The classification of principal bundles with weakly Abelian structure group

Calin Lazaroiu

DFT, IFIN-HH

イロト イボト イヨト イヨト

2 The classifying space of G

Principal F-bundles

4 Lifting the structure group of a principal Γ -bundle to G

イロト 不得 トイヨト イヨト

= nar

A Lie group G is called *weakly Abelian* if its Lie algebra \mathfrak{g} is Abelian.

Proposition

A Lie group G is weakly Abelian iff its connected component of the identity G_0 is an Abelian Lie group, which we denote by A.

Let G be weakly Abelian and $\Gamma \stackrel{\text{def.}}{=} \pi_0(G)$ be its group of components. The exact sequence $1 \to G_0 \to G \to \pi_0(G)$ presents G as an Abelian extension of Γ :

$$1 \to A \xrightarrow{i} G \xrightarrow{q} \Gamma \to 1$$
 , (1)

which need not be split or central. The adjoint (a.k.a. conjugation) action $\operatorname{Ad}_G : G \to \operatorname{Aut}(G)$ of G preserves the normal subgroup A, on which it induces the *restricted adjoint action* $\operatorname{Ad}_G^A : G \to \operatorname{Aut}(A)$. In turn, this factors through q to the *characteristic morphism* $\rho : \Gamma \to \operatorname{Aut}(A)$:

$$\mathrm{Ad}_G^A = \rho \circ q \ ,$$

which depends only on the equivalence class of the extension. Let $\operatorname{Ext}_{\rho}(\Gamma, A)$ be the group of equivalence classes of extensions (1) with characteristic morphism ρ , with addition given by the Baer sum. This is isomorphic with $H^2(\Gamma, A_{\rho}) = \operatorname{Ext}_{\mathbb{Z}[\Gamma]}^2(\mathbb{Z}, A_{\rho})$, where A_{ρ} is the Γ -module defined by ρ .

nar

The extension class of G is the group cohomology class $e(G) \in H^2(\Gamma, A_{\rho})$ defined by the extension sequence $1 \to A \xrightarrow{i} G \xrightarrow{q} \Gamma \to 1$.

The Lie group extension (1) gives a Lyndon-Hochschild-Serre spectral sequence in (Segal-Mitchison) cohomology of continuous groups, which in turn produces a five-term *inflation-restriction exact sequence*:

$$0 \to H^{1}(\Gamma, A_{\rho}) \xrightarrow{q^{*}} H^{1}(G, A_{\mathrm{Ad}_{G}^{A}}) \xrightarrow{i^{*}} H^{1}(A, A)^{\Gamma} \xrightarrow{\lambda_{G}} H^{2}(\Gamma, A) \xrightarrow{q^{*}} H^{2}(G, A_{\mathrm{Ad}_{G}^{A}}) ,$$

$$(2)$$

where λ_G is the transgression morphism.

Proposition

We have:

$$e(G) = -\lambda_G(\mathrm{id}_A) \quad , \tag{3}$$

where $id_A \in Hom(A, A) = H^1(A, A)^{\Gamma}$ is the identity morphism of A. In particular, we have $q^*(e(G)) = 0$.

= nar

The exponential map and reduced adjoint representation

Since A is Abelian, the adjoint representation $\operatorname{Ad} : G \to \operatorname{Aut}_{\mathbb{R}}(\mathfrak{g})$ of G factors through q to the reduced adjoint representation $\overline{\rho} : \Gamma \to \operatorname{Aut}_{\mathbb{R}}(\mathfrak{g})$:

$$\mathrm{Ad} = \overline{\rho} \circ q \quad . \tag{4}$$

Proposition

The exponential map $\exp_G : (\mathfrak{g}, +) \to A$ of G is a surjective morphism of Lie groups. The Abelian group:

$$\Lambda \stackrel{\text{def.}}{=} \ker(\exp_G) = \{\lambda \in \mathfrak{g} \mid \exp_G(\lambda) = 1_G\}$$

is a (generally non-full) lattice in \mathfrak{g} which is stable under G and Γ . The map $C_G : \Lambda \to \pi_1(G) \stackrel{\text{def.}}{=} \pi_1(G_0, 1_G)$ which sends $\lambda \in \Lambda$ to the homotopy class of the curve $c_{\lambda} : [0, 1] \to G_0 = A$ defined through:

$$c_{\lambda}(t) \stackrel{\text{def.}}{=} \exp_{G}(t\lambda) \quad \forall t \in [0,1] \quad .$$
 (5)

is an isomorphism of groups, whose inverse embeds $\pi_1(G)$ as the lattice $\Lambda \subset \mathfrak{g}$.

