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FLRW cosmology with scalar matter

Definition
A scalar triple is an ordered system (M, G, V), where:
@ (M, Q) is an oriented Riemannian n-manifold (the scalar manifold)
e V €C>(M,R) is a smooth function defined on M (the scalar potential).

v

Assumptions

©@ M is connected.

Q@ (M,Q) is complete.
© V>0o0onM.

Each scalar triple defines a cosmological model with n real scalar fields:

swovledl= [ ax vl B8 @ -ve| @
for a simply-connected and spatially flat FLRW universe:
ds? = —dt* + 22(t)d® (xX° =t , x=(x"x*x%) , a(t)>0vt) (2)
in which ¢ depends only on the cosmological time t:

o =p(t) . (3)
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The minisuperspace Lagrangian

Substituting (2) and (3) in (1) and ignoring the integration over X gives the
minisuperspace action:

Snigvla gl = / T dt Lo (a(t). o). £(1) .

where the minisuperspace Lagrangian is:
.\ def. 22 3 1. 2 _ .3 2 1. 2
Lagv(ae§) 2 —3at4a" |11l — V)| = a* | 3K + 21I4ll3 — V()

Here ¢ def. ‘é—f and H % g is the Hubble parameter. This Lagrangian

describes a classical system with n+ 1 degrees of freedom and configuration
. . . .
space N aof Rso x M. The Euler-Lagrange equations are equivalent with:

o1
3K + 20 + [4ll} — V() =0
(Ve +3H)o + (gradg V)(¢) =0 .
We must also impose the Friedmann constraint:
1, .
§|\s0||2 +Vop=3H",

which amounts to the zero energy condition.
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The cosmological equations and geometric dynamical system

Proposition

When supplemented with the Friedmann constraint, the Euler-Lagrange
equations of Laq,g,v are equivalent with the cosmological equations:

Vep +3Ho + (gradgV)op = 0
H+3H*~Vop = 0

. 1, .
H+§H<P||é’ = 0.

Remark

One can eliminate H algebraically from the cosmological equations as:

def

H(E) = “—e(t) [l + 2V (0(£))] /2 , where e(t) % signH(t) € {~1,0,1

V6

thereby reducing the latter to the n-component second order autonomous
nonlinear ODE:

Vea(t) + \/}(t) [I2(e)I13 +2V(2(0)]** (2) + (gradg V)(e()) = 0

which defines a (dissipative) geometric dynamical system on T M.
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Strong variational symmetries

Definition

A strict variational symmetry X € X(R x A) of the minisuperspace system is
called strong if it is the lift of a vector field X € X(N/) defined on V.

We have a natural decomposition:
TN=T.Ne TN ,
where:
TN L pi(TR) | TN L ps(TM) (pr: TN SR, po: TN > M) .
Accordingly, X € X(N) decomposes as:
X=X, +X

In local coordinates (U, a, ") on A, we have:

7] i 0]
Xi(a,p) =X — X=X —
1(a, ) (a0)5, » X (a, ¢)8¢'
The Noether symmetry condition is:
Lyxi(L) =0 , where X' =/ (X) .
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The characteristic system for strong variational symmetries

Theorem

For the minisuperspace Lagrangian, the Noether symmetry condition amounts
to the requirement that X, and X| have the following forms:

Xua.0) = 220, Xi(a.0) = Vo) - Sia(EadoN)(e) |

where A € C*°(M,R) and Y € X (M) satisfy the characteristic system of the
scalar triple (M, G, V):

HessQ(/\):gg/\ . Ko(Y)=0

<dv,d/\>g:%w\ L Y(V)=0 .

which can also be written in the index-full form:

3
(a,-a,- - r,-k,-ak) A=2Ggh , ViYj+V;¥i=0

GIo VoA = %w\ . Yiov=0
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Visible and Hessian symmetries

The characteristic system naturally separates into the A-system:
Hessg(A) = %g/\
(dV,dN)g = %V/\

and the Y-system:

Kg(Y)=0
Y(V)=0 .

