Connections on principal bundles with weakly Abelian structure group

Calin Lazaroiu

DFT, IFIN-HH

Calin Lazaroiu Connections with weakly Abelian structure group 1/20

・ 同 ト ・ ヨ ト ・ ヨ ト

- The curvature maps and twisted Chern class for weakly Abelian structure group
- The gauge group of a principal bundle with weakly Abelian structure group
- Universal Chern-Weyl theory for weakly Abelian Lie groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Recap on principal connections

Let:

- $\bullet~G$ be a Lie group with Lie algebra ${\mathfrak g}$
- $\bullet~\mathrm{Ad}:\, G\to \mathrm{Aut}_{\mathbb{R}}(\mathfrak{g})$ be the adjoint representation of G.
- $p: P \rightarrow M$ a principal *G*-bundle on a manifold *M*
- $VP \subset TP$ be the vertical bundle of P.
- $\operatorname{ad}(P) \stackrel{\text{def.}}{=} P \times_{\operatorname{Ad}} \mathfrak{g}$ be the adjoint bundle of P.

The space of equivariant g-valued forms defined on P:

$$\Omega^*(P,\mathfrak{g})^{G} \stackrel{\text{def.}}{=} \{\eta \in \Omega^*(P,\mathfrak{g}) \,|\, r_g^*(\eta) = \mathrm{Ad}(g)^{-1}\eta\}$$

contains the subspace of horizontal forms:

$$\Omega^*_{\mathrm{Ad}}(P,\mathfrak{g}) \stackrel{\mathrm{def.}}{=} \{\eta \in \Omega^*(P,\mathfrak{g})^{\mathsf{G}} \mid \ \iota_X \eta = \mathsf{0} \ \ \forall X \in \mathcal{C}^\infty(P, VP) \}$$

We have inverse isomorphisms of graded vector spaces:

$$\Omega^*(M, \mathrm{ad}(P)) \mathop{\overset{P^*}{\underset{\varphi_P}{\leftarrow}}} \Omega^*_{\mathrm{Ad}}(P, \mathfrak{g}) \ .$$

Principal connections on P form an affine space modeled on $\Omega^1_{Ad}(P, \mathfrak{g})$:

$$\operatorname{Conn}(P) \stackrel{\text{def.}}{=} \left\{ \mathcal{A} \in \Omega^1(P, \mathfrak{g})^G \mid \iota_{X^v} \mathcal{A} = v \; \; \forall p \in P \; \; \forall v \in \mathfrak{g} \right\} \;\;,$$

where $X^{v} \in \mathcal{C}^{\infty}(P, VP)$ is the vertical vector field defined by $v \in \mathfrak{g}$, $v \in$

Let $d_{\mathcal{A}} : \Omega^*(P, \mathfrak{g}) \to \Omega^*(P, \mathfrak{g})[1]$ be the covariant differential of $\mathcal{A} \in \operatorname{Conn}(P)$.

Definition

The principal curvature of A is:

$$\Omega_{\mathcal{A}} \stackrel{\mathrm{def.}}{=} \mathrm{d}_{\mathcal{A}} \mathcal{A} = \mathrm{d}\mathcal{A} + \frac{1}{2} [\mathcal{A}, \mathcal{A}]_{\wedge} \in \Omega^2_{\mathrm{Ad}}(\mathcal{P}, \mathfrak{g}) \hspace{1em},$$

The adjoint curvature of A is:

$$\mathcal{V}_{\mathcal{A}} \stackrel{\mathrm{def.}}{=} \varphi_{\mathcal{P}}(\Omega_{\mathcal{A}}) \in \Omega^{2}(M, \mathrm{ad}(\mathcal{P}))$$

