Connections on principal bundles with weakly Abelian structure group

Calin Lazaroiu

DFT, IFIN-HH

(1) Recap on principal connections
(2) The curvature maps and twisted Chern class for weakly Abelian structure group
(3) The gauge group of a principal bundle with weakly Abelian structure group

44 Universal Chern-Weyl theory for weakly Abelian Lie groups

Recap on principal connections

Let:

- G be a Lie group with Lie algebra \mathfrak{g}
- Ad : $G \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathfrak{g})$ be the adjoint representation of G.
- $p: P \rightarrow M$ a principal G-bundle on a manifold M
- VP $\subset T P$ be the vertical bundle of P.
- $\operatorname{ad}(P) \stackrel{\text { def. }}{=} P \times \operatorname{Ad} \mathfrak{g}$ be the adjoint bundle of P.

The space of equivariant \mathfrak{g}-valued forms defined on P :

$$
\Omega^{*}(P, \mathfrak{g})^{G} \stackrel{\text { def. }}{=}\left\{\eta \in \Omega^{*}(P, \mathfrak{g}) \mid r_{g}^{*}(\eta)=\operatorname{Ad}(g)^{-1} \eta\right\}
$$

contains the subspace of horizontal forms:

$$
\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \stackrel{\text { def. }}{=}\left\{\eta \in \Omega^{*}(P, \mathfrak{g})^{G} \mid \iota \times \eta=0 \quad \forall X \in \mathcal{C}^{\infty}(P, V P)\right\}
$$

We have inverse isomorphisms of graded vector spaces:

$$
\Omega^{*}(M, \operatorname{ad}(P)) \underset{\varphi_{P}}{\stackrel{p^{*}}{\rightleftarrows}} \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})
$$

Principal connections on P form an affine space modeled on $\Omega_{\mathrm{Ad}}^{1}(P, \mathfrak{g})$:

$$
\operatorname{Conn}(P) \stackrel{\text { def. }}{=}\left\{\mathcal{A} \in \Omega^{1}(P, \mathfrak{g})^{G} \mid \iota_{X^{\vee}} \mathcal{A}=v \quad \forall p \in P \quad \forall v \in \mathfrak{g}\right\}
$$

where $X^{\vee} \in \mathcal{C}^{\infty}(P, V P)$ is the vertical vector field defined by $v \in \mathfrak{g}$.

Let $\mathrm{d}_{\mathcal{A}}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*}(P, \mathfrak{g})[1]$ be the covariant differential of $\mathcal{A} \in \operatorname{Conn}(P)$.

Definition

The principal curvature of \mathcal{A} is:

$$
\Omega_{\mathcal{A}} \stackrel{\text { def. }}{=} \mathrm{d}_{\mathcal{A}} \mathcal{A}=\mathrm{d} \mathcal{A}+\frac{1}{2}[\mathcal{A}, \mathcal{A}]_{\wedge} \in \Omega_{\mathrm{Ad}}^{2}(P, \mathfrak{g})
$$

The adjoint curvature of \mathcal{A} is:

$$
\mathcal{V}_{\mathcal{A}} \stackrel{\text { def. }}{=} \varphi_{P}\left(\Omega_{\mathcal{A}}\right) \in \Omega^{2}(M, \operatorname{ad}(P))
$$

The principal curvature satisfies the Bianchi identity:

$$
\mathrm{d}_{\mathcal{A}} \Omega_{\mathcal{A}}=0
$$

The principal and adjoint curvature maps $\Omega: \operatorname{Conn}(P) \rightarrow \Omega_{\text {Ad }}^{2}(P, \mathfrak{g})$ and $\mathcal{V}: \operatorname{Conn}(P) \rightarrow \Omega^{2}(M, \operatorname{ad}(P))$ are defined through:

$$
\Omega(\mathcal{A}) \stackrel{\text { def. }}{=} \Omega_{\mathcal{A}}, \quad \mathcal{V}(\mathcal{A}) \stackrel{\text { def. }}{=} \mathcal{V}_{\mathcal{A}} \forall \mathcal{A} \in \operatorname{Conn}(P)
$$