Definition

A non-trivial solution A € C*°(M, R) of the A-system is called a Hessian
symmetry of (M, G, V). A scalar triple which admits Hessian symmetries is
called a Hessian triple.

Definition

A non-trivial solution Y € X(M) of the Y-system is is called a visible
symmetry of (M, G, V). A triple which admits visible symmetries is called a
visibly symmetric triple.
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Visible and Hessian symmetries

Let N(M, G, V) denote the vector space of solutions of the characteristic
system and Ny(M, G, V), Ny(M,G, V) denote the vector spaces of solutions
of the A- and Y-systems.

Proposition

There exists a linear isomorphism:
N(M7 g7 V) ~R NH(M7 gy V) ® NV(Ma g7 V)

In particular, a scalar triple (M, G, V) admits strong Noether symmetries iff it
is Hessian or visibly symmetric (or both).

A generic scalar triple (M, G, V) does not admit any strong Noether
symmetries. Since existence of visible symmetries is a classical problem, we
focus on characterizing Hessian symmetries and Hessian scalar triples.

Remark

Existence of a Hessian Noether symmetry simplifies various cosmological
problems, for example allows one to give a useful exact formula for the total
number of e-folds during inflation, which is valid without ‘slow roll’ or ‘slow
turn’ assumptions.
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Reconstruction of V from the gradient flow of A

One can solve second equation in the A-system through the method of
characteristics. Let v be a gradient flow curve of A with gradient flow

parameter q:

d’éi(qq) = —(gradg/\)(’Y(q)) :

The second equation of the A-system (4) implies:

d 3
—V = —{(dV,dA =--V ,
g (1(q)) = —( ) w4 (+(9))
which gives:
_3 .[‘;10 Adg

V(v(q)) = V(v(q0))e

This determines V along the stable and unstable manifolds (with respect to A)
of any critical point ¢ of A. If p; lies in the stable manifold M” (c) of ¢, then
there exists a gradient flow line v : [0, +00) — M of A such that v(0) = p5
and y(4+00) = c. If p_ lies in the unstable manifold M” (c) of ¢, then there
exists a gradient flow line v : (—o0,0] — M of A such that (0) = p— and
v(—00) = c. In these cases, we have:

V(ps) = V(c)eFa s
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The Hesse equation and Hesse functions

Definition
The Hessian endomorphism PfeEsQ(/\) € Endg(TM) of (M, G) is defined by:
Hessg(A)(X, Y) = G(X, Hessg(A)(Y)) , VX,Y € X(TM) .

The (R-linear) Hesse operator Hessg : C*°(M,R) — Endg(TM) of (M, G)
associates to A € C*°(T M, R) its Hessian endomorphism Hessg(A).

In local coordinates (U, x*,...,x") on M, we have:
I‘T(;Sg(/\”u = ﬁe;SQ(/\)ijdxi(@(?j , where IT(;SQ(/\),-’. =gk [8,-8;( - I'fk(?,} A
Definition

A Hesse function of (M, G) with parameter § > 0 is a smooth function
A € C*° (M, R) which satisfies the Hesse equation with parameter §:

Hessg(A) = B2AG <= Hessg(A) = BN idTm

A unit Hesse function of (M, G) is a Hesse function A of (M, G) for § = 1.

Remark. In our application to cosmological models we have 3= /3/8.
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The Hesse index and Hesse manifolds

Definition

Let Sg(M,G) be the vector space of solutions of the Hesse equation with
def.

parameter 8. The Hesse index of (M, G) is ind(M, G) =" dimS1(M,G). A
Hesse manifold is a Riemannian manifold (M, G) for which ind(M, G) > 0.

Proposition

We have Sg(M, G) = S1(M, B2G).

Proposition

The following statements hold for any N\ € Sg(M,G) \ {0}:

@ The set Z(N\) L {p € M|A(p) = (dA)(p) = 0} is empty.