Sac

The lattice $\Lambda \subset \mathfrak{g}$ is called the *fundamental lattice* of *G*. The morphism of groups $\operatorname{Ad}_0 : G \to \operatorname{Aut}_{\mathbb{Z}}(\Lambda)$ obtained by restricting Ad to Λ is called the *restricted adjoint representation* of *G*. The morphism of groups $\rho_0 : \Gamma \to \operatorname{Aut}_{\mathbb{Z}}(\Lambda)$ obtained by restricting $\overline{\rho}$ to Λ is called the *coefficient morphism* of *G*, while the Γ -module Λ_{ρ_0} is called the *coefficient module*.

We have:

$$\operatorname{Ad}_0 = \rho_0 \circ q$$
 .

The coefficient crossed module $\mathcal{X}_0(G) \stackrel{\text{def.}}{=} (\Lambda, \Gamma, \mathbb{1}_{\Gamma}, \rho_0)$ is algebraically weakly-equivalent with the exponential crossed module $\mathcal{X}_1(G) \stackrel{\text{def.}}{=} (\mathfrak{g}, G, \exp_G, \operatorname{Ad}).$

Proposition

The crossed module defined by $\Pi_1(G)$ is isomorphic with the exponential crossed module $\mathcal{X}_1(G)$ and hence the fundamental 2-group $\Pi_1(G)$ is isomorphic with the 2-group $X_1(G) = G \parallel_{\exp_G} \mathfrak{g}$ defined by $\mathcal{X}_1(G)$.

イロト イポト イラト イラト

nar

Э

The obstruction class of G

Let $\xi(G) \in H^3(\Gamma, \Lambda_{\rho_0})$ be the *Taylor obstruction class* of *G*, which vanishes iff *G* admits a proper universal covering *group*. Given a topological group *H* and a morphism of topological groups $\alpha : H \to \Gamma$, the exponential sequence $1 \to \Lambda \xrightarrow{j} \mathfrak{g} \xrightarrow{\exp} A \to 1$ induces a long exact sequence in group cohomology:

$$\ldots \to H^{k}(H, \Lambda_{\rho_{0} \circ \alpha}) \xrightarrow{j_{*}} H^{k}(H, \mathfrak{g}_{\overline{\rho} \circ \alpha}) \xrightarrow{\exp_{*}} H^{k}(H, A_{\rho \circ \alpha}) \xrightarrow{\Delta_{k}^{H}} H^{k+1}(H, \Lambda_{\rho_{0} \circ \alpha}) \to \ldots$$

where Δ_k^H are the connecting morphisms. The inflation-restriction sequences of the extension (1) for group cohomology with coefficients in A and Λ fit into a commutative diagram with exact rows:

Let $\epsilon(G) \stackrel{\text{def.}}{=} \Delta_1^A(\mathrm{id}_A) \in H^2(A, \Lambda_{\rho_0})$ be the *fundamental class* of A.

Proposition

We have:

$$\xi(G) = \Delta_2^{\Gamma}(e(G)) = -\mu_G(\epsilon(G))$$
.

In particular, we have $q^*(\xi(G)) = 0$

) Q (?

Relation between $\xi(G)$ and the k-invariant of BG

To any principal Γ -bundle Q on a topological space X we associate the local coefficient system $\Lambda_{\rho_0}(Q) \stackrel{\text{def.}}{=} Q \times_{\rho_0} \Lambda$.

Proposition (Segal-Mitchison)

For any topological group morphism $H \xrightarrow{\alpha} \Gamma$, we have a natural isomorphism:

$$H^*(H, \Lambda_{\rho_0 \circ \alpha}) \simeq H^*(BH, \Lambda_{\rho_0}(E_\alpha \Gamma)) \quad , \tag{7}$$

where $E_{\alpha}\Gamma \rightarrow BH$ is the $B\alpha$ -pull-back to BH of the universal bundle $E\Gamma \rightarrow B\Gamma$.