We have a commutative diagram:

Let $\mathcal{D}_{\mathcal{A}}: \Gamma(M, \operatorname{ad}(P)) \rightarrow \Omega^{1}(M, \operatorname{ad}(P))$ be the connection induced by \mathcal{A} on $\operatorname{ad}(P)$ and $\mathrm{d}_{\mathcal{D}}: \Omega^{*}(M, \operatorname{ad}(P)) \rightarrow \Omega^{*}(M, \operatorname{ad}(P))[1]$ its differential. We have a commutative diagram:

Suppose that G is a weakly Abelian Lie group.

Proposition

The following statements hold:
(1) For any $\mathcal{A} \in \operatorname{Conn}(P)$, we have $\Omega_{\mathcal{A}}=\mathrm{d} \mathcal{A}$ and the Bianchi identity reduces to $\mathrm{d} \Omega_{\mathcal{A}}=0$. Thus Ω is an affine map with linear part:

$$
\left.\mathrm{d}\right|_{\operatorname{Conn}(P)}: \operatorname{Conn}(P) \rightarrow \Omega_{\mathrm{Ad}}^{2}(P, \mathfrak{g})
$$

(2) We have:

$$
\begin{equation*}
\mathrm{d} \mathrm{~A}_{\mathcal{A}} \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})=\mathrm{d} \mid \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}): \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \rightarrow \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})[1] \tag{1}
\end{equation*}
$$

- All principal connections $\mathcal{A} \in \operatorname{Conn}(P)$ induce the same linear connection $\mathcal{D}_{\mathcal{A}}$ on the adjoint bundle $\operatorname{ad}(P)$ (which we denote by \mathcal{D}) and this induced connection is flat. Moreover, the adjoint curvature satisfies:

$$
\mathrm{d}_{\mathcal{D}} \mathcal{V}_{\mathcal{A}}=0 \quad \forall \mathcal{A} \in \operatorname{Conn}(P)
$$

and $\varphi_{P}:\left(\Omega_{\mathrm{Ad}}(P, \mathfrak{g}), \mathrm{d}\right) \rightarrow\left(\Omega(M, \operatorname{ad}(P)), \mathrm{d}_{\mathcal{D}}\right)$ is an isomorphism of complexes.
(- \mathcal{D} coincides with the flat connection induced on $\operatorname{ad}(P)=\Gamma(P) \times_{\bar{\rho}} \mathfrak{g}$ by the flat connection of the discrete remnant bundle $\Gamma(P) \stackrel{\text { def. }}{=} P \times_{a} \Gamma$.

Proposition

The twisted cohomology class of $\mathcal{V}_{\mathcal{A}}$:

$$
\mathfrak{c}(P) \stackrel{\text { def. }}{=}\left[\mathcal{V}_{\mathcal{A}}\right]_{\mathcal{D}}=\mathcal{V}_{\mathcal{A}}+\Omega_{\mathrm{d}_{\mathcal{D}}-\mathrm{ex}}^{2}(M, \operatorname{ad}(P)) \in H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))
$$

does not depend on the choice of principal connection $\mathcal{A} \in \operatorname{Conn}(P)$. Viewing $\mathfrak{c}(P)$ as an affine space modeled on the vector space $\Omega_{\mathrm{d}_{\mathcal{D}} \text {-ex }}^{2}(M, \operatorname{ad}(P))$, the corestricted adjoint curvature map $\mathcal{V}: \operatorname{Conn}(P) \rightarrow \mathfrak{c}(P)$ is a surjective affine map with linear part given by:

$$
\left.\mathrm{d}_{\mathcal{D}} \circ \varphi_{P}\right|_{\Omega^{1}(P, \mathfrak{g})}=\left.\varphi_{P} \circ \mathrm{~d}\right|_{\Omega^{1}(P, \mathfrak{g})}: \Omega^{1}(P, \mathfrak{g}) \rightarrow \Omega_{\mathrm{d}_{\mathcal{D}^{-e x}}^{2}}^{2}(M, \operatorname{ad}(P)) .
$$