The principal curvature satisfies the Bianchi identity:

$$\mathrm{d}_{\mathcal{A}}\Omega_{\mathcal{A}}=0$$

The principal and adjoint *curvature maps* Ω : $\operatorname{Conn}(P) \to \Omega^2_{\operatorname{Ad}}(P, \mathfrak{g})$ and $\mathcal{V} : \operatorname{Conn}(P) \to \Omega^2(M, \operatorname{ad}(P))$ are defined through:

$$\Omega(\mathcal{A}) \stackrel{\mathrm{def.}}{=} \Omega_{\mathcal{A}} \ , \ \mathcal{V}(\mathcal{A}) \stackrel{\mathrm{def.}}{=} \mathcal{V}_{\mathcal{A}} \ \forall \mathcal{A} \in \mathrm{Conn}(P)$$

nan

We have a commutative diagram:

Let $\mathcal{D}_{\mathcal{A}} : \Gamma(M, \mathrm{ad}(P)) \to \Omega^{1}(M, \mathrm{ad}(P))$ be the connection induced by \mathcal{A} on $\mathrm{ad}(P)$ and $\mathrm{d}_{\mathcal{D}} : \Omega^{*}(M, \mathrm{ad}(P)) \to \Omega^{*}(M, \mathrm{ad}(P))[1]$ its differential. We have a commutative diagram:

$$\Omega^*_{\mathrm{Ad}}(P,\mathfrak{g}) \xrightarrow{\mathrm{d}_{\mathcal{A}}} \Omega^*_{\mathrm{Ad}}(P,\mathfrak{g})$$

$$\downarrow^{\varphi_P} \qquad \qquad \qquad \downarrow^{\varphi_P}$$

$$\Omega^*(M, \mathrm{ad}(P)) \xrightarrow{\mathrm{d}_{\mathcal{D}_A}} \Omega^*(M, \mathrm{ad}(P))$$

向 ト イヨ ト イヨ ト ヨ ・ ク ۹ ()

The curvature maps for weakly Abelian structure group

Suppose that G is a weakly Abelian Lie group.

Proposition

The following statements hold:

• For any $\mathcal{A} \in \operatorname{Conn}(P)$, we have $\Omega_{\mathcal{A}} = d\mathcal{A}$ and the Bianchi identity reduces to $d\Omega_{\mathcal{A}} = 0$. Thus Ω is an affine map with linear part:

$$\mathrm{d}|_{\mathrm{Conn}(P)}:\mathrm{Conn}(P)\to\Omega^2_{\mathrm{Ad}}(P,\mathfrak{g})$$

We have:

$$d_{\mathcal{A}}|_{\Omega^*_{\mathrm{Ad}}(P,\mathfrak{g})} = d|_{\Omega^*_{\mathrm{Ad}}(P,\mathfrak{g})} : \Omega^*_{\mathrm{Ad}}(P,\mathfrak{g}) \to \Omega^*_{\mathrm{Ad}}(P,\mathfrak{g})[1]$$
(1)

All principal connections A ∈ Conn(P) induce the same linear connection D_A on the adjoint bundle ad(P) (which we denote by D) and this induced connection is flat. Moreover, the adjoint curvature satisfies:

 $d_{\mathcal{D}}\mathcal{V}_{\mathcal{A}} = 0 \quad \forall \mathcal{A} \in \operatorname{Conn}(P)$

and $\varphi_P : (\Omega_{Ad}(P, \mathfrak{g}), d) \to (\Omega(M, ad(P)), d_{\mathcal{D}})$ is an isomorphism of complexes.

O coincides with the flat connection induced on ad(P) = Γ(P) ×_ρ g by the flat connection of the discrete remnant bundle Γ(P) ^{def.} P ×_q Γ.