In particular, the fundamental class $\epsilon(G) \in H^2(A, \Lambda)$ of A identifies with the fundamental class $\iota \in H^2(K(\Lambda, 2), \Lambda) \simeq [K(\Lambda, 2), K(\Lambda, 2)]$ of $K(\Lambda, 2)$. The extension sequence (1) implies that the classifying space of G is an Eilenberg-MacLane fibration with fiber $BA \simeq K(\Lambda, 2)$ over the classifying space $B\Gamma \simeq K(\Gamma, 1)$ of Γ :

$$* \to BA \to BG \to B\Gamma \to *$$
 . (8)

Such fibrations are classified by an element $\kappa \in H^3(B\Gamma, \Lambda_{\rho_0}(E\Gamma))$, which is the single *k*-invariant of *BG*.

Proposition

The extension class $\xi(G)$ identifies with κ under the isomorphism of groups (7).

Since $H^1(K(\Lambda, 2), \Lambda) = 0$, the Leray-Serre spectral sequence for Λ -valued cohomology of this fibration gives a five term exact sequence:

$$0 \to H^{2}(B\Gamma, \Lambda_{\rho_{0}}(E\Gamma)) \to H^{2}(BG, \Lambda_{\mathrm{Ad}_{0}}(E\Gamma)) \to H^{2}(BA, \Lambda) \xrightarrow{\delta} H^{3}(B\Gamma, \Lambda_{\rho_{0}}(E\Gamma)) \to H^{3}(BG, \Lambda_{\mathrm{Ad}_{0}}(E\Gamma))$$
(9)

which identifies with the Λ -valued inflation-restriction sequence on the bottom row of (6). Hence the Leray-Serre spectral sequence for Λ -valued cohomology of (8) identifies with the Λ -valued Lyndon-Hochschild-Serre spectral sequence of (1) and the inflation-restriction sequence in the bottom row of diagram (6) identifies with the five-term sequence induced by the Leray-Serre spectral sequence.

Proposition

We have:

$$\kappa = \delta(\iota)$$

where $\delta : H^2(BA, \Lambda) \to H^3(B\Gamma, \Lambda_{\rho_0}(E\Gamma))$ is the connecting morphism of (9).

Let *M* be a *d*-manifold. To any principal Γ -bundle *Q* defined on *M* we associate two bundles of Ablian groups and a vector bundle, namely:

- The coefficient system Λ(Q) ^{def.} = Q ×_{ρ0} Λ of Γ of Q relative to G, where ρ₀ : Γ → Aut(G) is the coefficient morphism of G. This is a bundle of discrete Abelian groups with fiber given by the exponential lattice of G, which can also be viewed as a local system of discrete Abelian groups defined on M.
- The characteristic bundle A(Q) ^{def.} = Q ×_ρ A of Q relative to G, where ρ: Γ → Aut(A) is the reduced adjoint action of G. This is a bundle of Abelian Lie groups whose fiber is given by the connected component of the identity in G.
- The reduced adjoint bundle g(Q) = Q ×_{p̄} g of Q relative to G, where *p̄* : Γ → Aut(g) is the reduced adjoint representation of G. This is a smooth vector bundle defined on M, whose fiber is the Lie algebra of G.

Notice that Q carries a unique flat connection since it is a principal bundle with discrete structure group. This induces a flat Ehresmann connection on A(Q) (whose parallel transport acts through isomorphisms of groups) and a flat connection \mathcal{D} on the vector bundle $\mathfrak{g}(Q)$. Notice that $\Lambda(Q)$ is a fiber sub-bundle of $\mathfrak{g}(Q)$ which is preserved by the parallel transport of \mathcal{D} .

ロト・日本・モト・モー・ショーのへで

The k-th $\mathfrak{g}(Q)$ -valued twisted de Rham cohomology space $H^k_{\mathcal{D}}(M, \mathfrak{g}(Q))$ is the k-th cohomology space of the twisted de Rham complex:

$$0 o \Omega^0(M, \mathfrak{g}(Q)) \stackrel{\mathrm{d}_\mathcal{D}}{\longrightarrow} \Omega^1(M, \mathfrak{g}(Q)) \stackrel{\mathrm{d}_\mathcal{D}}{\longrightarrow} \ldots \stackrel{\mathrm{d}_\mathcal{D}}{\longrightarrow} \Omega^d(M, \mathfrak{g}(Q)) o 0$$

Proposition

There exists a natural isomorphism of graded vector spaces:

$$H^*_{\mathcal{D}}(M,\mathfrak{g}(Q))\simeq H^*(M,\mathcal{C}^\infty_{\mathrm{flat}}(\mathfrak{g}(Q)))=H^*(M,\mathfrak{g}(Q)_{\mathrm{disc}})$$
 .