Corollary

$\mathcal{V}: \operatorname{Conn}(P) \rightarrow \mathfrak{c}(P)$ is an affine fibration with fiber at $\omega \in \mathfrak{c}(P)$ given by:

$$
\begin{equation*}
\operatorname{Conn}_{\omega}(P) \stackrel{\text { def. }}{=}\left\{\mathcal{A} \in \operatorname{Conn}(P) \mid \mathcal{V}_{\mathcal{A}}=\omega\right\}, \tag{2}
\end{equation*}
$$

which is an affine space modeled on the vector space:

$$
\Omega_{\mathrm{Ad}, \mathrm{cl}}^{1}(P, \mathfrak{g}) \stackrel{\text { def. }}{=} \operatorname{ker}\left(\mathrm{d}: \Omega_{\mathrm{Ad}}^{1}(M, \mathfrak{g}) \rightarrow \Omega_{\mathrm{Ad}}^{2}(M, \mathfrak{g})\right) \stackrel{\varphi_{\mathrm{P}}}{=} \Omega_{\mathrm{d}_{\mathcal{D}}-\mathrm{cl}}^{1}(M, \operatorname{ad}(P)) .
$$

Definition

The gauge group of P is the group $\operatorname{Aut}_{b}(P)$ of based automorphisms of P, whose elements are called (global) gauge transformations of P.

Let Aut $_{b}(\operatorname{ad}(P))$ be the group of based automorphisms of $\operatorname{ad}(P)$.

Definition

The adjoint representation of $\operatorname{Aut}_{b}(P)$ is the linear representation induced on global sections of $\operatorname{ad}(P)$ by the morphism of groups $\operatorname{ad} P: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}_{b}(\operatorname{ad}(P))$ defined through:

$$
\operatorname{ad}_{P}(\psi)([p, v]) \stackrel{\text { def. }}{=}[\psi(p), v] \quad \forall \psi \in \operatorname{Aut}_{b}(P) \quad \forall p \in P \quad \forall v \in \mathfrak{g} .
$$

The pullback representation of $\operatorname{Aut}_{b}(P)$ is the linear representation $\mathfrak{R}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}\left(\Omega^{*}(P, \mathfrak{g})\right)$ defined through:

$$
\mathfrak{R}(\psi)(\omega) \stackrel{\text { def. }}{=}\left(\psi^{-1}\right)^{*}(\omega) \quad \forall \psi \in \operatorname{Aut}_{b}(P) \quad \forall \omega \in \Omega^{*}(P, \mathfrak{g})
$$

Remark. Suppose that M is compact. Then $\operatorname{Aut}_{b}(P)$ is an infinite-dimensional Fréchet-Lie groups whose Lie algebra identifies with $\mathcal{C}^{\infty}(M, \operatorname{ad}(P))$. In this case, the linear action induced by ad_{P} on $\mathcal{C}^{\infty}\left(M, \operatorname{Ad}_{G}(P)\right)$ identifies with the adjoint representation of $\operatorname{Aut}_{b}(P)$ as a Lie group (hence our terminology),

The pullback representation preserves $\Omega_{\text {Ad }}^{*}(P, \mathfrak{g})$, on which it restricts to a representation $\mathfrak{R}_{\mathrm{Ad}}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}\left(\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})\right)$.

Proposition

The following diagram commutes:

$$
\begin{gathered}
\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \xrightarrow{\mathcal{R}_{\mathrm{Ad}}(\psi)} \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \\
\downarrow_{\varphi_{P}} \\
\Omega^{*}(M, \operatorname{ad}(P)) \xrightarrow{\operatorname{adp}(\psi)} \Omega^{*}(M, \operatorname{ad}(P))
\end{gathered}
$$

Proposition

For any $\psi \in \operatorname{Aut}_{b}(P)$, we have:

$$
\mathrm{d} \circ \Re_{\mathrm{Ad}}(\psi)=\left.\Re_{\mathrm{Ad}}(\psi) \circ \mathrm{d}\right|_{\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})}, \quad \mathrm{d}_{\mathcal{D}} \circ \operatorname{ad} P(\psi)=\operatorname{ad}_{P}(\psi) \circ \mathrm{d}_{\mathcal{D}}
$$