Proposition

The twisted cohomology class of $\mathcal{V}_{\mathcal{A}}$:

$$\mathfrak{c}(P) \stackrel{\mathrm{def.}}{=} [\mathcal{V}_{\mathcal{A}}]_{\mathcal{D}} = \mathcal{V}_{\mathcal{A}} + \Omega^2_{\mathrm{d}_{\mathcal{D}}\text{-}\mathrm{ex}}(M, \mathrm{ad}(P)) \in H^2_{\mathcal{D}}(M, \mathrm{ad}(P))$$

does not depend on the choice of principal connection $\mathcal{A} \in \operatorname{Conn}(P)$. Viewing $\mathfrak{c}(P)$ as an affine space modeled on the vector space $\Omega^2_{\mathrm{d}_D - \mathrm{ex}}(M, \mathrm{ad}(P))$, the corestricted adjoint curvature map $\mathcal{V} : \operatorname{Conn}(P) \to \mathfrak{c}(P)$ is a surjective affine map with linear part given by:

$$\mathrm{d}_{\mathcal{D}} \circ \varphi_{P}|_{\Omega^{1}(P,\mathfrak{g})} = \varphi_{P} \circ \mathrm{d}|_{\Omega^{1}(P,\mathfrak{g})} : \Omega^{1}(P,\mathfrak{g}) \to \Omega^{2}_{\mathrm{d}_{\mathcal{D}}\text{-}\mathrm{ex}}(M, \mathrm{ad}(P))$$

Corollary

 $\mathcal{V}: \operatorname{Conn}(P) \to \mathfrak{c}(P)$ is an affine fibration with fiber at $\omega \in \mathfrak{c}(P)$ given by:

$$\operatorname{Conn}_{\omega}(P) \stackrel{\text{def.}}{=} \{ \mathcal{A} \in \operatorname{Conn}(P) \, | \, \mathcal{V}_{\mathcal{A}} = \omega \} \quad , \tag{2}$$

which is an affine space modeled on the vector space:

$$\Omega^1_{\mathrm{Ad},\mathrm{cl}}(P,\mathfrak{g}) \stackrel{\mathrm{def.}}{=} \mathsf{ker}(\mathrm{d}:\Omega^1_{\mathrm{Ad}}(M,\mathfrak{g}) \to \Omega^2_{\mathrm{Ad}}(M,\mathfrak{g})) \stackrel{\varphi_P}{\simeq} \Omega^1_{\mathrm{d}_{\mathcal{D}}\text{-}\mathrm{cl}}(M,\mathrm{ad}(P))$$

nan

The gauge group of P

Definition

The gauge group of P is the group $\operatorname{Aut}_b(P)$ of based automorphisms of P, whose elements are called (global) gauge transformations of P.

Let $Aut_b(ad(P))$ be the group of based automorphisms of ad(P).

Definition

The *adjoint representation* of $\operatorname{Aut}_b(P)$ is the linear representation induced on global sections of $\operatorname{ad}(P)$ by the morphism of groups $\operatorname{ad}_P : \operatorname{Aut}_b(P) \to \operatorname{Aut}_b(\operatorname{ad}(P))$ defined through:

$$\operatorname{ad}_{P}(\psi)([p,v]) \stackrel{\operatorname{def.}}{=} [\psi(p),v] \quad \forall \psi \in \operatorname{Aut}_{b}(P) \quad \forall p \in P \quad \forall v \in \mathfrak{g}$$

The *pullback representation* of $\operatorname{Aut}_b(P)$ is the linear representation $\mathfrak{R} : \operatorname{Aut}_b(P) \to \operatorname{Aut}(\Omega^*(P, \mathfrak{g}))$ defined through:

 $\mathfrak{R}(\psi)(\omega) \stackrel{\mathrm{def.}}{=} (\psi^{-1})^*(\omega) \ \forall \psi \in \mathrm{Aut}_b(P) \ \forall \omega \in \Omega^*(P,\mathfrak{g}) \ .$

Remark. Suppose that M is compact. Then $\operatorname{Aut}_b(P)$ is an infinite-dimensional Fréchet-Lie groups whose Lie algebra identifies with $\mathcal{C}^{\infty}(M, \operatorname{ad}(P))$. In this case, the linear action induced by ad_P on $\mathcal{C}^{\infty}(M, \operatorname{Ad}_G(P))$ identifies with the adjoint representation of $\operatorname{Aut}_b(P)$ as a Lie group (hence our terminology).

nar

The pullback and adjoint representations of the gauge group

The pullback representation preserves $\Omega^*_{Ad}(P, \mathfrak{g})$, on which it restricts to a representation \mathfrak{R}_{Ad} : $\operatorname{Aut}_b(P) \to \operatorname{Aut}(\Omega^*_{Ad}(P, \mathfrak{g}))$.

Proposition

The following diagram commutes:

Proposition

For any $\psi \in Aut_b(P)$, we have:

 $\mathrm{d}\circ\mathfrak{R}_{\mathrm{Ad}}(\psi)=\mathfrak{R}_{\mathrm{Ad}}(\psi)\circ\mathrm{d}_{|\Omega^*_{\mathrm{Ad}}(P,\mathfrak{g})} \ , \ \mathrm{d}_{\mathcal{D}}\circ\mathrm{ad}_{P}(\psi)=\mathrm{ad}_{P}(\psi)\circ\mathrm{d}_{\mathcal{D}} \ .$

Thus $\mathfrak{R}_{\mathrm{Ad}}$ and ad_{P} induce linear representations of the gauge group on the spaces $H^{*}_{\mathrm{d}}(\Omega_{\mathrm{Ad}}(P,\mathfrak{g}))$ and $H^{*}_{\mathrm{d}_{\mathcal{D}}}(M, \mathrm{ad}(P))$, which are equivalent through the isomorphism $\varphi_{P^{*}} : H^{*}_{\mathrm{d}}(\Omega_{\mathrm{Ad}}(P,\mathfrak{g})) \xrightarrow{\sim} H^{*}_{\mathrm{d}_{\mathcal{D}}}(M, \mathrm{ad}(P))$ induced by φ_{P} .

nan

The pull-back action preserves the affine space $\operatorname{Conn}(P) \subset \Omega^1(P, \mathfrak{g})^G$, on which it restricts to an affine action $\mathfrak{R}_c : \operatorname{Aut}_b(P) \to \operatorname{Aff}(\operatorname{Conn}(P))$ with linear part:

$$\mathfrak{R}^1_{\mathrm{Ad}} \stackrel{\mathrm{def.}}{=} \mathfrak{R}_{\mathrm{Ad}}|_{\Omega^1_{\mathrm{Ad}}(P,\mathfrak{g})} : \mathrm{Aut}_b(P) \to \mathrm{Aut}(\Omega^1_{\mathrm{Ad}}(P,\mathfrak{g}))$$

Proposition

The principal and adjoint curvature maps of P are gauge-equivariant:

$$\Omega \circ \mathfrak{R}_c(\psi) = \mathfrak{R}_{\mathrm{Ad}}(\psi) \circ \Omega \ \text{ and } \ \mathcal{V} \circ \mathfrak{R}_c(\psi) = \mathrm{ad}_{\mathcal{P}}(\psi) \circ \mathcal{V} \ \forall \psi \in \mathrm{Aut}_b(\mathcal{P})$$

Moreover, ad_P preserves the affine subspace $\mathfrak{c}(P) \subset \Omega^2_{\operatorname{d}_{\mathcal{D}^{-}\mathfrak{cl}}}(M, \operatorname{ad}(P))$, on which it acts through affine transformations with linear part:

$$\mathrm{ad}_{P}(\psi)|_{\Omega^{2}_{\mathrm{d}_{\mathcal{D}}^{-\mathrm{ex}}}(M,\mathrm{ad}(P))}:\Omega^{2}_{\mathrm{d}_{\mathcal{D}}^{-\mathrm{ex}}}(M,\mathrm{ad}(P))\to\Omega^{2}_{\mathrm{d}_{\mathcal{D}}^{-\mathrm{ex}}}(M,\mathrm{ad}(P)) \,\,\forall\psi\in\mathrm{Aut}_{b}(P)$$

In particular, the affine fibration $\mathcal{V} : \operatorname{Conn}(P) \to \mathfrak{c}(P)$ is equivariant with respect to the affine actions of $\operatorname{Aut}_b(P)$ on $\operatorname{Conn}(P)$ and $\mathfrak{c}(P)$.

