The duality-covariant formulation of classical Abelian gauge theories

Calin Lazaroiu

DFT, IFIN-HH

Calin Lazaroiu Duality-covariant classical Abelian gauge theories 1/22

Integral symplectic spaces and special affine symplectic tori

The Dirac integrality condition

4 Formulation through gauge connections

Duality structures

Let *M* be a connected *d*-manifold. Any symplectic vector bundle (S, ω) of rank 2n is oriented by the section $\wedge^n \omega$ of det $S^* = \wedge^{2n} S^*$. Since $\operatorname{Sp}(2n, \mathbb{R})$ and $\operatorname{GL}(n, \mathbb{C})$ are homotopy equivalent to their common maximal compact subgroup $\operatorname{U}(n)$, the classification of symplectic, complex and Hermitian vector bundles defined on *M* are equivalent. Thus:

- Any complex vector bundle admits a Hermitian pairing
- Any symplectic vector bundle admits a complex structure (called a *taming*) which is compatible with its symplectic pairing and makes it into a Hermitian vector bundle.
- A real vector bundle of even rank admits a symplectic pairing iff it admits a complex structure; the conditions for this are well-known.

The classifying spaces $BSp(2n, \mathbb{R})$ and BU(n) are homotopy equivalent, hence the fundamental characteristic classes of a symplectic vector bundle (S, ω) are Chern classes, which we denote by $c_k(S, \omega)$.

Definition

A duality structure is a flat symplectic vector bundle $\Delta \stackrel{\text{def.}}{=} (S, \omega, D)$ on M. The rank of Δ is the rank of the vector bundle S, which is necessarily even.

The Chern classes of the underlying symplectic vector bundle of a duality structure are torsion classes.

Duality structures

The following are equivalent for a symplectic vector bundle (S, ω) of rank 2*n*:

- (S, ω) admits a flat symplectic connection \mathcal{D} .
- O There exists a morphism ρ : π₁(M) → Sp(2n, ℝ) s.t. the structure group of S reduces from Sp(2n, ℝ) to imρ.

• The lift of (S, ω) to the universal cover of M is symplectically trivial.

For any duality structure $\Delta = (S, \omega, D)$, we have:

$$c_k(\mathcal{S},\omega) = \delta_{2k-1}(\hat{c}_k(\mathcal{D}))$$

where $\hat{c}_k(\mathcal{D}) \in H^{2k-1}(M, U(1))$ are the Cheeger-Chern-Simons (CCS) invariants of \mathcal{D} and δ_i are the connecting morphisms in the long exact sequence:

$$\ldots \to H^{i}(M,\mathbb{Z}) \to H^{i}(M,\mathbb{R}) \stackrel{\exp_{*}}{\to} H^{i}(M,\mathrm{U}(1)) \stackrel{\delta_{i}}{\to} H^{i+1}(M,\mathbb{Z}) \to H^{i+1}(M,\mathbb{R}) \to \ldots$$

induced by the exponential sequence:

$$0 \to \mathbb{Z} \to \mathbb{R} \xrightarrow{exp} \mathrm{U}(1) \to 0$$
 .

The CCS invariants depend only on the gauge equivalence class of \mathcal{D} .

Definition

A based isomorphism of duality structures from $\Delta = (S, \omega, D)$ to $\Delta' = (S', \omega', D')$ is a based isomorphism of vector bundles $f : S \xrightarrow{\sim} S'$ which satisfies the conditions $\omega' \circ (f \otimes f) = \omega$ and $D' \circ f = (\operatorname{id}_{T^*M} \otimes f) \circ D$.

Duality structures

Let $H^*_{\mathcal{D}}(M, \mathcal{S})$ be the cohomology of the twisted de Rham complex:

$$0 \to \mathcal{C}^{\infty}(M, \mathcal{S}) \xrightarrow{\mathcal{D}} \Omega^{1}(M, \mathcal{S}) \xrightarrow{\mathrm{d}_{\mathcal{D}}} \dots \xrightarrow{\mathrm{d}_{\mathcal{D}}} \Omega^{d}(M, \mathcal{S}) \to 0$$

We have a natural isomorphism of graded vector spaces:

$$H^*_{\mathcal{D}}(M,\mathcal{S})\simeq H^*(M,\mathcal{C}^\infty_{\mathrm{flat}}(\mathcal{S}))$$
 .

Proposition

For any $m \in M$, the set of isomorphism classes of duality structures is in bijection with the character variety:

 $\mathfrak{R}(\pi_1(M,m),\operatorname{Sp}(2n,\mathbb{R}))\stackrel{\mathrm{def.}}{=}\operatorname{Hom}(\pi_1(M,m),\operatorname{Sp}(2n,\mathbb{R}))/\operatorname{Sp}(2n,\mathbb{R})\,,$

where $Sp(2n, \mathbb{R})$ acts through its adjoint representation.

Remark

Duality structures can be viewed as "local systems" of finite-dimensional symplectic vector spaces (i.e. functors $\Pi_1(M) \to \text{Symp}$) by considering their parallel transport functor.

Trivial duality structures

Definition

A duality structure $\Delta = (S, \omega, D)$ is called:

- 0 topologically trivial if S is trivial, i.e. admits a global frame.
- Symplectically trivial if (S, ω) is isomorphic with the trivial symplectic vector bundle, i.e. admits a global symplectic frame.
- I trivial (or holonomy trivial) if ∆ admits a global flat symplectic frame, i.e. if the holonomy group of D is trivial (this amounts to (S, D) being trivial).

We have: holonomy trivial \implies symplectically trivial \implies topologically trivial. If $\pi_1(M) = 0$ then every duality structure is holonomy trivial.

A global flat symplectic frame of a holonomy-trivial duality structure $\Delta = (S, \omega, D)$ of rank 2n has the form:

$$\mathcal{E} = (e_1, \ldots, e_n, f_1, \ldots, f_n) \ ,$$

where e_i , f_j are D-flat sections of S such that:

$$\omega(e_i, e_j) = \omega(f_i, f_j) = 0 \quad , \quad \omega(e_i, f_j) = -\omega(f_i, e_j) = -\delta_{ij} \quad \forall i, j = 1, \dots, n \quad .$$

Any choice of such a frame induces a trivialization isomorphism $\tau_{\mathcal{E}} : \Delta \xrightarrow{\sim} \Delta_n$ between Δ and the *canonical trivial duality structure* $\Delta_n \stackrel{\text{def.}}{=} (\underline{\mathbb{R}}_M^{2n}, \underline{\omega}_{2n}, d).$

Taming maps and period matrix maps

Let \mathbb{SH}_n be the *n*-th Siegel upper half space (space of symmetric $n \times n$ complex matrices with positive-definite imaginary part).

Definition

A taming map of size 2n on M is a smooth map $\mathcal{J} \in \mathcal{C}^{\infty}(M, \operatorname{GL}(2n, \mathbb{R}))$ s.t.:

$$\ \, \mathcal J(m)^2=-I_{2n} \text{ for all } m\in M.$$

2 $\mathcal{J}(m)$ is a taming of ω_{2n} of \mathbb{R}^{2n} for all $m \in M$.

A period matrix map of size n on M is a smooth function $\mathcal{N} \in \mathcal{C}^{\infty}(M, \mathbb{SH}_n)$.

Let $\mathfrak{J}_n(M)$ and $\operatorname{Per}_n(M)$ be the sets of such maps defined on M.

Proposition

A map $\mathcal{J} \in \mathcal{C}^{\infty}(M, \operatorname{GL}(2n, \mathbb{R}))$ is a taming map iff it can be written as:

$$\mathcal{J} = egin{pmatrix} -\mathcal{I}^{-1}\mathcal{R} & \mathcal{I}^{-1} \ -\mathcal{I}-\mathcal{R}\mathcal{I}^{-1}\mathcal{R} & \mathcal{R}\mathcal{I}^{-1} \end{pmatrix}$$

where \mathcal{R} and \mathcal{I} are the real and imaginary parts of some $\mathcal{N} \in \operatorname{Per}_n(M)$ (which is uniquely determined by \mathcal{J}).

This gives a natural bijection $\mathfrak{J}_n(M) \simeq \operatorname{Per}_n(M)$.

Definition

An *electromagnetic structure* defined on M is a pair $\Xi = (\Delta, \mathcal{J})$, where $\Delta = (\mathcal{S}, \omega, \mathcal{D})$ is a duality structure on M and \mathcal{J} is a taming of the symplectic vector bundle (\mathcal{S}, ω) . The *rank* of Ξ is the rank of Δ .