Thus \Re_{Ad} and ad_{P} induce linear representations of the gauge group on the spaces $H_{\mathrm{d}}^{*}\left(\Omega_{\mathrm{Ad}}(P, \mathfrak{g})\right)$ and $H_{\mathrm{d}_{\mathcal{D}}}^{*}(M, \operatorname{ad}(P))$, which are equivalent through the isomorphism $\varphi_{P_{*}}: H_{\mathrm{d}}^{*}\left(\Omega_{\mathrm{Ad}}(P, \mathfrak{g})\right) \xrightarrow{\sim} H_{\mathrm{d}_{\mathcal{D}}}^{*}(M, \operatorname{ad}(P))$ induced by φ_{P}.

The pull-back action preserves the affine space $\operatorname{Conn}(P) \subset \Omega^{1}(P, \mathfrak{g})^{G}$, on which it restricts to an affine action $\mathfrak{R}_{c}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aff}(\operatorname{Conn}(P))$ with linear part:

$$
\left.\mathfrak{R}_{\mathrm{Ad}}^{1} \stackrel{\text { def. }}{=} \mathfrak{R}_{\mathrm{Ad}}\right|_{\Omega_{\mathrm{Ad}}^{1}(P, \mathfrak{g})}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}\left(\Omega_{\mathrm{Ad}}^{1}(P, \mathfrak{g})\right)
$$

Proposition

The principal and adjoint curvature maps of P are gauge-equivariant:

$$
\Omega \circ \Re_{c}(\psi)=\Re_{\mathrm{Ad}}(\psi) \circ \Omega \text { and } \mathcal{V} \circ \Re_{c}(\psi)=\operatorname{ad}_{P}(\psi) \circ \mathcal{V} \quad \forall \psi \in \operatorname{Aut}_{b}(P) .
$$

Moreover, ad ${ }_{P}$ preserves the affine subspace $\mathfrak{c}(P) \subset \Omega_{\mathrm{d}_{\mathcal{D}} \text {-cl }}^{2}(M, \operatorname{ad}(P))$, on which it acts through affine transformations with linear part:
$\left.\operatorname{ad}_{P}(\psi)\right|_{\Omega_{\mathrm{d}_{\mathcal{D}^{-}}{ }^{-\mathrm{ex}}}^{2}(M, \operatorname{ad}(P))}: \Omega_{\mathrm{d}_{\mathcal{D}^{-}}}^{2}(M, \operatorname{ad}(P)) \rightarrow \Omega_{\mathrm{d}_{\mathcal{D}^{-}}}^{2}(M, \operatorname{ad}(P)) \forall \psi \in \operatorname{Aut}_{b}(P)$
In particular, the affine fibration $\mathcal{V}: \operatorname{Conn}(P) \rightarrow \mathfrak{c}(P)$ is equivariant with respect to the affine actions of $\operatorname{Aut}_{b}(P)$ on $\operatorname{Conn}(P)$ and $\mathfrak{c}(P)$.

Discrete gauge transformations

Recall that the discrete remnant of P is the principal Γ-bundle $\Gamma(P) \stackrel{\text { def. }}{=} P \times_{q} \Gamma$. This comes with a (G, q)-lift of structure group $\Phi_{P}: P \rightarrow \Gamma(P)$.

Definition

The group $\operatorname{Aut}_{b}(\Gamma(P))$ is called the discrete gauge group of P and its elements are called discrete gauge transformations of P.

Any $\psi \in \operatorname{Aut}_{b}(P)$ induces an automorphism $Q_{P}(\psi) \stackrel{\text { def. }}{=} \bar{\psi} \in \operatorname{Aut}_{b}(\Gamma(P))$ by:

$$
\bar{\psi}([p, \gamma])=[\psi(p), \gamma] \quad \forall[p, \gamma] \in \Gamma(P)
$$

This fits into a commutative diagram:

The map $Q_{P}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}_{b}(\Gamma(P))$ is a morphism of groups.