Discrete gauge transformations

Recall that the *discrete remnant* of *P* is the principal Γ -bundle $\Gamma(P) \stackrel{\text{def.}}{=} P \times_q \Gamma$. This comes with a (G, q)-lift of structure group $\Phi_P : P \to \Gamma(P)$.

Definition

The group $\operatorname{Aut}_b(\Gamma(P))$ is called the *discrete gauge group* of *P* and its elements are called *discrete gauge transformations* of *P*.

Any $\psi \in \operatorname{Aut}_b(P)$ induces an automorphism $Q_P(\psi) \stackrel{\text{def.}}{=} \bar{\psi} \in \operatorname{Aut}_b(\Gamma(P))$ by: $\bar{\psi}([\rho, \gamma]) = [\psi(\rho), \gamma] \quad \forall [\rho, \gamma] \in \Gamma(P)$.

This fits into a commutative diagram:

The map $Q_P : \operatorname{Aut}_b(P) \to \operatorname{Aut}_b(\Gamma(P))$ is a morphism of groups.

Definition

The discrete gauge transformation $Q_P(\psi) = \overline{\psi} \in \operatorname{Aut}_b(\Gamma(P))$ is called the *discrete remnant* of the gauge transformation $\psi \in \operatorname{Aut}_b(P)$.

Let $\operatorname{ad}_{\Gamma(P)} : \operatorname{Aut}_b(\Gamma(P)) \to \operatorname{Aut}_b(\operatorname{ad}(P))$ be the morphism of groups given by:

$$\mathrm{ad}_{\Gamma(P)}(\chi)([p,v]_{\mathrm{Ad}}) \stackrel{\mathrm{def.}}{=} [\chi(\Phi_P(p)),v]_{\overline{P}} = [p,\overline{\rho}(h_\chi(p))(v)]_{\mathrm{Ad}} \; \forall p \in P \; \forall v \in \mathfrak{g}$$

with $\chi \in \operatorname{Aut}_b(\Gamma(P))$, where $\overline{\rho} : \Gamma \to \operatorname{Aut}(\mathfrak{g})$ is the reduced adjoint representation of G and we used the presentation $\operatorname{ad}(P) = \Gamma(P) \times_{\overline{\rho}} \Gamma$.

Proposition

We have $\operatorname{ad}_{P} = \operatorname{ad}_{\Gamma(P)} \circ Q_{P}$, *i.e.*:

$$\operatorname{ad}_{P}(\psi) = \operatorname{ad}_{\Gamma(P)}(\bar{\psi}) \quad \forall \psi \in \operatorname{Aut}_{b}(P) \quad .$$

Hence $\operatorname{ad}_{P}(\psi)$ depends only on the discrete remnant of ψ .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ − の Q ()

Let NG be the nerve of G (the nerve of the one-object groupoid defined by G):

•
$$N_n G = G^{\times n} \quad \forall n \geq 1 \quad , \quad N_0 G = \{1_G\}$$

• face maps $\epsilon_i := \epsilon_i^n : N_n G \to N_{n-1}G \ (n \ge 1)$ and degeneracy maps $\eta^i := \eta_i^n : N_n G \to N_{n+1}G \ (n \ge 0)$ given by:

$$\begin{split} \epsilon_{0}^{1}(g) &= \epsilon_{1}^{1}(g) = 1_{G} \quad , \quad \eta_{0}^{0}(1_{G}) = 1_{G} \\ \epsilon_{i}^{n}(g_{1}, \dots, g_{n}) \stackrel{\text{def.}}{=} \begin{cases} (g_{2}, \dots, g_{n}) & i = 0 \\ (g_{1}, \dots, g_{i}g_{i+1}, \dots g_{n}) & 1 \leq i \leq n-1 \\ (g_{1}, \dots, g_{n-1}) & i = n \end{cases} \\ \eta_{i}^{n}(g_{1}, \dots, g_{n}) \stackrel{\text{def.}}{=} \begin{cases} (1_{G}, g_{1}, \dots, g_{n}) & i = 0 \\ (g_{1}, \dots, g_{n-1}, 1_{G}, g_{i}, \dots, g_{n}) & 1 \leq i \leq n-1 \\ (g_{1}, \dots, g_{n}, 1_{G}) & i = n \end{cases} \end{split}$$

for all $n \ge 1$.