The exponential sequence of A induces a commutative diagram with exact rows, where δ_0 and δ are the connecting morphisms:

The sheaf $\mathcal{C}^{\infty}(\mathfrak{g}(Q))$ is acyclic. Hence $\delta: H^k(M, \mathcal{C}^{\infty}(A(Q))) \xrightarrow{\sim} H^{k+1}(M, \Lambda(Q))$ are isomorphisms for all $k \ge 1$ and we have:

Calin Lazaroiu

Principal bundles with weakly abelian structure group 11/17

Let Q be a principal Γ -bundle on a manifold M.

Definition

The *G*-extension class and *G*-obstruction class of Q are defined through:

 $e_G(Q) \stackrel{\text{def.}}{=} f^{\sharp}(e(G)) \in H^2(M, A(Q)_{\text{disc}}) \ , \ \xi_G(Q) \stackrel{\text{def.}}{=} f^{\sharp}(\xi(G)) \in H^3(M, \Lambda(Q)) \ ,$ where $f: M \to B\Gamma$ is a classifying map for Q. The smooth image of e(Q) is

defined through:

$$e_G^{\mathfrak{s}}(Q) \stackrel{\mathrm{def.}}{=} \iota_*(e_G(Q)) \in H^2(M, \mathcal{C}^\infty(\mathcal{A}(Q)))$$

where $\iota_* : H^2(M, A(Q)_{\text{disc}}) = H^*(M, \mathcal{C}^{\infty}_{\text{flat}}(A(Q))) \to H^2(M, \mathcal{C}^{\infty}(A(Q)))$ is the morphism induced by the sheaf inclusion $\mathcal{C}^{\infty}_{\text{flat}}(A(Q)) \hookrightarrow \mathcal{C}^{\infty}(A(Q))$.

We have:

$$\delta_0(e_G(Q)) = \delta(e_G^s(Q)) = \xi_G(Q) \quad . \tag{12}$$

4 周 ト 4 戸 ト 4 戸 ト

≡ nar

A (G, q)-lift of structure group of Q is a pair (P, φ) , where P is principal G-bundle defined on M and $\varphi: P \to Q$ is a based morphism of principal bundles above $q: G \to \Gamma$, i.e. a based isomorphism of principal Γ -bundles $\varphi: \Gamma(P) \xrightarrow{\sim} Q$, where $\Gamma(P) \stackrel{\text{def.}}{=} P \times_q \Gamma$.

Isomorphisms of (G, q)-lifts of structure group are defined obviously. Let $T_{G,q}(Q)$ be the set of isomorphism classes of (G, q)-lifts of Q.

Theorem

Q admits a smooth (G, q)-lift of structure group iff $\xi_G(Q) = 0$, i.e. $e_G^s(Q) = 0$. In this case, $T_{G,q}(Q)$ is a torsor over $H^1(M, C^{\infty}(A(Q))) = H^2(M, \Lambda(Q))$.

Definition

Suppose that Q admits a (G, q)-lift of structure group, thus $e_G(Q) \in \ker \delta_0 = \operatorname{im}(\exp_{0,*}(H^2_{\mathcal{D}}(M, \mathfrak{g}(Q))))$. The linear and affine characteristic lattices of Q are the lattices in $H^2_{\mathcal{D}}(M, \mathfrak{g}(Q))$ defined through:

$$L_0(Q) \stackrel{\text{def.}}{=} j_{0,*}(H^2(M, \Lambda(Q))) = \exp_{0,*}^{-1}(\{0\}) \ , \ \ L(Q) \stackrel{\text{def.}}{=} \exp_{0,*}^{-1}(\{e_G(Q)\}) \ .$$

naa

Define:

$$\operatorname{Prin}_{\Gamma}^{0}(M) \stackrel{\text{def.}}{=} \{Q \in \operatorname{Prin}_{\Gamma}(M) \mid \xi_{G}(Q) = 0\} \ , \ T_{\Gamma}^{G,q}(M) \stackrel{\text{def.}}{=} \sqcup_{Q \in \operatorname{Prin}_{\Gamma}^{0}(M)} T_{G,q}(Q)$$

The groupoid $Prin^0_{\Gamma}(M)$ acts from the left on $T^{G,q}_{\Gamma}(M)$. The set of orbits $T^{G,q}_{\Gamma}(M)/Prin^0_{\Gamma}(M)$ fibers over $Prin^0_{\Gamma}(M)$.

Theorem

There exists a natural bijection:

$$\operatorname{Prin}_{G}(M) \xrightarrow{\sim} T_{\Gamma}^{G,q}(M)/\operatorname{Prin}_{\Gamma}^{0}(M)$$

Jac.