The taming is *not* required to be flat. The *fundamental form* of Ξ :

$$\Psi_{\Xi} \stackrel{\mathrm{def.}}{=} \mathcal{D}^{\mathrm{ad}}(\mathcal{J}) = \mathcal{D} \circ \mathcal{J} - (\mathrm{id}_{\mathcal{T}^*M} \otimes \mathcal{J}) \circ \mathcal{D} \in \Omega^1(M, \mathrm{End}(\mathcal{S}))$$

measures the failure of \mathcal{D} to preserve \mathcal{J} . The electromagnetic structure is called *unitary* if $\Psi_{\Xi} = 0$.

Definition

Let $\Xi = (S, \mathcal{J})$ and $\Xi' = (S', \mathcal{J}')$ be two electromagnetic structures defined on M. A based isomorphism of electromagnetic structures from Ξ to Ξ' is a based isomorphism of duality structures $f : \Delta \xrightarrow{\sim} \Delta'$ such that $\mathcal{J}' = f \circ \mathcal{J} \circ f^{-1}$.

Proposition

Let Δ be a holonomy-trivial duality structure of rank 2n defined on M. Any choice of global flat symplectic frame identifies the set of tamings of Δ with $\mathfrak{J}_n(M) \simeq \operatorname{Per}_n(M)$.

Field strength formulation of Abelian gauge theory

Let (M, g) be an oriented Lorentzian four-manifold and $\Xi = (S, \omega, D, J)$ be an electromagnetic structure of rank 2n defined on M. Let $\Delta \stackrel{\text{def.}}{=} (S, \omega, D)$.

Definition

The \mathcal{J} -polarized Hodge operator $\star_{g,\mathcal{J}} \in \operatorname{Aut}_b(\wedge^*(M,\mathcal{S}))$ is defined through:

$$\star_{g,\mathcal{J}} \stackrel{\mathrm{def.}}{=} \ast_g \otimes \mathcal{J} = \mathcal{J} \otimes \ast_g.$$

The polarized Hodge operator restricts to an involution of $\wedge^2(M, S)$.

Definition

The space of *field strength configurations* of $\Delta = (S, \omega, D)$ is:

$$\operatorname{Conf}(M,\Delta) \stackrel{\text{def.}}{=} \Omega^2_{\mathrm{d}_{\mathcal{D}^{-}\mathrm{cl}}}(M,\mathcal{S}) = \left\{ \mathcal{V} \in \Omega^2(M,\mathcal{S}) | \mathrm{d}_{\mathcal{D}}\mathcal{V} = 0 \right\}$$

The Abelian equation of motion defined by $\Xi = (\Delta, \mathcal{J})$ is:

 $\star_{g,\mathcal{J}}\mathcal{V}=\mathcal{V}\qquad \left(\text{where } \mathcal{V}\in \operatorname{Conf}(M,\Delta)\right)\ .$

The solutions are called *classical field strengths* and form the vector space:

$$\operatorname{Sol}(M,g,\Xi) = \operatorname{Sol}(M,g,\Delta,\mathcal{J}) \stackrel{\operatorname{def.}}{=} \{ \mathcal{V} \in \operatorname{Conf}(M,\Delta) \mid \star_{g,\mathcal{J}} \mathcal{V} = \mathcal{V} \} \ .$$

9/22

Integral symplectic spaces

Definition

An integral symplectic space is a triple (V, ω, Λ) such that:

- (V, ω) is a finite-dimensional symplectic vector space over \mathbb{R} .
- $\Lambda \subset V$ is full lattice in V, i.e. a lattice in V such that $V = \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.
- ω is integral with respect to Λ , i.e. we have $\omega(\Lambda, \Lambda) \subset \mathbb{Z}$.

Define:

$$\operatorname{Div}^n \stackrel{\operatorname{def.}}{=} \left\{ \left(t_1, \ldots, t_n \right) \in \mathbb{Z}_{>0}^n \ | \ t_1 | t_2 | \ldots | t_n \right\} \,.$$

Definition

An *integral symplectic basis* of a 2*n*-dimensional integral symplectic space (V, ω, Λ) is a basis $\mathcal{E} = (\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_n)$ of Λ such that:

$$\omega(\xi_i,\xi_j) = \omega(\zeta_i,\zeta_j) = 0, \qquad \omega(\xi_i,\zeta_j) = -t_i\delta_{ij} \quad , \quad \forall \ i,j = 1,\ldots,n,$$

where $t \in \text{Div}^n$.

