The duality covariant formulation of Abelian gauge theories on Riemannian four-manifolds

Calin Lazaroiu

DFT, IFIN-HH

3 Abelian gauge theory on Riemannian 4-manifolds

Paracomplex numbers

Let $\mathbb{A} = \mathbb{R}[\epsilon]/(\epsilon^2 - 1) = \mathbb{R} \oplus \epsilon \mathbb{R}$ be the commutative \mathbb{R} -algebra of paracomplex (a.k.a. dual) numbers. For any $a = x + \epsilon y \in \mathbb{A}$ with $x, y \in \mathbb{R}$, define:

$$\mathfrak{Re}(a) \stackrel{\mathrm{def.}}{=} x \ , \ \mathfrak{Im}(a) \stackrel{\mathrm{def.}}{=} y \ , \ \overline{a} = x - \epsilon y \ .$$

We have the neutral metric and symplectic pairing on \mathbb{A} :

$$\langle a,a' \rangle_{\mathbb{A}} \stackrel{\text{def.}}{=} \mathfrak{Re}(a\overline{a'}) = xx' - yy' \ , \ \omega_{\mathbb{A}}(a,a') \stackrel{\text{def.}}{=} -\mathrm{Im}(a\overline{a'}) = xy' - x'y \ ,$$

as well as the seminorm and signature:

$$\begin{split} \|\boldsymbol{a}\| \stackrel{\text{def.}}{=} \sqrt{|\langle \boldsymbol{a}, \boldsymbol{a} \rangle_{\mathbb{A}}|} &= \sqrt{|\boldsymbol{a}\overline{\boldsymbol{a}}|} = \sqrt{|x^2 - y^2|} \quad , \quad \forall \boldsymbol{a} = x + \boldsymbol{\epsilon} \boldsymbol{y} \in \mathbb{A} \\ \boldsymbol{\epsilon}(\boldsymbol{a}) \stackrel{\text{def.}}{=} \operatorname{sign}\langle \boldsymbol{a}, \overline{\boldsymbol{a}} \rangle_{\mathbb{A}} &= \operatorname{sign}(x^2 - y^2) \quad , \end{split}$$

which are morphisms of groups from $(\mathbb{A}^{\times}, \cdot)$ to $\mathbb{R}_{>0}$ and $\mathbb{G}_2 = \{-1, 1\} \simeq \mathbb{Z}_2$.

Proposition

An element $a \in \mathbb{A}$ is invertible iff $||a|| \neq 0$. Moreover, \mathbb{A}^{\times} is isomorphic with $\mathbb{Z}_2 \times \mathbb{R}_{>0} \times \mathbb{R} \simeq \mathbb{R}^{\times} \times (\mathbb{R}, +) \simeq \mathbb{R}^{\times} \times \mathbb{R}^{\times}$. For any $a \in \mathbb{A}^{\times}$, we have $a^{-1} = \epsilon(a) \frac{\overline{a}}{||a||}$ and:

$$a = e^{rac{1-\epsilon(a)}{2}} \|a\| (\cosh(\theta) + \epsilon \sinh(\theta))$$

where the argument $\theta = \theta(a) \in \mathbb{R}$ is uniquely determined by a and gives a morphism of groups $\theta : \mathbb{A}^{\times} \to (\mathbb{R}, +)$.

A paracomplex 2*n*-space is a pair (V, K), where V is a 2*n*-dimensional \mathbb{R} -vector space and K is a paracomplex structure on V, i.e. an endomorphism $K \in \operatorname{End}_{\mathbb{R}}(V)$ which satisfies the conditions:

- $K^2 = id_V$ (i.e. K is a product structure on V)
- The eigenspaces $V_+ \stackrel{\text{def.}}{=} \ker(K id_V)$ and $V_- \stackrel{\text{def.}}{=} \ker(K + id_V)$ of K have dimension equal to n.

A 2*n*-dimensional paracomplex space (V, K) is a free left A-module of rank *n* when endowed with the external multiplication:

$$a \bullet x \stackrel{\text{def.}}{=} \mathfrak{Re}(a)x + \mathfrak{Im}(a)Kx \quad \forall a \in \mathbb{A} \quad \forall x \in V \quad . \tag{1}$$

The rank $n = \frac{1}{2} \dim_{\mathbb{R}} V$ of this module is the *paracomplex rank* of (V, K).