Definition

The discrete gauge transformation $Q_{P}(\psi)=\bar{\psi} \in \operatorname{Aut}_{b}(\Gamma(P))$ is called the discrete remnant of the gauge transformation $\psi \in \operatorname{Aut}_{b}(P)$.

Let $\operatorname{ad}_{\Gamma(P)}: \operatorname{Aut}_{b}(\Gamma(P)) \rightarrow \operatorname{Aut}_{b}(\operatorname{ad}(P))$ be the morphism of groups given by:

$$
\operatorname{ad}_{\Gamma(P)}(\chi)\left([p, v]_{\mathrm{Ad}}\right) \stackrel{\text { def. }}{=}\left[\chi\left(\Phi_{P}(p)\right), v\right]_{\bar{\rho}}=\left[p, \bar{\rho}\left(h_{\chi}(p)\right)(v)\right]_{\mathrm{Ad}} \forall p \in P \forall v \in \mathfrak{g}
$$

with $\chi \in \operatorname{Aut}_{b}(\Gamma(P))$, where $\bar{\rho}: \Gamma \rightarrow \operatorname{Aut}(\mathfrak{g})$ is the reduced adjoint representation of G and we used the presentation $\operatorname{ad}(P)=\Gamma(P) \times{ }_{\bar{\rho}} \Gamma$.

Proposition

We have $\operatorname{ad}_{P}=\operatorname{ad}_{\Gamma(P)} \circ Q_{P}$, i.e.:

$$
\operatorname{ad}_{P}(\psi)=\operatorname{ad}_{\Gamma(P)}(\bar{\psi}) \quad \forall \psi \in \operatorname{Aut}_{b}(P) .
$$

Hence $\operatorname{adp}_{p}(\psi)$ depends only on the discrete remnant of ψ.

Let $N G$ be the nerve of G (the nerve of the one-object groupoid defined by G):

- $N_{n} G=G^{\times n} \forall n \geq 1, N_{0} G=\left\{1_{G}\right\}$
- face maps $\epsilon_{i}:=\epsilon_{i}^{n}: N_{n} G \rightarrow N_{n-1} G(n \geq 1)$ and degeneracy maps $\eta^{i}:=\eta_{i}^{n}: N_{n} G \rightarrow N_{n+1} G(n \geq 0)$ given by:

$$
\begin{aligned}
& \epsilon_{0}^{1}(g)=\epsilon_{1}^{1}(g)=1_{G}, \eta_{0}^{0}\left(1_{G}\right)=1_{G} \\
& \epsilon_{i}^{n}\left(g_{1}, \ldots, g_{n}\right) \stackrel{\text { def. }}{=} \begin{cases}\left(g_{2}, \ldots, g_{n}\right) & i=0 \\
\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots g_{n}\right) & 1 \leq i \leq n-1 \\
\left(g_{1}, \ldots, g_{n-1}\right) & i=n\end{cases} \\
& \eta_{i}^{n}\left(g_{1}, \ldots, g_{n}\right) \stackrel{\text { def. }}{=} \begin{cases}\left(1_{G}, g_{1}, \ldots, g_{n}\right) & i=0 \\
\left(g_{1}, \ldots, g_{i-1}, 1_{G}, g_{i}, \ldots, g_{n}\right) & 1 \leq i \leq n-1 \\
\left(g_{1}, \ldots, g_{n}, 1_{G}\right) & i=n\end{cases}
\end{aligned}
$$

for all $n \geq 1$.
Let || \| : sTop \rightarrow Top be the fat realization functor, where sTop is the category of simplicial spaces and maps thereof. Then $\|N G\|$ is homotopy-equivalent with BG. Notice that the fat model $\|N G\|$ of $\mathrm{B} G$ differs up to homotopy from the Segal model (which uses the thin realization functor

Definition

The simplicial de Rham bicomplex $\Omega(N G)$ has components $\Omega^{p, q}(N G) \stackrel{\text { def. }}{=} \Omega^{q}\left(N_{p} G\right)$ and differentials:

$$
\begin{aligned}
& \delta^{\prime}=\sum_{i=0}^{p+1}(-1)^{i}\left(\epsilon_{i}^{p+1}\right)^{*}: \Omega^{p, q}(N G) \rightarrow \Omega^{p+1, q}(N G) \\
& \delta^{\prime \prime}=(-1)^{p} \mathrm{~d}_{N_{p} G}: \Omega^{p, q}(N G) \rightarrow \Omega^{p, q+1}(N G) .
\end{aligned}
$$

Let $H^{*}(\Omega(N G))$ be the total cohomology of this bicomplex, which is a graded ring under the obvious operation:

$$
\AA: \Omega^{k_{1}}\left(N_{q_{1}} G\right) \times \Omega^{k_{2}}\left(N_{q_{2}} G\right) \rightarrow \Omega^{k_{1}+k_{2}}\left(N_{q_{1}+q_{2}} G\right) .
$$

$H^{*}(\Omega(N G))$ is computed by the spectral sequence of the vertical filtration $\Omega(N G)_{q} \stackrel{\text { def. }}{=} \oplus_{j \geq q} \oplus_{i \geq 0} \Omega^{i, j}(N G)$. The first page is $E_{1}^{p, q}=H_{\delta^{\prime}}^{q}\left(\Omega^{*, \bar{p}}(N G)\right)=H_{\delta^{\prime}}^{q}\left(\Omega^{p}\left(N_{*} G\right)\right)$ with differential $\delta_{1}=\delta^{\prime \prime}: E_{1}^{p, q} \rightarrow E_{1}^{p+1, q}$, while the second page is $E_{2}^{p, q}=H_{\delta^{\prime \prime}}^{p}\left(H_{\delta^{\prime}}^{q}(\Omega(N G))\right)$.

Theorem (Bott, Shulman, Stasheff)

There exists an isomorphism of graded rings $\zeta: H^{*}(\Omega(N G)) \xrightarrow{\sim} H^{*}(B G, \mathbb{R})$ and isomorphisms of vector spaces:

$$
\beta_{p-q, q}: H^{p-q}\left(G, S^{q}\left(\mathfrak{g}^{*}\right)\right) \xrightarrow{\sim} H_{\delta^{\prime}}^{p}\left(\Omega^{q}(N G)\right)=E_{1}^{q, p} \forall p \geq q .
$$

Moreover, we have $E_{1}^{q, p}=0$ for $p<q$.
Since $\left.\delta_{1}\right|_{E_{1}^{q, q}}=0$, we have epimorphisms $E_{1}^{q, q} \rightarrow E_{2}^{q, q} \rightarrow E_{3}^{q, q} \rightarrow \ldots$ and an edge morphism $e_{q}: E_{1}^{q, q} \rightarrow E_{\infty}^{q, q} \subset H^{2 q}(\Omega(N G))$. Since $H^{0}\left(G, S^{q}\left(\mathfrak{g}^{*}\right)\right)=S^{q}\left(\mathfrak{g}^{*}\right)^{G}=S^{q}\left(\mathfrak{g}^{*}\right)^{\Gamma}$, we have $\beta_{0, q}: S^{q}\left(\mathfrak{g}^{*}\right)^{\ulcorner } \xrightarrow{\sim} E_{1}^{q, q}$.

Definition

The simplicial and universal Chern-Weil morphisms of G are the morphism of graded rings:

$$
\beta \stackrel{\text { def. }}{=} \oplus_{q \geq 0} e_{q} \circ \beta_{0, q}: S^{*}\left(\mathfrak{g}[2]^{\vee}\right)^{\ulcorner } \xrightarrow{\sim} H^{\text {even }}(\Omega(N G)) .
$$

and:

$$
\psi \stackrel{\text { def. }}{=} \zeta \circ \beta: S^{*}\left(\mathfrak{g}[2]^{\vee}\right)^{\ulcorner } \rightarrow H^{\text {even }}(B G) .
$$

Let $\theta \in \Omega^{1}(G, \mathfrak{g})$ be the left Maurer-Cartan form of G, which is closed by the MC equation. For any $q \geq 1$ and $i=1, \ldots, q$, let $\theta_{i}^{(q)} \stackrel{\text { def. }}{=}\left(\pi_{i}^{q}\right)^{*}(\theta) \in \Omega^{1}\left(N_{q} G\right)$, where $\pi_{i}^{q}: N_{q} G=G^{\times q} \rightarrow G$ is the i-th projection.

Proposition

For any $T \in S^{q}\left(\mathfrak{g}^{*}\right)^{\ulcorner }$, the form $T\left(\theta_{1}^{(q)} \wedge \ldots \wedge^{\circ} \theta_{q}^{(q)}\right) \in \Omega^{q}\left(N_{q} G\right)$ is δ-closed and we have:

$$
\beta(T)=\left[T\left(\theta_{1}^{(q)} \AA \ldots \wedge_{q}^{(q)}\right)\right]_{\delta} \in H^{\text {even }}(\Omega(N G)) .
$$

Theorem (Cartan, Bott)

Suppose that G is compact. Then the following statements hold:

- $H^{p}\left(G, S^{q}\left(\mathfrak{g}^{*}\right)\right)=0$ for $p>0$
- The spectral sequence E_{*} collapses at the first page, giving isomorphisms $e_{q}: E_{1}^{q, q} \xrightarrow{\sim} H^{2 q}(\Omega(N G))$.
- The simplicial and universal Chern-Weil morphisms are isomorphisms of graded rings.

The twisted simplicial de Rham bicomplex

Let $\bar{N} G \rightarrow N G$ be the simplicial universal bundle and $\overline{\mathcal{D}}$ be the simplicial flat connection on the simplicial vector bundle $\operatorname{ad}(\bar{N} G)$.

Definition

The twisted simplicial de Rham bicomplex $\Omega(N G, \operatorname{ad}(\bar{N} G))$ has components $\Omega^{p, q}(N G, \operatorname{ad}(\bar{N} G)) \stackrel{\text { def. }}{=} \Omega^{q}\left(N_{p} G, \operatorname{ad}\left(\bar{N}_{p} G\right)\right)$ and differentials:

$$
\begin{aligned}
& \delta_{\mathrm{ad}}^{\prime}=\sum_{i=0}^{p+1}(-1)^{i}\left(\epsilon_{i}^{p+1}\right)^{*}: \Omega^{p, q}(N G, \operatorname{ad}(\bar{N} G)) \rightarrow \Omega^{p+1, q}(N G, \operatorname{ad}(\bar{N} G)) \\
& \delta_{\mathrm{ad}}^{\prime \prime}=(-1)^{p} \mathrm{~d}_{\overline{\mathcal{D}}}: \Omega^{p, q}(N G, \operatorname{ad}(\bar{N} G)) \rightarrow \Omega^{p, q+1}(N G, \operatorname{ad}(\bar{N} G)) .
\end{aligned}
$$

Let $\delta_{\mathrm{ad}} \stackrel{\text { def. }}{=} \delta_{\mathrm{ad}}^{\prime}+\delta_{\mathrm{ad}}^{\prime \prime}$ and $H^{*}(\Omega(N G, \operatorname{ad}(\bar{N} G)))$ be the total differential and total cohomology of this bicomplex, which is a ring under the obvious operation $\AA: \Omega^{k_{1}}\left(N_{q} G, \mathfrak{g}^{\otimes / 1}\right) \times \Omega^{k_{2}}\left(N_{q} G, \mathfrak{g}^{\otimes / 2}\right) \rightarrow \Omega^{k_{1}+k_{2}}\left(N_{q} G, \mathfrak{g}^{\otimes\left(l_{1}+k_{2}\right)}\right)$.