@ The R-linear map e, : Sp(M,G) — R @ T, M defined through:

ep(N) " BA(p) + (gradgA)(p) ER® To,M , VA € S5(M,G)

is injective for every p € M. Thus ind(M,G) <1+ dim M.

Definition

We say that (M, G) is maximally Hesse if ind(M, G) = 1 + dlm./\/l

Calin Lazaroiu Hessian sy gical models 12/27




Local radial expansion and the sectional curvature condition

Let rg(p) = injrad, (M, G), (r,0) € (0,rg(p)) x [0,7]"% x (R/27) be normal
spherical coordinates at p, v(0) € "7, u(r,0) = rv(0) € B"(rg(p)) and

a(r,0) " exp, (u(r,6)) € Up S exp, (u(B"(r9(p))).
Proposition (Local radial expansion of Hesse functions)

Let A € C*°(Up,R) be a Hesse function of (Up,G|u,). Then:
i
B

Moreover, N is identically zero or is a Morse function.

A(q(r,6)) = A(p) cosh(r) + = (8 \)(p) sinh(Br) .

Proposition (Sectional curvature condition on Hesse manifolds)

Let A € S3(M,G) \ {0}. Then the following open set is non-empty:

def.

U(N) =" {p € M|(dA)(p) # 0} = {p € M|(gradgA)(p) # 0}

For any p € U(N) and any 2-plane m C T, M containing (gradg/\)(p), we have
K,(m) = —B2, where K,(m) denotes the sectional curvature.
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The Hesse pairing

Definition
The S-Hesse pairing of two smooth functions fi, , € C*°(M,R) is the smooth
function Bg(f1, 2) € C*°(M,R) defined through:

Bs(fi, f) L Bhh — (gradgh, gradgh)g

Proposition

Let A1, N2 € Sg(M,G). Then Bg(A1,2) is constant on M.

Hence restriction to Sg(M, G) gives a real-valued bilinear pairing:

()5 S5 (M,G) x Sp(M,G) = R, (A1, A2)s ™S Ba(An, Aa)
Forpe M, let (, )p: (R® TpM) x (R TpM) — R be the Minkowski
pairing:

def.
(m+vi,2+w)p T 1m —Gp(vi, ) , Vi, m €R | Yvi, 1o € TpM .

Proposition

For any A € §1(M,G) and p € M, the map
e : (S1(M,G),(, )1) > (R® TpM,(, )p) is an injective isometry.
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The Hesse representation

The isometry group Iso(M, G) acts naturally on C*°(M, R):

P ()L fopt, Ve elso(M,G) Vf € C°(M,R) .

This action preserves the subspace Sg(M,G) C C*°(M,R) and restricts to a
linear representation Rg : Iso(M, G) — Autr(Ss(M, G)) of the isometry
group, called the Hesse representation:

Ro(@)(F) E o' (N) =Aop™ | VAES5(M,G) .

Proposition

The Hesse representation is ( , )g-orthogonal, i.e. any representation operator
Rg(v) (¢ € Iso(M,G)) preserves the Hesse pairing.

Definition

A Hesse function A € Sg(M, G) is called:
o time-like, if (A,A)s >0
@ space-like, if (A,A)s <0
o light-like, if (A,A)s =0 .
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The hyperbolic ball

Let D" {ueR"[0<|julle <1} (|lu]le ® 2+, +a)
Definition
The hyperbolic ball is the complete Riemannian manifold:

D" (D", Gn)

where G, be the Poincaré ball metric, i.e. the unique complete metric on D" of
constant sectional curvature K¢, = —1.

v

We have:
dsg, = % idu;z = %(dpz +p%d6%)
(1 —[lull2)? = (1 -0
where (p, 0) are spherical coordinates in R”, with 8 = (04,...,0,-1) and:
n—1
do* = ki (0)d6;
i=1

is the squared line element on S"~*, with Lamé coefficients hy(9) = 1 and:

hi(0) = [ sin(6;) , Vi=2,....n .

