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Primordial Black Holes (PBH)

Formed in Early Universe:
Large enough fluctuations during inflation can seed PBHs

Cosmological inflation: Period of very fast expansion of space

in the Early Universe (faster than speed of light)

= homogeneity and isotropy observed today
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PBHs can contribute to Dark Matter (DM):

Sufficient abundance of PBHs: natural candidate for DM
( Depending on the model: from a fraction to all of DM...)

Composition of the Universe today Galactic rotation curves

(from CMB observations and other sources) (early evidence for DM)
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Observational evidence for PBHs?:

LIGO/Virgo Collaboration:  (first detection: LIGO in 2015)

So far, observed Gravitational Waves (GW) from about

50 binary Black Hole (BH) mergers

From GW data: can determine characteristics of BHs

(mass, redshift, spin)
Analysis of the data:

arXiv:2008.12320 [astro-ph.CO], arXiv:2010.13811 [astro-ph.CO], arXiv:2102.03809 [astro-ph.CO],
arXiv:2105.03349 [gr-qc], arXiv:2106.13769 [astro-ph.CO], arXiv:2110.06815 [astro-ph.CO], ...

— indications that fraction of BHs are primordial



Theoretical understanding of PBH-generation:

e Single-field inflationary models:

More conventional, but PBH-formation is a challenge...

e Multi-field cosmological inflation:

— Motivated by quantum gravity

( string compact.: even number of scalars; swampland conjectures...)
— Leads to new phenomena

Goal:

PBH-generation from certain class of two-field models

(due to solutions of the EoM, which exhibit sharp turns in field space)



Two-field Cosmological Models

Action:

§— / diz /—det g [5 5 Crr(6) g 8,01 0,67 ~V(6)| |

2
9. (x) - spacetime metric w,v=20,...,3
Gry(¢) - field space metric I,J=1,2

Standard background Ansatze:
ds; = —dt* + a(t)?dz® , ¢' = ¢j(t)
)

a(t
H(t) = % - Hubble parameter



Conceptual note:

In single-field models potential V' (¢) plays key role:

Always: field redefinition — canonical kinetic term

(Can transfer complexity to the potential)

In multi-field models:

Cannot redefine away the curvature of G ;!

(I.e., kinetic term becomes important!)

= Can have: - Genuine two (or multi-) field trajectories

even when 8¢1V = (O for some [

- New phenomena due to non-geodesic

motion in field space



Characteristics of a background trajectory:

Background trajectory (¢¢(t), @5(t)) in field space:
Tangent and normal vectors: [I,J =1,2

_ %

Po

N] = (det G)1/2€[JTJ

T! . op = Gridbdy

(Note: N/I!' =0, TyT' =1, NiN!=1)

Turning rate of the trajectory:

Q=—-N;D, T .

DtTI = quJ VJTI SN + (FG)SK qbg T



Characteristics of a background trajectory:

Equivalently, the turning rate:
QQ — G[J(DtTI)(DtTJ) — HDtTIHZ

Slow-roll parameters:

Expand: 77[:77||TI+77LNI — Q=n H

e, n) : same as for single-field inflation with inflaton ¢y(t)

Slow roll: €,y <<1 ; Our interest: n7 > 1



Perturbations around the background:

Decomposition:
Inflatons: o' (t, %) = ¢y (t) + 0" (t, T)
Spatial part of metric:

9i;(t, T) = a®(t) (1 +2¢)6i; + hiy] , 4,5=1,2,3 ,

¢ = ((t,%) - curvature perturbation ,

hi;j = hi;(t,Z) - tensor fluctuations

Expand: (60)" = (6¢) T" + (6¢) L N,

(6¢)) - adiabatic pert. , (0¢), - entropic pert.



Perturbations around the background:

Gauge choice: (6¢) =0

Only indep. scalar degrees of freedom: ( , (d¢) 1

Substitute (backgr.+pert.)-decomposition in Action:

— Effective Action for the perturbations

Important ingredients:

— Interaction: C((S¢)J_ (coeff. depends on backgr.)

[So (6¢) . affects ¢ and thus the density perturbations]

— mass m? for entropic pert. (d¢)



Perturbations around the background:

Effective entropic mass:
m? = NNV, - Q* +eH’R |
‘/;[J = 6[8JV — (Fg)ﬁ 8KV ) (9[ — 8¢6 ,
R - Ricci scalar of field-space metric G

Power spectrum of curvature perturbation:  (recall: n. = Q/H)

Pe ~ Py ef L ., c=const >0
For PBH generation, need 6t with: P¢/Py ~ 107
Important remark: 737 > 1 +— m? <0
— Period §t with m? < 0 = desired enhancement of P!