Let $\| \| : sTop \to Top$ be the fat realization functor, where sTop is the category of simplicial spaces and maps thereof. Then $\|NG\|$ is homotopy-equivalent with BG. Notice that the fat model $\|NG\|$ of BG differs up to homotopy from the Segal model (which uses the thin realization functor | |) and from the Milnor model (which uses the join construction).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Definition

The simplicial de Rham bicomplex $\Omega(NG)$ has components $\Omega^{p,q}(NG) \stackrel{\text{def.}}{=} \Omega^q(N_p G)$ and differentials:

$$\begin{split} \delta' &= \sum_{i=0}^{p+1} (-1)^i (\epsilon_i^{p+1})^* : \Omega^{p,q}(NG) \to \Omega^{p+1,q}(NG) \\ \delta'' &= (-1)^p \mathrm{d}_{N_pG} : \Omega^{p,q}(NG) \to \Omega^{p,q+1}(NG) \end{split}$$

Let $H^*(\Omega(NG))$ be the total cohomology of this bicomplex, which is a graded ring under the obvious operation:

$$\stackrel{\,\,{}_\circ}{\wedge}:\Omega^{k_1}(N_{q_1}G)\times\Omega^{k_2}(N_{q_2}G)\to\Omega^{k_1+k_2}(N_{q_1+q_2}G)$$

$$\begin{split} &H^*(\Omega(NG)) \text{ is computed by the spectral sequence of the vertical filtration} \\ &\Omega(NG)_q \stackrel{\text{def.}}{=} \oplus_{j \geq q} \oplus_{i \geq 0} \Omega^{i,j}(NG). \text{ The first page is} \\ &E_1^{p,q} = H^{q}_{\delta'}(\Omega^{*,p}(NG)) = H^{q}_{\delta'}(\Omega^{p}(N_*G)) \text{ with differential} \\ &\delta_1 = \delta'' : E_1^{p,q} \to E_1^{p+1,q}, \text{ while the second page is } E_2^{p,q} = H^{p}_{\delta''}(H^{q}_{\delta'}(\Omega(NG))). \end{split}$$

・・

Theorem (Bott, Shulman, Stasheff)

There exists an isomorphism of graded rings $\zeta : H^*(\Omega(NG)) \xrightarrow{\sim} H^*(BG, \mathbb{R})$ and isomorphisms of vector spaces:

$$\beta_{p-q,q}: H^{p-q}(G,S^q(\mathfrak{g}^*)) \xrightarrow{\sim} H^p_{\delta'}(\Omega^q(NG)) = E_1^{q,p} \quad \forall p \geq q \ .$$

Moreover, we have $E_1^{q,p} = 0$ for p < q.

Since $\delta_1|_{E_1^{q,q}} = 0$, we have epimorphisms $E_1^{q,q} \to E_2^{q,q} \to E_3^{q,q} \to \dots$ and an edge morphism $e_q : E_1^{q,q} \to E_{\infty}^{q,q} \subset H^{2q}(\Omega(NG))$. Since $H^0(G, S^q(\mathfrak{g}^*)) = S^q(\mathfrak{g}^*)^G = S^q(\mathfrak{g}^*)^{\Gamma}$, we have $\beta_{0,q} : S^q(\mathfrak{g}^*)^{\Gamma} \xrightarrow{\sim} E_1^{q,q}$.