Jj<i—1

Calin Lazaroiu Hessian sy ies of logical models 16/27



The hyperboloid model and the Weierstrass map

Consider the (n+ 1)-dimensional Minkowski space R!:" def- (R™,(, ), where:

def. - v
(x,¥) = xoy0 — Zx,-y,- =" Xux0
i=1
Define ¥ <" (x!,...,x"), so that x = (x°, %) and (x,y) = x°y° — X 7, where -
denotes the Euclidean scalar product in R”. Let S, denote the future sheet of
the hyperboloid (x,x) = 1:

A {x eR"™|(x,x) =1 & xo >0}:{x6R"+1|x0:q/1+x12+...—|—x,?} .

For any x € S;", define u; “Z arg. Then S is diffeomorphic with D" through

the Weierstrass map = : D" — S;7, which is given by:

=(u) & (1 +ullE  2um 2u, )
B T—lullE" 1=l 71— [Jullf
The components =¥ (u)satisfy the relation 7,,="(u)="(u) = —1 and are

Weierstrass coordinates of u € D", Moreover, = is an isometry from D" to S,
when S is endowed with the Riemannian metric induced by the opposite of
the Minkowski metric ( , ).
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Hesse functions on the hyperbolic ball

Theorem

The hyperbolic ball D" is a maximally Hesse manifold. Moreover, the family

£ (E*)u=o0,...n is an orthonormal basis of (S1(D"),( , )1):

E" =) =79"" , Yu,v=0,...,n .

In particular, we have (S1(D"),( , )1) ~ R*".

Hence a Hesse function on D" has the general form:
Ag = (B,=) = B,=" = 1,,B"=" (BeR"™?) .
The map A : R™™ — §;(D") given by A(B) 4 Ap is a linear isomorphism.
Proposition
The Hesse pairing of D" is given by:
(A8y,Ngy)s = (B1,B2) , VBi, B, e R™* .

Thus A : R = (R™ (1, ) = (S1(D"), (, )1) is an isometry.

Calin Lazaroiu Hessian sy ies of logical models 18/27




The Hesse representation of D"

Iso™(D") = Is0,(D") ~ SO™(1, n) = Oo(1, n) acts on R™™* (and hence on the
hyperboloid model S;) through the fundamental representation:

R s x = UxeR™ | YU eSO (1,n) .
The natural action u — py(u) of Iso™(D") on D" is uniquely determined by:

Z(pu(u)) = U=(u), YU €SO*(1,n) .

Proposition

The Hesse representation of Iso™(D") = SO (1, n) is equivalent with the
fundamental representation of SO™ (1, n) through the map A:

R(U)(A8) = Ay@wy , VBER™ | YU e SO™(1,n) .
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Orbit classification of Hesse functions on the hyperbolic ball

Proposition

@ Two time-like Hesse functions Ag, Ng: € S1(D") lie on the same orbit iff
(B,B) = (B, B")(> 0) and sign(B°) = sign(B’®). The set of time-like
orbits of Iso, (D) on S1(D") is in bijection with {—1,1} x Rsq. The
time-like orbit corresponding to (e, K) € {—1,1} x R is diffeomorphic
with the sheet sign(B°) = ¢ of the two-sheeted hyperboloid (B, B) = K.

@ Two space-like Hesse functions Ag,\g: € S1(ID") lie on the same orbit iff
(B,B) = (B’,B’)(< 0). The set of space-like orbits of Iso+(M,G) on
S1(D") is in bijection with R<o. The space-like orbit corresponding to
K € Rg is diffeomorphic with the one-sheeted hyperboloid (B, B) = K.

@ There exist exactly two non-trivial light-like orbits of Iso™(D") on S1(D"),
which coincide with the connected components of the complement of the
origin in the light cone.

Up to conjugation ~ in SO (1, n), we have:

SO(n) if (B, B) > 0 (time — like)
Stabise+mn)(As) ~ ¢ SOT(1,n—1) if(B,B) <0 (space —like)
1SO.(n—1)  if (B, B) = 0 (light — like)

where ISO,(n — 1) is the special Euclidean group in n — 1 dimensions.
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Hyperbolic Hesse manifolds

Any hyperbolic n-manifold is a Riemannian quotient (M, G) = D"/T of the
Poincaré ball D" by a discrete subgroup I' C Iso*(D") ~ SO™ (1, n). Let

7w : D" — M be the canonical projection. When n > 3, Mostow's rigidity
theorem implies that (M, G) is determined by 71 (M) ~ T up to isometry;
when n = 2, the hyperbolic metric G can have moduli. Let S;(D")" be the
space of I-invariant Hesse functions on D".

Theorem
The map 7 : C*°(M) — C>°(D")" defined through:
(N L Ao

induces a linear isomorphism from Si(M, G) to S1(D")". In particular, (M, G)
is a Hesse manifold iff T conjugates in SOT (1, n) to a discrete subgroup of
SO™ (1, n), ISOo(n — 1) or SO(n).
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The hyperbolic disk

Consider the open disk of unit Euclidean radius in the complex u-plane:
D2 (uec|o<|u<1} .

The Poincaré disk metric is:
4 -4
(1 = |ul?)? S (1—p2)2

where p ’ |u| and 9 < arg(u) € [0,27) are polar coordinates on the u-plane.
We have:
def.

Iso"(D?) ~ PSL(2,R) ~ PSU(1,1) =" SU(1,1)/{~h, b} ,
where SU(1,1) ~ SL(2,R) is the closed subgroup of SL(2, C) defined through:
SU(1,1) <" {U € Mat(2,C)|U" = JUJ & detU = +1} .

1
0

dsz, = |dul? (dp? + p*d6?)

The matrix J < { _01 ] satisfies JT = J = J~1. We have:

SU(171) = {U(WU) 1,0 € C: |77|2 - |U|2 = 1} )

where U(n, o) < { Z_Z % ] and SU(1,1) acts on D? through:

pu(u) =227 (yeD) .

ou—+1m

Calin Lazaroiu Hessian sy ies of

logical models 22/27



Hesse functions on the hyperbolic disk

Consider the future sheet of the hyperboloid (x,x) =1 in R*? = (R3, ( ,)):

s 4 {x eR3|(x,x) =1 & x0 >0} = {x € R®|xo = /1 +x2 +x2} .

The Weierstrass map = : D® — S is given by:

:(u)diﬂ 1+ |u®? 2Rev 2Imu
L= P = e T o

The components =*(u) are the Weierstrass coordinates of u € D?.

Proposition
def. .—g —
E = (=2, _1, %) is an orthonormal basis of the 3-dimensional Minkowski

space (S1(D), (, )1):

(EH>EU)1:TIHV , Vu,v=0,1,2 .

Hence the general Hesse function on D? has the form:

ol +|u)? 1 Reu > Imu
— 2B —2B"———
1 —|uf? 1 — |uf? 1 — |uf?

with arbitrary B = (B®, B', B*) € R3. The unit Hesse pairing is given by:
(As,N\g)1 = (B, B/) = T)HVB“BID .

As(u) = (B,=(v) = B,="(u) = B
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The Hesse representation of the hyperbolic disk

Proposition

The Hesse representation of Iso™(D?) = PSU(1,1) is induced by the adjoint
representation of SU(1,1).

We have:
Z(pu(u)) = Ado(U)(Z(u)), YueD, VU e SU(L,1) ,
where the Hesse representation Ady : SU(1,1) — Autg(R?) is given by:

[n]* + o> —2Re(na) 2Im(n5)
Ado(U) = | —2Re(no) Re(n® +0?) —Im(n® — o?)
—2Im(no) Im(n® +02) Re(n® —o?)