(l.e., brief tachyonic instability = PBH-generation!)



Rotationally-invariant scalar manifold

Take rotationally-invariant metric Gyj:  (recall: I,J =1,2)
dsg; = do® + f()dbo®

do(t) =(t) , ) =001) , flp) =0 Yo

Can compute the turning rate Q(¢) and entropic mass m?2(t) for

every background trajectory ((t),0(t)):

e Turning rate:




Rotationally-invariant metric G :

e Entropic mass:
Too complicated, but simplifies for 0yV = O:
m; =My, —Q*+ecH’R |

JOP02V + L%,V
(@)

My

Note:
Even for 0yV = 0 there are genuine two-field trajectories

(i(t),0(t)) in field space  —  important in following !



Background solutions

We will consider class of solutions of background EoMs obtained
for hyperbolic field-space metric Gry  (recall: 1,J =1,2)

— Two-dimensional field space: hyperbolic surface

(Gaussian curvature Kg = const < 0)

Cosmological models of this type: a-attractors

Kallosh, Linde et al. (arXiv:1311.0472 [hep-th], arXiv:1405.3646 [hep-th],

arXiv:1503.06785 [hep-th], arXiv:1504.05557 [hep-th] )

Many numerical studies in the literature...

Several classes of exact solutions: Anguelova, Babalic, Lazaroiu,

arXiv:1809.10563 [hep-th]



Exact solutions with Noether symmetry

Exact solutions of JHEP 1904 (2019) 148, arXiv:1809.10563 [hep-th]

obtained by using Noether symmetry method

Imposing Noether symmetry is a powerful technical tool:

e can restrict:
— form of potential ' (expected)
— value of Gaussian curvature K¢ (unexpected!)

(hence: may help for embedding in fundamental theory)

e can lead to simplified EoMs and thus facilitate finding

exact solutions (as opposed to numerical ones)



Reduced action:

Substituting ansatz ds? = —dt? + a(t)?dz? , ¢! = ¢i(t) :

1 .
L= —3ai” + a*| Gr9067 — V(60)
— classical mechanical action for {a, ¢}} ds.o.f.

Euler-L. egs of £ = original EoMs, when imposing constraint:

8£ 8£
Er = a— = L=

Note: F, = const on solutions of EL eqgs., so Hamiltonian

constraint — relation between integration constants



Noether symmetry:
Recal: £ = —3aa? + a’ [%ijqﬁégﬁoj — V(gbo)}
Denote ¢! = {a,¢)} - generalized coordinates on M
Consider transformation qf — Qf(q) :
— generated by: X = X%a, ¢g) 0, + X! (a, ¢o) ad%

— induces transf. on tangent bundle T'M, generated by:
(with coord. {qf,qf})

X = X + Xa(a, qb(), d, ¢0) 8@ -+ XI(CL, ¢0, éL, ¢0) 8¢6

Symmetry condition: Ls(L)=0



Noether sym metry: ( Anguelova, Babalic, Lazaroiu, arXiv:1905.01611 [hep-th])

L+ (L)=0 = coupled system of PDEs equivalent with:

_ Al¢o)
Ja

where A and Y/ satisfy:

4

X" 03/2

X =Y (¢0) G'osA |

® VIYJ—I—VJY]:O , YI(?IV:O

— Y - Killing vector preserving V (¢o)

3 3
e V,;V/A= éGUA o GO vo AN = ZVA

— A - hidden symmetry (mixes a and {¢{}!)



Rotationally-invariant Gy (recall: I,J =1,2)

Consider rot.-invariant metric G7; on M, (with coord. {¢{}):
dsg; = do® + f()db?
— Showed that Hessian equation V;V ;A = %GUA implies:
KG — —g

— A-symmetry requires hyperbolic M,/

— Found general A-solution for any rotationally-invariant

hyperbolic surface

With known A: G'79;VO ;A = %VA - equation for V



Exact solutions from separation of variables:

With separation-of-variables Ansatz, found V" for three types of

rotationally-invariant hyperbolic surfaces (arXiv:1809.10563 [hep-th])

To solve EL equations, transform to generalized coord.,

: oL
adapted to the symmetry: (a,p,0) — (u,v,w) , 5-=0
[ see arXiv:1809.10563 [hep-th] for the explicit expressions for:

a=a(u,v,w), p=puv,w), 0=_0(u,v,w)]
— easily solve EL eq. for cyclic variable: w = w(t)
— obtain simplified EL eqs. for u = u(t) , v = v(t)

= many new exact solutions



Class of exact solutions: (arXiv:1809.10563 [hep-th] )

Take G - metric on Poincaré disk & impose hidden symmetry :

= f(p) = iz sinh®(q @) , V(p,0) = Vo cosh®(qyp) |

q
= \/g , V>0
dzdz
Poincaré disk metric: d82D = b« - Z_
(1 — 22)?