Definition

A morphism of paracomplex spaces (or paracomplex linear map) $f: (V, K) \rightarrow (V', K')$ is a morphism of the underlying A-modules, i.e. an \mathbb{R} -linear map $f: V \rightarrow V'$ which satisfies:

$$f(Kx) = K'f(x) \quad \forall x \in V$$

Paracomplex spaces

The standard 2*n*-dimensional paracomplex space is the paracomplex space $(\mathbb{R}^{2n}, K_{2n})$, where the standard paracomplex structure K_{2n} of \mathbb{R}^{2n} is:

$$K_{2n}(x,y) \stackrel{\text{def.}}{=} (y,x) \quad \forall x,y \in \mathbb{R}^n$$

and has matrix in the canonical basis given by:

$$\hat{K}_{2n} = \left[\begin{array}{cc} 0 & I_n \\ I_n & 0 \end{array} \right]$$

Definition

A paracomplex basis of a paracomplex 2n-space (V, K) is a basis of the corresponding free A-module, i.e. an ordered system of vectors $v_1, \ldots, v_n \in V$ such that $K(v_1), \ldots, K(v_n), v_1, \ldots, v_n$ is a basis of V over \mathbb{R} .

Any choice of paracomplex basis gives an isomorphism $(V, K) \simeq (\mathbb{R}^{2n}, K_{2n})$.

Definition

The paracomplex general linear group $GL(n, \mathbb{A})$ is the group of automorphisms of the standard paracomplex space $(\mathbb{R}^{2n}, K_{2n})$.

We have:

$$\operatorname{GL}(n,\mathbb{A}) = \left\{ \left[\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right] \mid A, B \in \operatorname{GL}(n,\mathbb{R}) \right\} \simeq \operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(n,\mathbb{R}) \ .$$

Periods of paracomplex spaces

Definition

A basis $\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n)$ of a paracomplex space (V, K) is non-degenerate if f_1, \ldots, f_n is a basis of V over \mathbb{A} , i.e. if $K(f_1), \ldots, K(f_n), f_1, \ldots, f_n$ is a basis of V over \mathbb{R} . The period matrix $\sigma := \sigma_{\mathcal{E}}(K) = (\sigma_{ij})_{i,j=1,\ldots,n} \in \operatorname{Mat}(n, \mathbb{A})$ of K in this basis is given by the expansion $e_i = \sum_{j=1}^n \sigma_{jj} \bullet f_j \quad \forall i = 1, \ldots, n$.

Proposition

Let $\sigma_{\mathcal{E}}(K) = \sigma_R + \epsilon \sigma_I$ (where $\sigma_R, \sigma_I \in \operatorname{Mat}(n, \mathbb{R})$) be the period matrix of (V, K) in a non-degenerate basis \mathcal{E} of V over \mathbb{R} . Then σ_I is invertible and the matrix of K in the basis \mathcal{E} is $\hat{K}_{\mathcal{E}} = \begin{bmatrix} \sigma_I^{-1} \sigma_R & \sigma_I^{-1} \\ \sigma_I - \sigma_R \sigma_I^{-1} \sigma_R & -\sigma_R \sigma_I^{-1} \end{bmatrix}$.

Proposition

Let $\mathcal{E}, \mathcal{E}'$ be non-degenerate bases of (V, K) and $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \operatorname{GL}(2n, \mathbb{R})$ $(A, B, C, D \in \operatorname{Mat}(n, \mathbb{R}))$ be the base change matrix from \mathcal{E} to \mathcal{E}' . Then $B^T \sigma_{\mathcal{E}}(K) + D^T$ is invertible and $\sigma_{\mathcal{E}'}(K) = (A^T \sigma_{\mathcal{E}}(K) + C^T)(B^T \sigma_{\mathcal{E}}(K) + D^T)^{-1}$.

A basis $\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n)$ over \mathbb{R} of a complex vector space (V, J) is non-degenerate if (f_1, \ldots, f_n) is a basis of V over \mathbb{C} , i.e. if $J(f_1), \ldots, J(f_n), f_1, \ldots, f_n$ is a basis of V over \mathbb{R} . The period matrix $\tau := \tau_{\mathcal{E}}(J) = (\tau_{ij})_{i,j=1,\ldots,n} \in \operatorname{Mat}(n, \mathbb{C})$ of J in this basis is given by the expansion $e_i = \sum_{j=1}^n \tau_{ji} f_j$ for all $i = 1, \ldots, n$.

Proposition

Let $\tau_{\mathcal{E}}(J) = \tau_{\mathcal{R}} + i\tau_{I}$ (with $\tau_{\mathcal{R}}, \tau_{I} \in Mat(n, \mathbb{R})$) be the period matrix of a complex vector space (V, J) in a non-degenerate basis \mathcal{E} of V over \mathbb{R} . Then τ_{I} is invertible and the matrix of J in this basis is:

$$\hat{J}_{\mathcal{E}} = \begin{bmatrix} \tau_I^{-1} \tau_R & \tau_I^{-1} \\ -\tau_I - \tau_R \tau_I^{-1} \tau_R & -\tau_R \tau_I^{-1} \end{bmatrix}$$

A parahermitian space is a triplet (V, ω, K) , where (V, ω) is a symplectic \mathbb{R} -vector space and K is a parataming of (V, ω) , i.e. a paracomplex structure on V which satisfies:

$$\omega(\mathsf{K} \mathsf{x},\mathsf{K} \mathsf{y}) = -\omega(\mathsf{x},\mathsf{y}) \Longleftrightarrow \omega(\mathsf{K} \mathsf{x},\mathsf{y}) = -\omega(\mathsf{x},\mathsf{K} \mathsf{y}) \quad \forall \mathsf{x},\mathsf{y} \in V$$

Definition

A morphism of parahermitian spaces $f : (V, \omega, K) \rightarrow (V', \omega', K')$ is a morphism of symplectic spaces from (V, ω) to (V', ω') which is also a morphism of paracomplex spaces from (V, K) to (V', K').

The standard parahermitian 2*n*-space is $(\mathbb{R}^{2n}, \omega_n, K_{2n})$, where K_{2n} is the parataming of ω_n given by the standard paracomplex structure K_{2n} of \mathbb{R}^{2n} .

Definition

The paraunitary group $U(n, \mathbb{A})$ is the group of automorphisms of the 2*n*-dimensional standard parahermitian space $(\mathbb{R}^{2n}, \omega_n, K_{2n})$, which is given by:

$$\mathrm{U}(n,\mathbb{A}) = \left\{ \left[\begin{array}{cc} A & 0 \\ 0 & (A^T)^{-1} \end{array} \right] \ \middle| \ A \in \mathrm{GL}(n,\mathbb{R}) \right\} \simeq \mathrm{GL}(n,\mathbb{R}) \ .$$

The induced neutral form. Positive and negative Lagrangian subspaces

Given a parahermitian space (V, ω, K) , let *h* be the neutral metric induced by ω and *K* on *V*:

$$h(x,y) \stackrel{\mathrm{def.}}{=} \omega(\mathsf{K} x,y) \ \ \forall x,y \in V$$
 .

K is h-antisymmetric. For any subspace $W \subset V$, let $h_W \stackrel{\text{def.}}{=} h|_{W \times W}$.

Definition

A Lagrangian subspace $L \subset V$ is called *positive* or *negative* if h_L is positive-definite resp. negative-definite.

Proposition-Definition

Any parahermitian space (V, ω, K) admits a positive Lagrangian subspace. If L_+ is such a subspace, then $L_- \stackrel{\text{def.}}{=} K(L_+)$ is a negative Lagrangian subspace and we have $V = L_+ \oplus L_-$. Moreover, this decomposition is *h*-orthogonal and called a *special Lagrangian decomposition* of (V, ω, K) .

Proposition-Definition

Let L_+ be a positive Lagrangian subspace of (V, ω, K) and $L_- \stackrel{\text{def.}}{=} K(L_+)$. Then the endomorphism of V given by $J := J_{L_+}(K) \stackrel{\text{def.}}{=} K|_{L_+} \oplus (-K|_{L_-})$ satisfies $J(L_+) = L_-$ and is a taming of (V, ω) , called the *special taming* determined by L_+ .

Proposition

Let (V, ω, J) be a Hermitian space and L_+ be any Lagrangian subspace of (V, ω) . Then $L_- \stackrel{\text{def.}}{=} J(L_+)$ is a Lagrangian complement of L_+ and $K := K_{L_+}(J) \stackrel{\text{def.}}{=} J|_{L_+} \oplus (-J|_{L_-})$ is a parataming of ω . Moreover, L_+ is a positive Lagrangian subspace for (V, ω, K) and we have $K(L_+) = L_-$ and $J_{L_+}(K) = J$.

Let $T(V, \omega)$ be the set of tamings of ω . For any Lagrangian subspace L, let $P_L(V, \omega)$ be the set of those paratamings of ω for which L is positive.

Corollary

The map $\Psi: P_L(V, \omega) \to T(V, \omega)$ defined through $\Psi(K) \stackrel{\text{def.}}{=} J_L(K)$ is a bijection whose inverse is given by $\Psi^{-1}(J) = K_L(J)$.

Let $\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n)$ be a symplectic basis of the parahermitian space (V, ω, K) and consider the complementary Lagrangian subspaces:

$$L_{-}(\mathcal{E}) \stackrel{\mathrm{def.}}{=} \langle e_1, \ldots, e_n \rangle$$
 , $L_{+}(\mathcal{E}) \stackrel{\mathrm{def.}}{=} \langle f_1, \ldots, f_n \rangle$.

The symplectic basis \mathcal{E} is called:

- *positive*, if L_+ is a positive Lagrangian subspace.
- special, if L₊ and L₋ give a special Lagrangian decomposition of (V, ω, K).
- *adapted* if it is both special and a paracomplex basis (meaning a basis over \mathbb{A}) i.e. if it is special and satisfies $K(e_i) = f_i$ for all i = 1, ..., n.

Any adapted basis is special and any special basis is positive.

Proposition

Let $\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n)$ be a special symplectic basis of the parahermitian space (V, ω, K) . Then \mathcal{E} is positive and non-degenerate.

Proposition

Let $\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n)$ be a non-degenerate symplectic basis of a parahermitian space (V, K, ω) . Then $\sigma_{\mathcal{E}}$ is a symmetric matrix. If \mathcal{E} is also positive, then $\Im(\sigma_{\mathcal{E}})$ is positive-definite.

Definition

Let $\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n)$ be a positive and non-degenerate symplectic basis of (V, ω, K) . The *complex period matrix* $\tau_{\mathcal{E}}(K) \in \operatorname{Mat}(n, \mathbb{C})$ of K in the basis \mathcal{E} is the period matrix of the complex structure $J_{L_+(\mathcal{E})}(K)$ defined by Krelative to the positive Lagrangian subspace $L_+(\mathcal{E}) \stackrel{\text{def}}{=} \langle f_1, \ldots, f_n \rangle$:

$$au_{\mathcal{E}}(\mathsf{K}) \stackrel{\mathrm{def.}}{=} au_{\mathcal{E}}(J_{L_{+}(\mathcal{E})}) \in \mathbb{SH}_{n}$$
 .

The expansion:

$$e_{a} = \tau_{ab}f_{b} = \left[\operatorname{Re}(\tau)_{ab} + \operatorname{Im}(\tau)_{ab}J_{L_{+}(\mathcal{E})}\right]f_{b} = \left[\operatorname{Re}(\tau)_{ab} + \operatorname{Im}(\tau)_{ab}K\right]f_{b}$$
(2)

shows that we have:

$$\tau_{\mathcal{E}} \stackrel{\text{def.}}{=} \mathfrak{Re}(\sigma_{\mathcal{E}}) + \mathbf{i}\mathfrak{Im}(\sigma_{\mathcal{E}})$$
 .

Paratamed symplectic vector bundles

Let M be a manifold.

Definition

A paratamed symplectic vector bundle on M is a triplet (S, ω, \mathcal{K}) , where (S, ω) is a symplectic vector bundle on M and \mathcal{K} is a parataming of (S, ω) , i.e. an endomorphism of S such that \mathcal{K}_m is a parataming of (S_m, ω_m) for all $m \in M$.

A parataming \mathcal{K} of (\mathcal{S}, ω) gives complementary Lagrangian sub-bundles $\mathcal{S}_{\pm} \stackrel{\text{def.}}{=} \ker(\mathcal{K} \mp id_{\mathcal{S}})$ of (\mathcal{S}, ω) .

Theorem

The following statements are equivalent for a symplectic vector bundle (S, ω) :

- (S,ω) admits a parataming.
- **(a)** (\mathcal{S}, ω) admits a Lagrangian sub-bundle.
- (S,ω) admits a hyper-parahermitian structure, i.e. there exist a taming J and a parataming K of (S,ω) such that K ∘ J = −J ∘ K.
- **(**) The structure group of S reduces from $\text{Sp}(2n, \mathbb{R})$ to $O(n, \mathbb{R})$.

In this case, the odd Chern classes $c_{2k+1}(S, \omega)$ vanish for all k and we have:

$$c_{2k}(\mathcal{S},\omega)=\left(-1
ight)^{k}p_{k}(\mathcal{S}_{+})=\left(-1
ight)^{k}p_{k}(\mathcal{S}_{-}) \hspace{0.2cm}orall k\geq 0$$
 .

Corollary

Suppose that (S, ω) admits a Lagrangian sub-bundle \mathcal{L} . Then the set $\mathcal{T}(S, \omega)$ of tamings of (S, ω) is in natural bijection with the set $\mathcal{P}_{\mathcal{L}}(S, \omega)$ consisting of those paratamings of (S, ω) for which \mathcal{L} is positive.

Definition

A paratamed duality structure defined on M is a system $\Theta = (S, \omega, D, \mathcal{K})$, where (S, ω, D) is a duality structure on M and \mathcal{K} is a parataming of (S, ω) .

Let (M, g) be an oriented Riemannian 4-manifold with Hodge operator $*_g$.

Definition

The *parapolarized Hodge operator* of a paratamed symplectic vector bundle (S, ω, \mathcal{K}) defined on M is the operator:

$$\star_{g,\mathcal{K}} \stackrel{\mathrm{def.}}{=} \ast_g \otimes \mathcal{K} \in \mathrm{End}(\wedge(M,\mathcal{S})) \ ,$$

where $\wedge (M, S) \stackrel{\text{def.}}{=} \wedge T^* M \otimes S$.

We have $\star^2_{g,\mathcal{K}}|_{\wedge^2(M,\mathcal{S})} = \mathrm{id}_{\wedge^2(M,\mathcal{S})}.$

Let (M, g) be an oriented Riemannian 4-manifold and $\Theta = (\Delta, \mathcal{K})$ be a paratamed duality structure on M with underlying duality structure $\Delta = (S, \omega, D)$. The space of *Abelian field strength configurations* defined by Δ is:

$$\operatorname{Conf}(M,\Delta) = \Omega^2_{\mathrm{d}_{\mathcal{D}}\text{-}\mathrm{cl}}(M,\mathcal{S})$$

The space of *Abelian field strengths* defined by Θ is:

 $\operatorname{Sol}(M, g, \Theta) = \{ \mathcal{V} \in \operatorname{Conf}(M, \Delta) | \star_{g, \mathcal{K}} \mathcal{V} = -\mathcal{V} \}$.

We can now define parapolarized Siegel bundles $\mathbf{P} = (P, \mathcal{K})$ and consider the affine space $\operatorname{Conf}(P) = \operatorname{Conn}(P)$ of gauge configurations (=principal connections on P) and the set $\operatorname{Sol}(M, g, \mathbf{P}) \subset \operatorname{Conf}(P)$ of gauge potentials (=those principal connections $\mathcal{A} \in \operatorname{Conn}(P)$ whose adjoint curvature $\mathcal{V}_{\mathcal{A}}$ is parapolarized *anti*-self-dual). The details are very similar to what we did in the Lorentzian signature case.