Definition

The *simplicial* and *universal* Chern-Weil morphisms of G are the morphism of graded rings:

$$\beta \stackrel{\text{def.}}{=} \oplus_{q \geq 0} e_q \circ \beta_{0,q} : S^*(\mathfrak{g}[2]^{\vee})^{\Gamma} \xrightarrow{\sim} H^{\text{even}}(\Omega(NG)) \ .$$

and:

$$\psi \stackrel{\mathrm{def.}}{=} \zeta \circ \beta : S^*(\mathfrak{g}[2]^{\vee})^{\Gamma} \to H^{\mathrm{even}}(BG)$$

ヘロト ヘ回ト ヘヨト ヘヨト

2

DQC

The universal and simplicial Chern-Weil morphisms

Let $\theta \in \Omega^1(G, \mathfrak{g})$ be the left Maurer-Cartan form of G, which is closed by the MC equation. For any $q \ge 1$ and $i = 1, \ldots, q$, let $\theta_i^{(q)} \stackrel{\text{def.}}{=} (\pi_i^q)^*(\theta) \in \Omega^1(N_qG)$, where $\pi_i^q : N_qG = G^{\times q} \to G$ is the *i*-th projection.

Proposition

For any $T \in S^q(\mathfrak{g}^*)^{\Gamma}$, the form $T(\theta_1^{(q)} \stackrel{\wedge}{\wedge} \dots \stackrel{\wedge}{\wedge} \theta_q^{(q)}) \in \Omega^q(N_qG)$ is δ -closed and we have:

$$eta(\mathcal{T}) = [\mathcal{T}(heta_1^{(q)} \stackrel{\scriptscriptstyle\wedge}{\wedge} \dots \stackrel{\scriptscriptstyle\wedge}{\wedge} heta_q^{(q)})]_\delta \in H^{ ext{even}}(\Omega(\mathsf{NG}))$$

Theorem (Cartan, Bott)

Suppose that G is compact. Then the following statements hold:

- *H^p*(*G*, *S^q*(𝔅^{*})) = 0 for *p* > 0
- The spectral sequence E_* collapses at the first page, giving isomorphisms $e_q : E_1^{q,q} \xrightarrow{\sim} H^{2q}(\Omega(NG)).$
- The simplicial and universal Chern-Weil morphisms are isomorphisms of graded rings.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

≡ nar

The twisted simplicial de Rham bicomplex

Let $\bar{N}G \to NG$ be the simplicial universal bundle and \bar{D} be the simplicial flat connection on the simplicial vector bundle $\operatorname{ad}(\bar{N}G)$.

Definition

The twisted simplicial de Rham bicomplex $\Omega(NG, \operatorname{ad}(\overline{N}G))$ has components $\Omega^{p,q}(NG, \operatorname{ad}(\overline{N}G)) \stackrel{\text{def.}}{=} \Omega^q(N_pG, \operatorname{ad}(\overline{N}_pG))$ and differentials:

$$\begin{split} \delta_{\mathrm{ad}}' &= \sum_{i=0}^{p+1} (-1)^i (\epsilon_i^{p+1})^* : \Omega^{p,q}(NG, \mathrm{ad}(\bar{N}G)) \to \Omega^{p+1,q}(NG, \mathrm{ad}(\bar{N}G)) \\ \delta_{\mathrm{ad}}'' &= (-1)^p \mathrm{d}_{\bar{\mathcal{D}}} : \Omega^{p,q}(NG, \mathrm{ad}(\bar{N}G)) \to \Omega^{p,q+1}(NG, \mathrm{ad}(\bar{N}G)) \end{split}$$

Let $\delta_{\mathrm{ad}} \stackrel{\mathrm{def.}}{=} \delta'_{\mathrm{ad}} + \delta''_{\mathrm{ad}}$ and $H^*(\Omega(NG, \mathrm{ad}(\bar{N}G)))$ be the total differential and total cohomology of this bicomplex, which is a ring under the obvious operation $\stackrel{\wedge}{\wedge} : \Omega^{k_1}(N_qG, \mathfrak{g}^{\otimes h_1}) \times \Omega^{k_2}(N_qG, \mathfrak{g}^{\otimes h_2}) \to \Omega^{k_1+k_2}(N_qG, \mathfrak{g}^{\otimes (h_1+h_2)}).$

Theorem

There exists a natural isomorphism of vector spaces:

$$\zeta_{\mathrm{ad}}: H^*(\Omega(NG, \mathrm{ad}(\bar{N}G))) \xrightarrow{\sim} H^*(BG, \mathrm{ad}(EG)_{\mathrm{disc}})$$

which respects the cup product.