The Killing pairing on the Lie algebra su(1,1) ~ R? identifies with the
Minkowski pairing (, ) through an isomorphism which identifies Adg with the
adjoint representation of SU(1,1). Ado preserves this pairing and descends to
an isomorphism of groups Adp : PSU(1,1) = SO.(1,2).
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Orbit classification of solutions

Proposition

@ Two time-like Hesse functions Ag,\g/ belong to the same (time-like) orbit
of PSU(L,1) iff (B, B) = (B, B')(> 0) and sign(B°) = sign(B'®). The
set of time-like orbits is in bijection with {—1,1} x Rsq. The time-like
orbit corresponding to (e, K) € {—1,1} x Ry is diffeomorphic with the
sheet sign(B°) = ¢ of the two-sheeted hyperboloid (B, B) = K.

@ Two space-like Hesse functions Ag, Ng: belong to the same orbit of
PSU(1,1) iff (B, B) = (B’, B’)(< 0). The set of space-like orbits is in
bijection with R<o. The space-like orbit corresponding to K € R<q is
diffeomorphic with the one-sheeted hyperboloid (B, B) = K.

@ The non-trivial light-like orbits of PSU(1,1) on S1(D?) coincide with the
connected components of the complement of the origin in the light cone.

The stabilizer subgroup of a nontrivial solution Ag in PSU(1,1) ~ SO,(1,2) is:
SO(2) if (B, B) > 0 (time — like)

B,B
Stabpsu(1,1)(As) >~ ¢ SO,(1,1) ~ (R,+) if(B,B) < 0 (space — like)
1SO,(1) ~ (R,+)  if (B, B) =0 (light — like)
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Stabilizers of Hesse functions on the hyperbolic disk

Proposition

Let T be a non-trivial discrete subgroup of PSU(1,1). Suppose that there
exists a non-trivial unit Hesse function A € Si(D?) such that
I C Stabpsy(1,1)(A)- Then T is a cyclic group. Moreover:

© If A is time-like then T is a finite cyclic group and hence is generated by an
elliptic element of PSU(1, 1).
If N\ is light-like then T is an infinite cyclic group generated by a parabolic
element of PSU(1, 1)
If N\ is space-like then T is an infinite cyclic group generated by a
hyperbolic element of PSU(1,1).

Corollary

Let T be a non-trivial surface group (i.e. a non-trivial Fuchsian group without
elliptic elements) which stabilizes a non-trivial unit Hesse function A € Si(D?).
Then A is light-like or space-like and T is an infinite cyclic group. Moreover:

@ If A is light-like then T is a parabolic cyclic group and D?/T is a hyperbolic
cusp.

@ If A is space-like then T is a hyperbolic cyclic group and D?/T is a
hyperbolic annulus.
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Classification of complete Hesse surfaces

Proposition

Any complete Hesse surface (X, G) is hyperbolic.

Theorem

A hyperbolic surface (¥, G) ~ D?/T with [ # 1 is Hesse iff T is a parabolic or a

hyperbolic cyclic group, in which case we have ind(X, G) = 1. Moreover:

@ IfT is a parabolic cyclic group (i.e. if (X, G) is a hyperbolic cusp), then
S1(D?)" ~ S1(X, G) is a light ray of (S1(D?),( , )s) ~ R2.

@ IfT is a hyperbolic cyclic group (i.e. if (£, G) is a hyperbolic annulus),
then S1(D?)" ~ S1(X, G) is a space-like ray of (S1(D?),( , )s) ~ R2.

Corollary

The two-field cosmological model defined by a complete surface (¥, G)
uniformized by I C PSU(1,1) admits Hessian Noether symmetries iff (X, G) is
an elementary surface of Gaussian curvature Kg = —3/8. In this case, the
space of Hesse functions is three-dimensional when I ~ 1 (hyperbolic disk) and
one-dimensional when I ~ 7 (hyperbolic cusp or annulus).
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