3

化压压 化压压

The extension class and affine characteristic lattice of P

Let P be a principal G-bundle defined on M.

Definition

The discrete remnant of P is the principal Γ -bundle $\Gamma(P) \stackrel{\text{def.}}{=} P \times_q \Gamma$.

We have $\operatorname{ad}(P) = \mathfrak{g}(\Gamma(P))$. Define:

$$A(P) \stackrel{\mathrm{def.}}{=} A(\Gamma(P)) = P \times_{\mathrm{Ad}_G^A} A \ , \ \Lambda(P) \stackrel{\mathrm{def.}}{=} \Lambda(\Gamma(P)) = P \times_{\mathrm{Ad}_0} \Lambda$$

Notice that $\xi(\Gamma(P)) = 0$, hence $e_G^s(\Gamma(P)) = 0$.

Definition

The *G*-extension class of *P* is defined through:

$$e_G(P) \stackrel{\text{def.}}{=} e_G(\Gamma(P)) \in H^2(M, \mathcal{C}^\infty_{\text{flat}}(\text{ad}(P))) = H^2(M, \text{ad}(P)_{\text{disc}})$$

The linear and affine *characteristic lattices* of P are defined to be the corresponding lattices of $\Gamma(P)$:

$$\begin{split} L_0(P) \stackrel{\mathrm{def.}}{=} L_0(\Gamma(P)) &= j_{0,*}(H^2(M, \Lambda(P))) = \exp_{0,*}^{-1}(0) \subset H^2_{\mathcal{D}}(M, \mathrm{ad}(P)) \\ L(P) \stackrel{\mathrm{def.}}{=} L(\Gamma(P)) &= \exp_{0,*}^{-1}(\{e_G(P)\}) \subset H^2_{\mathcal{D}}(M, \mathrm{ad}(P)) \end{split}$$

Let P be a principal G-bundle defined on M.

Proposition

All principal connections defined on P induce the same adjoint connection, which coincides with the distinguished flat connection \mathcal{D} of $\operatorname{ad}(P) = \mathfrak{g}(\Gamma(P))$.

Proposition

The adjoint curvature $\mathcal{V}_{\mathcal{A}} \in \Omega^2(M, \mathrm{ad}(P))$ of any principal connection $\mathcal{A} \in \mathrm{Conn}(P)$ satisfies:

$$\mathrm{d}_{\mathcal{D}}\mathcal{V}_{\mathcal{A}}=0$$
 .

Moreover, the $d_{\mathcal{D}}$ -cohomology class $\mathfrak{c} \stackrel{\text{def.}}{=} [\mathcal{V}_{\mathcal{A}}]_{d_{\mathcal{D}}} \in H^{2}_{\mathcal{D}}(M, \mathrm{ad}(P))$ does not depend on the choice of \mathcal{A} in $\mathrm{Conn}(P)$.

Definition

The twisted de Rham cohomology class $\mathfrak{c}(P) \in H^2_{\mathcal{D}}(M, \mathrm{ad}(P))$ is called the *real twisted Chern class* of *P*.

イロト イポト イラト イラト

nac

Theorem

For any principal G-bundle P defined on M, we have $c(P) \in L(P)$. Given a principal Γ -bundle Q defined on M which admits (G, q)-lifts of structure group, the map:

 $T_{G,q}(Q)
i P
ightarrow \mathfrak{c}(P) \in L(Q)$

is a morphism of torsors above the surjective morphism of groups $j_{0,*}: H^2(M, \Lambda(Q)) \to L_0(Q).$

Notice that $j_{0,*}$ kills torsion, so it need not be injective.

Remark. Suppose that $e_G(Q) = 0$. In this case, $T_{G,q}(Q)$ identifies with the Abelian group $H^2(M, \Lambda(P))$ and (G, q)-extensions of Q are classified by their integral twisted Chern class $c(P) \in H^2(M, \Lambda(P)) = H^2(M, \Lambda(Q))$, which satisfies $j_{0,*}(c(P)) = c(P)$.

This occurs for example when G is a split extension of Γ by A (i.e. when $G \simeq A \rtimes_{\rho} \Gamma$). Then e(G) = 0, hence $e_G(Q) = 0$ for any principal Γ -bundle Q. In this case, any principal Γ -bundle admits (G, q)-extensions of structure group and principal G-bundles P are classified by pairs $(\Gamma(P), c(P))$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへぐ