in field space:

Tangent and normal vectors: I, J = 1, 2

T I =
φ̇I0

φ̇0

, φ̇2
0 = GIJφ̇

I
0φ̇
J
0

NI = (detG)1/2εIJT
J

(Note: NIT
I = 0 , TIT

I = 1 , NIN
I = 1)

Turning rate of the trajectory:

Ω = −NIDtT
I ,

DtT
I ≡ φ̇J0 ∇JT I = Ṫ I + (ΓG)IJK φ̇

J
0 T

K



Characteristics of a background trajectory:

Equivalently, the turning rate:

Ω2 = GIJ(DtT
I)(DtT

J) = ||DtT
I||2

Slow-roll parameters:

ε = − Ḣ
H2

, ηI = − 1

Hφ̇0

Dtφ̇
I
0

Expand: ηI = η‖T
I + η⊥N

I → Ω = η⊥H

ε , η‖ : same as for single-field inflation with inflaton φ0(t)

Slow roll: ε , η‖ << 1 ; Our interest: η2
⊥ >> 1



Perturbations around the background:

Decomposition:

Inflatons: φI(t, ~x) = φI0(t) + δφI(t, ~x)

Spatial part of metric:

gij(t, ~x) = a2(t) [(1 + 2ζ)δij + hij] , i, j = 1, 2, 3 ,

ζ = ζ(t, ~x) - curvature perturbation ,

hij = hij(t, ~x) - tensor fluctuations

Expand: (δφ)I = (δφ)‖T
I + (δφ)⊥N

I ,

(δφ)‖ - adiabatic pert. , (δφ)⊥ - entropic pert.



Perturbations around the background:

Gauge choice: (δφ)‖ ≡ 0

Only indep. scalar degrees of freedom: ζ , (δφ)⊥

Substitute (backgr.+pert.)-decomposition in Action:

→ Effective Action for the perturbations

Important ingredients:

– interaction: ζ̇ (δφ)⊥ (coeff. depends on backgr.)

[ So (δφ)⊥ affects ζ and thus the density perturbations ]

– mass m2
s for entropic pert. (δφ)⊥



Perturbations around the background:

Effective entropic mass:

m2
s = N INJV;IJ − Ω2 + εH2R ,

V;IJ = ∂I∂JV − (ΓG)KIJ ∂KV , ∂I ≡ ∂φI0 ,

R - Ricci scalar of field-space metric GIJ

Power spectrum of curvature perturbation: (recall: η⊥ = Ω/H)

Pζ ∼ P0 e
c |η⊥| , c = const > 0

For PBH generation, need δt with: Pζ/P0 ∼ 107

Important remark: η2
⊥ >> 1 ←→ m2

s < 0

→ Period δt with m2
s < 0 ⇒ desired enhancement of Pζ !

( I.e., brief tachyonic instability ⇒ PBH-generation ! )



Rotationally-invariant scalar manifold

Take rotationally-invariant metric GIJ : (recall: I, J = 1, 2)

ds2
G = dϕ2 + f(ϕ)dθ2 ,

φ1
0(t) ≡ ϕ(t) , φ2

0(t) ≡ θ(t) , f(ϕ) ≥ 0 ∀ϕ

Can compute the turning rate Ω(t) and entropic mass m2
s(t) for

every background trajectory (ϕ(t), θ(t)):

• Turning rate:

Ω =

√
f(

ϕ̇2 + fθ̇2
) [θ̇∂ϕV − ϕ̇

f
∂θV

]



Rotationally-invariant metric GIJ :

• Entropic mass:

Too complicated, but simplifies for ∂θV = 0:

m2
s = M2

V − Ω2 + εH2R ,

M2
V ≡

fθ̇2∂2
ϕV + f ′

2f ϕ̇
2∂ϕV

(ϕ̇2 + fθ̇2)

Note:

Even for ∂θV = 0 there are genuine two-field trajectories

(ϕ(t), θ(t)) in field space → important in following !



Background solutions

We will consider class of solutions of background EoMs obtained

for hyperbolic field-space metric GIJ (recall: I, J = 1, 2)

→ Two-dimensional field space: hyperbolic surface

(Gaussian curvature KG = const < 0)

Cosmological models of this type: α-attractors

Kallosh, Linde et al. ( arXiv:1311.0472 [hep-th], arXiv:1405.3646 [hep-th],

arXiv:1503.06785 [hep-th], arXiv:1504.05557 [hep-th] )

Many numerical studies in the literature...