Theorem

There exists a natural isomorphism of vector spaces:

$$
\zeta_{\mathrm{ad}}: \boldsymbol{H}^{*}(\Omega(N G, \operatorname{ad}(\bar{N} G))) \xrightarrow{\sim} \boldsymbol{H}^{*}\left(B G, \operatorname{ad}(E G)_{\mathrm{disc}}\right) .
$$

which respects the cup product.

Definition

The universal real twisted Chern class of G is the real twisted Chern class of EG:

$$
\mathfrak{c}(G) \stackrel{\text { def. }}{=} \mathfrak{c}(E G) \in H^{2}\left(B G, \operatorname{ad}(E G)_{\text {disc }}\right)
$$

We have:

$$
\mathfrak{c}(G)=\zeta_{\mathrm{ad}}\left([\mathcal{V}(G)]_{\delta_{\mathrm{ad}}}\right)
$$

where the universal simplicial adjoint curvature $\mathcal{V}(G) \in \Omega_{\delta_{\mathrm{adcl}}}^{2}(N G, \operatorname{ad}(\bar{N} G))$ is induced by Dupont's universal simplicial connection.

Proposition

We have:

$$
\mathcal{V}(G)=\theta \in \Omega_{\delta_{\mathrm{accl}} \mathrm{Cl}}^{1,1}(N G, \operatorname{ad}(P G))=\Omega_{\mathrm{cl}}^{1}(G, \mathfrak{g}) .
$$

Moreover, for any $T \in S^{q}\left(\mathfrak{g}^{*}\right)^{\ulcorner }$, we have:

$$
\psi(T)=T(\mathfrak{c}(G) \cup \ldots \cup \mathfrak{c}(G)) \in H^{2 q}(B G, \mathbb{R})
$$

Let P be a principal G-bundle on a manifold M. Recall that the Chern-Weil morphism $\psi_{P}: S^{q}\left(\mathfrak{g}[2]^{*}\right) \rightarrow H^{\text {even }}(M, \mathbb{R})$ of P is defined through:

$$
\psi_{P}(T) \stackrel{\text { def. }}{=}\left[T\left(\mathcal{V}_{\mathcal{A}} \wedge \ldots \wedge \mathcal{V}_{\mathcal{A}}\right)\right]_{\mathrm{d}}=T(\mathfrak{c}(P) \cup \ldots \cup \mathfrak{c}(P))
$$

where $\mathcal{A} \in \operatorname{Conn}(P)$ is an arbitrary principal connection on P and the cup product includes tensorization along $\operatorname{ad}(P)$ (it is the cup product for the sheaf cohomology of $\left.\mathcal{C}_{\text {flat }}^{\infty}(\operatorname{ad}(P))\right)$.

Proposition

Let $f: M \rightarrow B G$ be a classifying map for P. Then:

$$
\mathfrak{c}(P)=f^{\sharp}(\mathfrak{c}(G)) \in H^{2}\left(M, \operatorname{ad}(P)_{\mathrm{disc}}\right)=H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))
$$

and:

$$
\psi_{P}=f^{*} \circ \psi
$$

Applying the universal bundle functor E to the projection morphism $q: G \rightarrow \Gamma$ gives a q-morphism of principal bundles $E q: E G \rightarrow E \Gamma$ which covers the map $B q: B G \rightarrow B \Gamma$. This is equivalent with a based isomorphism of principal Γ-bundles $\phi: \Gamma(E G) \xrightarrow{\sim}(B q)^{*}(E \Gamma)$, i.e. a (G, q)-lift of structure group of $(B q)^{*}(E \Gamma)$.

Since $\operatorname{ad}(E G) \stackrel{\text { def. }}{=} E G \times_{\text {Ad }} \mathfrak{g}=\Gamma(E G) \times_{\bar{\rho}} \mathfrak{g}$, this gives:

$$
\operatorname{ad}(E G) \simeq(B q)^{*}(E \Gamma) \times_{\bar{\rho}} \mathfrak{g}=(B q)^{*}\left(E \Gamma \times_{\bar{\rho}} \mathfrak{g}\right)=(B q)^{*}(\mathfrak{g}(E \Gamma))
$$