Every integral symplectic space admits integral symplectic bases. The *type* $\mathfrak{t}(V, \omega, \Lambda)$ does not depend on the choice of such a basis. (V, ω, Λ) is called *principal* if:

$$\mathfrak{t}(V,\omega,\Lambda) = \delta(n) \stackrel{\mathrm{def.}}{=} (1,\ldots,1) \in \mathrm{Div}^n$$

Proposition

The type gives a bijection between the set of isomorphism classes of integral symplectic spaces and the set Div^n .

For any $\mathfrak{t} \in \operatorname{Div}^n$, let $\Lambda_\mathfrak{t} \subseteq \mathbb{R}^{2n}$ be the full lattice:

$$\Lambda_{\mathfrak{t}} \stackrel{\mathrm{def.}}{=} \mathbb{Z}^{n} \oplus \left(\oplus_{i=1}^{n} t_{i} \mathbb{Z} \right)$$

Then $(\mathbb{R}^{2n}, \omega_{2n}, \Lambda_t)$ is the standard integral symplectic space of type t. Let:

$$\operatorname{Sp}(V,\omega,\Lambda) \stackrel{\operatorname{def.}}{=} \{T \in \operatorname{Sp}(V,\omega) \mid T(\Lambda) = \Lambda\}$$
.

Definition

The modified Siegel modular group of type $\mathfrak{t} \in \operatorname{Div}^n$ is:

$$\operatorname{Sp}_{\mathfrak{t}}(2n,\mathbb{Z})\stackrel{\operatorname{def.}}{=}\operatorname{Sp}(\mathbb{R}^{2n},\omega_{2n},\Lambda)\subset\operatorname{Sp}(2n,\mathbb{R})$$

 Div^n is a lattice with bottom $\delta(n)$ under the partial order:

$$(t_1,\ldots,t_n) \leq (t'_1,\ldots,t'_n)$$
 iff $t_i|t'_i$ $\forall i=1,\ldots,n$

We have $\operatorname{Sp}_{\delta(n)}(2n,\mathbb{Z}) = \operatorname{Sp}(2n,\mathbb{Z})$ and $\operatorname{Sp}_{\mathfrak{t}}(2n,\mathbb{Z}) \subseteq \operatorname{Sp}_{\mathfrak{t}'}(2n,\mathbb{Z})$ when $\mathfrak{t} \leq \mathfrak{t}'$. Hence $(\operatorname{Sp}_{\mathfrak{t}}(2n,\mathbb{Z}))_{\mathfrak{t}\in\operatorname{Div}^n}$ is a direct system of overgroups of $\operatorname{Sp}(2n,\mathbb{Z})$.

Definition

An affine torus is a principal homogeneous space \mathfrak{A} for a torus group A. The standard affine d-torus is the affine torus \mathfrak{A}_d given by the right action of $\mathrm{U}(1)^d$ on itself. The toral affine group Aff_d is the group $\mathrm{Aff}(\mathfrak{A}_d)$.

Definition

A special affine symplectic torus is a pair $\mathbb{A} = (\mathfrak{A}, \Omega)$, where \mathfrak{A} is an even-dimensional affine torus and Ω is a translation-invariant symplectic form on \mathfrak{A} such that $(H_1(\mathfrak{A}, \mathbb{R}), H_1(\mathfrak{A}, \mathbb{Z}), \omega)$ is an integral symplectic space, where $\omega = [\Omega] \in H^2(\mathfrak{A}, \mathbb{R}) \simeq \wedge^2 H_1(\mathfrak{A}, \mathbb{R})^{\vee}$.

Let Ω_t be the symplectic form induced by ω_{2n} on the torus group $\mathbb{R}^{2n}/\Lambda_t$.

Definition

The standard special symplectic torus group of type $\mathfrak{t} \in \operatorname{Div}^n$ is:

$$\mathbf{A}_{\mathfrak{t}} \stackrel{\mathrm{def.}}{=} \left(\mathbb{R}^{2n} / \Lambda_{\mathfrak{t}}, \Omega_{\mathfrak{t}}
ight)$$
 .

The standard special affine symplectic torus \mathbb{A}_t is obtained from \mathbf{A}_t by forgetting the origin.

Proposition

Any special affine symplectic torus $\mathbb{A} = (\mathfrak{A}, \Omega)$ is affinely symplectomorphic to a unique standard special affine symplectic torus \mathbb{A}_t , whose type t is called the type of \mathbb{A} .

Definition

The standard special toral affine group Aff_t of type $t \in Div^n$ is:

 $\operatorname{Aff}_{\mathfrak{t}} \stackrel{\operatorname{def.}}{=} \operatorname{Aut}(\mathbb{A}_{\mathfrak{t}})$.

For any $\mathfrak{t} \in \operatorname{Div}^n$, we have $\operatorname{Aff}_{\mathfrak{t}} = A_n \rtimes \operatorname{Sp}_{\mathfrak{t}}(2n, \mathbb{Z})$, where $A_n \simeq \operatorname{U}(1)^{2n}$ is the underlying torus group of $\mathbb{A}_{\mathfrak{t}}$.

Dirac systems and integral duality structures

Let $\Delta = (S, \omega, D)$ be a duality structure defined on M.

Definition

A Dirac system for Δ is a smooth fiber sub-bundle $\mathcal{L} \subset S$ of full symplectic lattices in (S, ω) which is preserved by the parallel transport of \mathcal{D} . A pair $\mathbf{\Delta} \stackrel{\text{def.}}{=} (\Delta, \mathcal{L})$ consisting of a duality structure Δ and a choice of Dirac system \mathcal{L} for Δ is called an *integral duality structure*. A duality structure Δ of rank 2n is called *semiclassical* if it admits a Dirac system, i.e. if its holonomy group can be conjugated to lie inside $\operatorname{Sp}_{\mathfrak{t}}(2n, \mathbb{Z})$ for some $\mathfrak{t} \in \operatorname{Div}^n$.

Definition

The type $\mathfrak{t}_{\Delta} \in \operatorname{Div}^n$ of an integral duality structure $\Delta = (S, \omega, \mathcal{D}, \mathcal{L})$ is the common type of the integral symplectic spaces $(S_m, \omega_m, \mathcal{L}_m)$, where $m \in M$.

Proposition

For any $m \in M$, the set of isomorphism classes of integral duality structures of type t defined on M is in bijection with the character variety:

 $\mathfrak{R}_{\mathfrak{t}}(\pi_1(M,m),\operatorname{Sp}_{\mathfrak{t}}(2n,\mathbb{Z})) \stackrel{\mathrm{def.}}{=} \operatorname{Hom}(\pi_1(M,m),\operatorname{Sp}_{\mathfrak{t}}(2n,\mathbb{Z}))/\operatorname{Sp}_{\mathfrak{t}}(2n,\mathbb{Z}) \ .$

Definition

A Siegel system of rank 2n is a local system of free Abelian groups of rank 2n defined on M whose structure group reduces to a subgroup of $\text{Sp}_t(2n,\mathbb{Z})$ for some $t \in \text{Div}^n$. The smallest t with this property is called the *type* t_Z of Z.

Proposition

Let Z be a bundle of free Abelian groups of rank 2n defined on M. T.a.e.:

- Z is a Siegel system of type t defined on M.
- The vector bundle $S \stackrel{\text{def.}}{=} Z \otimes_{\mathbb{Z}} \mathbb{R}$ admits a symplectic pairing ω which makes (S, ω, D, Z) into an integral duality structure of type t, where D is the flat connection induced from Z.

Let $\ell_t : \operatorname{Sp}_t(2n, \mathbb{Z}) \to \operatorname{Aut}_{\mathbb{Z}}(\mathbb{Z}^{2n})$ be the left action of $\operatorname{Sp}_t(2n, \mathbb{Z})$ on \mathbb{Z}^{2n} . For any principal $\operatorname{Sp}_t(2n, \mathbb{Z})$ -bundle Q defined on M, let $Z(Q) \stackrel{\text{def.}}{=} Q \times_{\ell_t} \mathbb{Z}^{2n}$. For any Siegel system Z, let $\operatorname{Fr}(Z)$ be its principal bundle of frames.

Proposition

The correspondences $Q \mapsto Z(Q)$ and $Z \mapsto Fr(Z)$ extend to quasi-inverse equivalences between the groupoids of principal $Sp_t(2n, \mathbb{Z})$ -bundles and Siegel systems of type t defined on M.

Calin Lazaroiu

The lattice of charges and the Dirac integrality condition

Let $\mathbf{\Delta} = (\mathbf{\Delta}, Z)$ be an integral duality structure on M, where $\mathbf{\Delta} = (S, \omega, D)$. Consider the flat bundle of torus groups $\mathcal{A} \stackrel{\text{def.}}{=} S/Z$. The exact sequence of sheaves of Abelian groups:

$$1 o \mathcal{C}(Z) \xrightarrow{j} \mathcal{C}^\infty_{\mathrm{flat}}(\mathcal{S}) \xrightarrow{\mathsf{exp}} \mathcal{C}^\infty_{\mathrm{flat}}(\mathcal{A}) o 1$$

induces a long exact sequence in sheaf cohomology:

$$\ldots \to H^{1}(M, \mathcal{A}_{\mathrm{disc}}) \xrightarrow{\delta_{1}} H^{2}(M, Z) \xrightarrow{j_{*}} H^{2}_{\mathcal{D}}(M, \mathcal{S}) \xrightarrow{\exp_{*}} H^{2}(M, \mathcal{A}_{\mathrm{disc}}) \to \ldots$$

where δ_1 is the connecting morphism.

Definition

The *lattice of charges* of the integral duality structure Δ is:

$$L_{\Delta} \stackrel{\mathrm{def.}}{=} j_*(H^2(M, Z)) \subset H^2_{\mathcal{D}}(M, \mathcal{S})$$

A field strength configuration $\mathcal{V} \in \operatorname{Conf}(M, \Delta) = \Omega^2_{\mathrm{d}_{\mathcal{D}}\text{-}\mathrm{cl}}(M, \mathcal{S})$ is called *integral* if $[\mathcal{V}]_{\mathcal{D}} \in L_{\Delta}$.

The condition $[\mathcal{V}]_{\mathcal{D}} \in L_{\Delta}$ is the Dirac integrality condition.

Definition

A Siegel bundle P of type $t \in Div^n$ is a principal bundle on M with structure group Aff_t . An isomorphism of Siegel bundles is a based isomorphism of principal bundles.

Notice that $G \stackrel{\text{def.}}{=} \text{Aff}_t$ is a split weakly Abelian Lie group:

$$G\simeq A\rtimes_{\rho_{\mathfrak{t}}}\Gamma_{\mathfrak{t}} \ \, \mathrm{where} \ \, A=\mathbb{R}^{2n}/\Lambda_{\mathfrak{t}}\simeq \mathrm{U}(1)^{2n} \ \, \mathrm{and} \ \, \Gamma_{\mathfrak{t}}=\mathrm{Sp}_{\mathfrak{t}}(2n,\mathbb{Z}) \ \, ,$$

with fundamental lattice $\Lambda_t \simeq \pi_1(G) \simeq \mathbb{Z}^{2n}$. Notice that $\rho_{t,0} = \ell_t$. Hence Siegel bundles of type t are classified up to isomorphism by their remnant bundle $\Gamma_t(P)$ and their twisted Chern class $c(P) \in H^2(M, \Lambda_t(P))$. In this case:

- The local system $\Lambda_{\mathfrak{t}}(P) \stackrel{\text{def.}}{=} P \times_{\mathrm{Ad}_0} \Lambda_{\mathfrak{t}}$ is a Siegel system of type \mathfrak{t} , which we denote by Z(P).
- $\mathfrak{g} = \mathbb{R}^{2n}$ and $\operatorname{ad}(P) = Z(P) \otimes_{\mathbb{Z}} \mathbb{R} \stackrel{\text{def.}}{=} S$ supports the duality structure (S, ω, \mathcal{D}) , induced by Z(P).
- $A(P) = P \rtimes_{\operatorname{Ad}_{G}^{A}} A$ coincides with the bundle of symplectic torus groups $\mathcal{A}(P) \stackrel{\operatorname{def.}}{=} S/Z(P).$
- The characteristic lattice L(P) = L₀(P) ∈ H²(M, ad(P)) = H²(M, S) of P coincides with the lattice of charges L_{ΔP} of Δ_P ^{def.} (S, ω, D, Z(P)).
 Let Δ_P ^{def.} (S, ω, D).

Siegel bundles

Since Aff_t is a split weakly Abelian Lie group, any Siegel bundle *P* has an *integral twisted Chern class* $c(P) \in H^2(M, Z(P))$.