Several classes of exact solutions: Anguelova, Babalic, Lazaroiu,

arXiv:1809.10563 [hep-th]



Exact solutions with Noether symmetry

Exact solutions of JHEP 1904 (2019) 148, arXiv:1809.10563 [hep-th] :

obtained by using Noether symmetry method

Imposing Noether symmetry is a powerful technical tool:

• can restrict:

– form of potential V (expected)

– value of Gaussian curvature KG (unexpected!)

(hence: may help for embedding in fundamental theory)

• can lead to simplified EoMs and thus facilitate finding

exact solutions (as opposed to numerical ones)



Reduced action:

Substituting ansatz ds2 = −dt2 + a(t)2d~x2 , φI = φI0(t) :

L = −3aȧ2 + a3

[
1

2
GIJφ̇

I
0φ̇
J
0 − V (φ0)

]
→ classical mechanical action for {a, φI0} ds.o.f.

Euler-L. eqs of L ≡ original EoMs, when imposing constraint:

EL ≡ ȧ
∂L
∂ȧ

+ φ̇I0
∂L
∂φ̇I0

− L = 0

Note: EL = const on solutions of EL eqs., so Hamiltonian

constraint → relation between integration constants



Noether symmetry:

Recall: L = −3aȧ2 + a3
[

1
2GIJφ̇

I
0φ̇
J
0 − V (φ0)

]
Denote qÎ ≡ {a, φI0} - generalized coordinates on M

Consider transformation qÎ → QÎ(q) :

– generated by: X = Xa(a, φ0) ∂a +XI(a, φ0) ∂φI0

– induces transf. on tangent bundle TM, generated by :

(with coord. {qÎ, q̇Î})

X̂ = X + Ẋa(a, φ0, ȧ, φ̇0) ∂ȧ + ẊI(a, φ0, ȧ, φ̇0) ∂φ̇I0

Symmetry condition: LX̂(L) = 0



Noether symmetry: ( Anguelova, Babalic, Lazaroiu, arXiv:1905.01611 [hep-th] )

LX̂(L) = 0 ⇒ coupled system of PDEs equivalent with:

Xa =
Λ(φ0)√

a
, XI = Y I(φ0)− 4

a3/2
GIJ∂JΛ ,

where Λ and Y I satisfy:

• ∇IYJ +∇JYI = 0 , Y I∂IV = 0

→ Y I - Killing vector preserving V (φ0)

• ∇I∇JΛ =
3

8
GIJΛ , GIJ∂IV ∂JΛ =

3

4
V Λ

→ Λ - hidden symmetry ( mixes a and {φI0} ! )



Rotationally-invariant GIJ : (recall: I, J = 1, 2)

Consider rot.-invariant metric GIJ on M0 (with coord. {φI0}) :

ds2
G = dϕ2 + f(ϕ)dθ2

– Showed that Hessian equation ∇I∇JΛ = 3
8GIJΛ implies:

KG = −3

8

→ Λ-symmetry requires hyperbolic M0!

– Found general Λ-solution for any rotationally-invariant

hyperbolic surface

With known Λ: GIJ∂IV ∂JΛ = 3
4V Λ - equation for V



Exact solutions from separation of variables:

With separation-of-variables Ansatz, found V for three types of

rotationally-invariant hyperbolic surfaces ( arXiv:1809.10563 [hep-th] )

To solve EL equations, transform to generalized coord.,

adapted to the symmetry: (a, ϕ, θ) → (u, v, w) , ∂L
∂w = 0

[ see arXiv:1809.10563 [hep-th] for the explicit expressions for:

a = a(u, v, w) , ϕ = ϕ(u, v, w) , θ = θ(u, v, w) ]

→ easily solve EL eq. for cyclic variable : w = w(t)

→ obtain simplified EL eqs. for u = u(t) , v = v(t)

⇒ many new exact solutions



Class of exact solutions: ( arXiv:1809.10563 [hep-th] )

Take GIJ - metric on Poincaré disk & impose hidden symmetry :

⇒ f(ϕ) =
1

q2
sinh2(q ϕ) , V (ϕ, θ) = V0 cosh2(q ϕ) ,

q =
√

3
8 , V0 > 0

Poincaré disk metric:
(α-attractor notation)

ds2
D = 6α

dzdz̄

(1− zz̄)2
,

z = ρeiθ , ρ ∈ [0, 1) ,

α - arbitrary parameter ; hid. sym.: α = 16
9

ρ = tanh

(
ϕ√
6α

)
⇒ ds2

D = dϕ2 + f(ϕ)dθ2



Class of exact solutions: ( arXiv:1809.10563 [hep-th] )