Definition

The *universal real twisted Chern class* of G is the real twisted Chern class of EG:

$$\mathfrak{c}(G)\stackrel{\mathrm{def.}}{=}\mathfrak{c}(\mathit{EG})\in \mathit{H}^2(\mathit{BG},\mathrm{ad}(\mathit{EG})_{\mathrm{disc}})$$

We have:

$$\mathfrak{c}(G) = \zeta_{\mathrm{ad}}([\mathcal{V}(G)]_{\delta_{\mathrm{ad}}})$$

where the universal simplicial adjoint curvature $\mathcal{V}(G) \in \Omega^2_{\delta_{\mathrm{ad}}-\mathrm{cl}}(NG, \mathrm{ad}(\bar{N}G))$ is induced by Dupont's universal simplicial connection.

Proposition

We have:

$$\mathcal{V}({\sf G})= heta\in \Omega^{1,1}_{\delta_{
m ad}-{
m cl}}({\sf NG},{
m ad}({\sf PG}))=\Omega^1_{
m cl}({\sf G},\mathfrak{g})$$
 .

Moreover, for any $T \in S^q(\mathfrak{g}^*)^{\Gamma}$, we have:

$$\psi(T) = T(\mathfrak{c}(G) \cup \ldots \cup \mathfrak{c}(G)) \in H^{2q}(BG,\mathbb{R})$$
 .

法国际 医国际

Э

Let *P* be a principal *G*-bundle on a manifold *M*. Recall that the Chern-Weil morphism $\psi_P : S^q(\mathfrak{g}[2]^*) \to H^{\text{even}}(M, \mathbb{R})$ of *P* is defined through:

$$\psi_P(T) \stackrel{\mathrm{def.}}{=} [T(\mathcal{V}_{\mathcal{A}} \wedge \ldots \wedge \mathcal{V}_{\mathcal{A}})]_{\mathrm{d}} = T(\mathfrak{c}(P) \cup \ldots \cup \mathfrak{c}(P)) \;\;,$$

where $\mathcal{A} \in \operatorname{Conn}(P)$ is an arbitrary principal connection on P and the cup product includes tensorization along $\operatorname{ad}(P)$ (it is the cup product for the sheaf cohomology of $\mathcal{C}^{\infty}_{\operatorname{flat}}(\operatorname{ad}(P))$).

Proposition

Let $f : M \rightarrow BG$ be a classifying map for P. Then:

$$\mathfrak{c}(P) = f^{\sharp}(\mathfrak{c}(G)) \in H^2(M, \mathrm{ad}(P)_{\mathrm{disc}}) = H^2_{\mathcal{D}}(M, \mathrm{ad}(P))$$

and:

$$\psi_P = f^* \circ \psi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Applying the universal bundle functor E to the projection morphism $q: G \to \Gamma$ gives a q-morphism of principal bundles $Eq: EG \to E\Gamma$ which covers the map $Bq: BG \to B\Gamma$. This is equivalent with a based isomorphism of principal Γ -bundles $\phi: \Gamma(EG) \xrightarrow{\sim} (Bq)^*(E\Gamma)$, i.e. a (G, q)-lift of structure group of $(Bq)^*(E\Gamma)$.

Since $\operatorname{ad}(EG) \stackrel{\operatorname{def.}}{=} EG \times_{\operatorname{Ad}} \mathfrak{g} = \Gamma(EG) \times_{\overline{\rho}} \mathfrak{g}$, this gives:

 $\operatorname{ad}(EG) \simeq (Bq)^*(E\Gamma) \times_{\overline{\rho}} \mathfrak{g} = (Bq)^*(E\Gamma \times_{\overline{\rho}} \mathfrak{g}) = (Bq)^*(\mathfrak{g}(E\Gamma))$.