Theorem

Consider the set:

$$\Sigma(M) \stackrel{ ext{def.}}{=} \left\{ (Z,c) \,|\, Z \;\; ext{ is a Siegel system on } M \;\&\; c \in H^2(M,Z)
ight\} /_{\sim},$$

where $(Z, c) \sim (Z', c')$ iff there exists an isomorphism $\varphi : Z \xrightarrow{\sim} Z'$ s.t. $\varphi_*(c) = c'$. Then the map $P \mapsto (Z(P), c(P))$ induces a bijection between the set of isomorphism classes of Siegel bundles defined on M and the set $\Sigma(M)$.

Let $\mathfrak{c}(P) \in H^2_{\mathcal{D}}(M, \mathrm{ad}(P)) = H^2_{\mathcal{D}}(M, \mathcal{S})$ be the twisted *real* Chern class of P.

Proposition

We have $c(P) = j_*(c(P))$, where $j_* : H^*(M, Z) \to H^*(M, S)$ is induced by the inclusion $Z = \Lambda(P) \hookrightarrow S = ad(P)$.

Since $c(P) \in L(P) = L_{\Delta}$, it follows that the adjoint curvature $\mathcal{V}_{\mathcal{A}}$ of any principal connection $\mathcal{A} \in \operatorname{Conn}(P)$ satisfies the Dirac integrality condition $[\mathcal{V}]_{\mathcal{D}} \in L_{\Delta}$ of the integral duality structure Δ_P determined by P.

Gauge connection formulation

Theorem

Let Z be a Siegel system on M and $\mathbf{\Delta} = (\Delta, Z)$ be its integral duality structure, where $\Delta = (S, \omega, D)$. For any $\mathfrak{c} \in L_{\Delta}$, there exists a Siegel bundle P on M s.t. $\mathbf{\Delta}_P = \mathbf{\Delta}$ and $\mathfrak{c} = \mathfrak{c}(P)$. Thus any $\mathcal{V} \in \operatorname{Conf}(M, \Delta) = \Omega^2_{\mathrm{d}_D - \mathrm{cl}}(M, S)$ which satisfies the Dirac integrality condition $[\mathcal{V}]_D \in L_{\Delta}$ coincides with the adjoint curvature \mathcal{V}_A of some principal connection $\mathcal{A} \in \operatorname{Conn}(P)$.

Definition

A polarized Siegel bundle is a pair $\mathbf{P} = (P, \mathcal{J})$, where P is a Siegel bundle and \mathcal{J} is a taming of the duality structure Δ_P defined by P.

Definition

Let $\mathbf{P} = (P, \mathcal{J})$ be a polarized Siegel bundle on M. The space of gauge configurations defined by P on M is the affine space:

$$\mathfrak{Conf}(M, P) \stackrel{\text{def.}}{=} \operatorname{Conn}(P)$$
.

The Abelian gauge theory defined by **P** on (M, g) has e.o.m:

 $\star_{g,\mathcal{J}} \mathcal{V}_{\mathcal{A}} = \mathcal{V}_{\mathcal{A}} \quad \text{where} \quad \mathcal{A} \in \operatorname{Conn}(P).$

Electrodynamics on simply-connected Lorentzian four-manifolds

Let (M, g) be a *simply-connected* (hence orientable) Lorentzian four-manifold and fix an orientation of M.

Any duality structure $\Delta = (S, \omega, D)$ of rank 2n on M is holonomy-trivial. Hence any choice of flat global symplectic frame:

- identifies Δ with the standard trivial duality structure $\Delta_n = (\underline{\mathbb{R}}^{2n}, \omega_{2n}, d);$
- identifies any taming \mathbb{J} of Δ with a taming map $\mathcal{J} \in \mathfrak{J}_n(M)$ of size 2n and hence with a matrix period map $\mathcal{N} \in \operatorname{Per}_n(M)$ of size n.

The electromagnetic structure $\Xi = (\Delta, \mathbb{J})$ is unitary iff \mathbb{J} is \mathcal{D} -flat, i.e. iff the taming map \mathcal{J} (equivalently, the period map \mathcal{N}) is constant on M.