Then the background EoMs are solved by:

a(t) =
[
u2 −

(
v2 + w2

)]1/3
,

ϕ(t) =

√
8

3
arccoth

(√
u2

v2 + w2

)
,

θ(t) = arccot
( v
w

)
,

u(t) = Cu1 sinh(κ t) + Cu0 cosh(κ t) , κ ≡ 1

2

√
3V0 ,

v(t) = Cv1 t+ Cv0 and w(t) = Cw1 t+ Cw0 ,

(Cv1 )2 + (Cw1 )2 = κ2
[
(Cu1 )2 − (Cu0 )2

]



New results

Exact solutions with hidden symmetry:

• Proved that ρ(t) can have at most two local extrema

→ Shape of trajectory: greatly restricted ;

In particular: a single sharp rapid turn

• Showed the presence of the desired tachyonic instability

– Sharp turn ⇒ peak of |Ω| [ Note: sgn (Ω(t))=const ∀t ]

– |Ω|-peak ⇒ large and negative entropic mass m2
s ,

i.e. brief tachyonic instability needed for PBH generation !



Examples of exact solutions:

Illustration of all possible types of trajectories on Poincaré disk

[ recall: radial variable ρ ∈ [0, 1) ]

New result: ρ(t) can have 0 , 1 or 2 local extrema

1 local extremum 0 or 2 local extrema



Examples of exact solutions:

Illustration of behavior of η⊥(t)= Ω
H and entropic mass M2

s (t)

New result: transient tachyonic instability

Three examples with number of e-folds N=
∫
Hdt at peak: ∼ 11

( PBH generation : |η⊥|peak ∼ 25 )



Examples of exact solutions:

Illustration of a typical slow-roll trajectory (ρ(t), θ(t))

New result: ε<<1 (slow roll) occurs for ρ<<1 (equiv. ϕ<<1)

For comparison: In standard α-attractors slow roll occurs near boundary (ϕ→∞)

of Poincaré disk → super-super-Planckian excursions in field space



Modified solutions:

Obtained so far: small-field inflation and rapid turn

( Great for PBH-generation ! )

BUT: Behavior of η‖-param. - problematic phenomenologically

( Recall: ηI = η‖T
I + η⊥N

I , η‖ = −φ̈0/(Hφ̇0) , φ̇2
0 = GIJ φ̇

I
0φ̇
J
0 )

On solutions of EoMs:

η‖ = −Ḧ/(2HḢ) - Hubble η-parameter

For pheno reasons: need |η| << 1 during inflation

But in hidden-sym. sols.: η‖→ 3/2 before and after turn

→ Need to modify the hidden-symmetry solutions



Modified solutions:

New result: Modified solutions with additional parameter ;

for certain param. value: recover hidden symmetry ;

in general: do not respect the symmetry

– Preserve tachyonic instab. and small-field infl.

– Phase transition: ultra-slow-roll → slow-roll

Ansatz leading to modified solutions:

f(ϕ) =
1

q2
sinh2(q ϕ) , V (ϕ, θ) = V0 cosh6p(q ϕ)

– {ϕ, θ} - manifold: still Poincaré disk ,

– BUT: no hidden symmetry



Modified solutions:

Lagrangian L(a, ϕ, θ) simplifies under (a, ϕ, θ)→ (u, v, w) :

u = a
1
2p cosh(q ϕ)

v = a
1
2p sinh(q ϕ) cos θ and q = 1/(

√
24 p)

w = a
1
2p sinh(q ϕ) sin θ

Hidden symmetry case: p = 1/3

Modified solutions with p & 2 : (preserve PBH-generation)

– before turn: η ≈ 3 , – after turn: η ≈ 1/(4p)

→ smooth transition: ultra-slow roll → slow roll

(for any p & 4)



Summary

Found so far:

• Class of exact solutions with hidden symmetry exhibits

tachyonic instability necessary for PBH generation

• Modified solutions with improved Hubble η-parameter

[ Transition between ultra-slow-roll and slow-roll phases ]

• Hyperb. inflation: at small field values [ unlike in α-attractors ]

Open issues:

• More general hidden symmetries → PBH-generation ?...

• Small-field hyperbolic inflation in general ?...

• Transitions between other pairs of phases ?...



Thank you!