(a-attractor notation)

z=pe?? . pel0,1),

(¢ - arbitrary parameter ; hid. sym.: & = %

p = tanh(\}%) = ds3 = dp® + f(p)dh?



Class of exact solutions: (arXiv:1809.10563 [hep-th])

Then the background EoMs are solved by:

CL(t) _ [uQ_(v2_|_w2)]1/3 |
8 u?
o(t) = \/;arccoth<\/02+w2> :
v
0(t) = arccot(a) ,
1
u(t) = C{sinh(kt) 4+ Ccosh(kt) |, K= Vo

v(t) = C{t+C) and w(t) =C{"t+Cy

(CY)*+(CY) = K% [(CY)” — (Co)7]



New results

Exact solutions with hidden symmetry:

e Proved that p(t) can have at most two local extrema
— Shape of trajectory: greatly restricted ;

In particular: a single sharp rapid turn

e Showed the presence of the desired tachyonic instability

— Sharp turn = peak of ‘Q| [Note: sgn (€2(t)) =const Vit]

2

— |Q2|-peak = large and negative entropic mass m?; ,

I.e. brief tachyonic instability needed for PBH generation !



Examples of exact solutions:

lllustration of all possible types of trajectories on Poincaré disk

[recall: radial variable p € [0,1) ]

New result: p(t) can have 0, 1 or 2 local extrema

1 local extremum 0 or 2 local extrema



Examples of exact solutions:

Q

lllustration of behavior of 7, (t)=% and entropic mass MZ(t)

New result: transient tachyonic instability
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Three examples with number of e-folds N = [ Hdt at peak: ~ 11
( PBH generation : |1 |pear ~ 25)



Examples of exact solutions:

lllustration of a typical slow-roll trajectory (p(t),0(t))

New result: €<<1 (slow roll) occurs for p<<1 (equiv. p<<1)

2.x107°

15x107°

1.x 107"

5.%x107 "

For comparison: In standard a-attractors slow roll occurs near boundary (¢ — o)

of Poincaré disk — super-super-Planckian excursions in field space



Modified solutions:

Obtained so far: small-field inflation and rapid turn

( Great for PBH-generation ! )

BUT: Behavior of 1 -param. - problematic phenomenologically

(Recall: ?7] = 77||TI + T]J_NI , 77|| = —¢O/(H¢0) , qb% = G1J¢6¢67)
On solutions of EoMs:

n = —H/(QHH) - Hubble n-parameter
For pheno reasons: need |n| << 1 during inflation

But in hidden-sym. sols.: 7 — 3/2 before and after turn

— Need to modify the hidden-symmetry solutions



Modified solutions:

New result: Modified solutions with additional parameter ;
for certain param. value: recover hidden symmetry ;

in general: do not respect the symmetry

— Preserve tachyonic instab. and small-field infl.

— Phase transition: ultra-slow-roll — slow-roll

Ansatz leading to modified solutions:

flo) = %Sinﬁ(q 0) . V(p,0) = Vo cosh®(q )

— {p, 0} - manifold: still Poincaré disk ,
— BUT: no hidden symmetry



Modified solutions:

Lagrangian L(a, , 0) simplifies under (a, ,0) — (u, v, w):

u = a cosh(q )

1

v = a% sinh(qyp) cos®  and  ¢=1/(v24p)

1
w = a? sinh(qp) sind
Hidden symmetry case: p=1/3
Modified solutions with p = 2: (preserve PBH-generation)

— before turn: n~ 3 , — after turn: n =~ 1/(4p)

— smooth transition: ultra-slow roll — slow roll
(for any p = 4)



Summary

Found so far:

e Class of exact solutions with hidden symmetry exhibits

tachyonic instability necessary for PBH generation

e Modified solutions with improved Hubble n-parameter

[ Transition between ultra-slow-roll and slow-roll phases |

e Hyperb. inflation: at small field values [unlike in a-attractors]

Open issues:
e More general hidden symmetries — PBH-generation ?...
e Small-field hyperbolic inflation in general ?...

e Transitions between other pairs of phases?...



Thank youl!