Classical electrodynamics on (M, g) has n = 1 and corresponds to a *unitary* electromagnetic structure $\Xi = (\Delta_2, \mathbb{J})$ of rank two defined on M. Thus \mathbb{J} corresponds to a *constant* taming map $\mathcal{J} \in \mathfrak{J}_2(M)$ of size two, i.e. a taming of the standard symplectic plane (\mathbb{R}^2, ω_2) . In turn, this corresponds to a *constant* period map $\mathcal{N} \in \operatorname{Per}_1(M) = \mathbb{S}\mathbb{H}_1$ of size one. The latter is simply an element of the upper half-plane $\mathbb{S}\mathbb{H}_1 = \mathcal{H} = \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}$ which is traditionally denoted by τ and written in the form:

$$au = \mathcal{N} = rac{4\pi}{g^2} + \mathbf{i} rac{ heta}{2\pi}$$
, i.e. $\mathcal{R} = rac{4\pi}{g^2}$ and $\mathcal{I} = rac{ heta}{2\pi}$

The real constants g and θ are called the *coupling constant* and *theta angle*.

The corresponding constant taming is:

$$\mathcal{J} = \begin{pmatrix} -\frac{g^2\theta}{8\pi^2} & \frac{g^2}{4\pi} \\ -\frac{4\pi}{g^2} - \frac{g^2\theta^2}{16\pi^3} & \frac{g^2\theta}{8\pi^2} \end{pmatrix}$$

The space $\operatorname{Conf}(M, \Delta_2)$ identifies with $\Omega^2_{\operatorname{cl}}(M, \mathbb{R}^2) = \Omega^2_{\operatorname{cl}}(M)^{\oplus 2}$.

Proposition

A size two vector-valued 2-form $\mathcal{V} \in \Omega^2(M, \mathbb{R}^2)$ satisfies $*_{g,\mathcal{J}}\mathcal{V} = \mathcal{V}$ iff it can be written as:

$$\mathcal{V} = \begin{pmatrix} F \\ \mathcal{R} F - \mathcal{I} *_g F \end{pmatrix} \tag{1}$$

for some real-valued 2-form $F \in \Omega^2(M)$ (which is uniquely determined by \mathcal{V}). Moreover, \mathcal{V} is closed iff F satisfies the source-free Maxwell equations:

$$\mathrm{d}F = \mathrm{d} *_g F = 0 \quad . \tag{2}$$

Thus $Sol(M, g, \Xi)$ identifies with the space of field strength solutions of (source-free) classical electrodynamics.

Electrodynamics on simply-connected Lorentzian four-manifolds

- Any principal bundle with discrete structure group defined on M is trivial since π₁(M) = 0. In particular, any Siegel system Z of rank 2 defined on M is isomorphic with the constant local system <u>Z</u>².
- The modified Siegel modular group of dimension 2 and type $t \in Div^1 = \mathbb{Z}_{>0}$ is $\operatorname{Sp}_t(2,\mathbb{Z}) = \operatorname{Sp}(\mathbb{R}^2,\mathbb{Z} \oplus t\mathbb{Z},\omega_2)$. This is an overgroup of the usual modular group $\operatorname{Sp}(2,\mathbb{Z}) = \operatorname{Sp}(\mathbb{R}^2,\mathbb{Z}^2,\omega_2) = \operatorname{SL}(2,\mathbb{Z})$, since $\mathbb{Z} \oplus t\mathbb{Z} \subset \mathbb{Z}^2$.
- Siegel bundles P of type t ∈ Z_{>0} defined on M are classified up to isomorphism by their integral twisted Chern class c(P) ∈ H²(M, <u>Z</u>²) = H²(M, Z)^{⊕2}. They have trivial remnant and adjoint bundles:

$$\Gamma(P) \simeq \underline{\Gamma} = \underline{\operatorname{Sp}_t(2,\mathbb{Z})} \ , \ \operatorname{ad}(P) \simeq \underline{\mathbb{R}}^2$$

The adjoint curvature $\mathcal{V}_{\mathcal{A}} \in H^2(M, \mathbb{R}^2)$ of a principal connection $\mathcal{A} \in \operatorname{Conn}(P)$ is polarized self-dual iff it has the form (1) for some solution $F \in \Omega^2(M)$ of the source-free Maxwell equations (2). Notice that:

Remark

- The source-free Maxwell equations (2) amount to the Bianchi identity $d\mathcal{V}_{\mathcal{A}} = 0$, which holds automatically.
- Relation (1) (which reduces V_A to F) amounts to the twisted self-duality condition *_{g,J}V_A = V_A, which is the equation of motion for A.

The lattice $\Lambda_t = \mathbb{Z} \oplus t\mathbb{Z}$ is the usual Dirac lattice. The traditional choice in electromagnetism is t = 1.