Hesse manifolds and Hesse functions

Calin Lazaroiu

(with L. Anguelova and E.M. Babalic)

IBS Center for Geometry and Physics, Pohang, South Korea

Calin Lazaroiu Hesse manifolds and Hesse functions 1/20

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ ۹ ()~

Outline

- Multifield scalar cosmology
- 2 Noether symmetries
- 3 Characterization of Hessian models
- 4 Hesse functions
- 5 Locally maximally Hesse manifolds
- 6 Hessian two-field models
- Further results

8 Appendix

≡ nar

An n-dimensional scalar triple is an ordered system $(\mathcal{M}, \mathcal{G}, V)$, where:

- $(\mathcal{M}, \mathcal{G})$ is a connected Riemannian *n*-manifold (called scalar manifold)
- $V \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R})$ is a smooth function (called scalar potential).

Assumptions

 $(\mathcal{M},\mathcal{G})$ is oriented and complete.

Each *n*-dimensional scalar triple defines a cosmological model with n real scalar fields:

$$\mathcal{S}_{\mathcal{M},\mathcal{G},V}[g,\varphi] = \int_{\mathbb{R}^4} \mathrm{d}^4 x \sqrt{|g|} \left[\frac{R(g)}{2} - \frac{1}{2} \mathrm{Tr}_g \varphi^*(\mathcal{G}) - V(\varphi) \right] \quad . \tag{1}$$

Take g to describe a simply-connected and spatially flat FLRW universe:

$$\mathrm{d} s_g^2 := -\mathrm{d} t^2 + a^2(t) \mathrm{d} \vec{x}^2 \quad (x^0 = t \ , \ \vec{x} = (x^1, x^2, x^3) \ , \ a(t) > 0 \ \forall t) \qquad (2)$$

and φ to depends only on the cosmological time *t*:

$$\varphi = \varphi(t) \quad . \tag{3}$$

The minisuperspace Lagrangian

Substituting (2) and (3) in (1) and ignoring the integration over \vec{x} gives the minisuperspace action:

$$\mathcal{S}_{\mathcal{M},\mathcal{G},V}[\mathbf{a},\varphi] = \int_{-\infty}^{\infty} \mathrm{d}t \, L_{\mathcal{M},\mathcal{G},V}(\mathbf{a}(t),\varphi(t),\dot{\varphi}(t)) \;\;,$$

where the minisuperspace Lagrangian is:

$$L_{\mathcal{M},\mathcal{G},\mathcal{V}}(a,\varphi,\dot{\varphi}) \stackrel{\text{def.}}{=} -3a\dot{a}^2 + a^3 \left[\frac{1}{2}||\dot{\varphi}||_{\mathcal{G}}^2 - \mathcal{V}(\varphi)\right] = a^3 \left[-3H^2 + \frac{1}{2}||\dot{\varphi}||_{\mathcal{G}}^2 - \mathcal{V}(\varphi)\right]$$

Here $\stackrel{\cdot}{=} \stackrel{\text{def.}}{\stackrel{}{=}} \frac{\text{d}}{\text{d}t}$ and $H \stackrel{\text{def.}}{=} \frac{\text{a}}{\text{a}}$ is the Hubble parameter. This Lagrangian describes a classical system with n + 1 degrees of freedom and configuration space $\mathcal{N} \stackrel{\text{def.}}{=} \mathbb{R}_{>0} \times \mathcal{M}$. The E-L equations are equivalent with:

$$3H^{2} + 2\dot{H} + \frac{1}{2}||\dot{\varphi}||_{\mathcal{G}}^{2} - V(\varphi) = 0$$
$$(\nabla_{t} + 3H)\dot{\varphi} + (\operatorname{grad}_{\mathcal{G}}V)(\varphi) = 0$$

We must also impose the Friedmann constraint:

$$\frac{1}{2}||\dot{\varphi}||^2 + V \circ \varphi = 3H^2 \quad ,$$

which amounts to the zero energy condition.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ●

Proposition

When supplemented with the Friedmann constraint, the Euler-Lagrange equations of $L_{\mathcal{M},\mathcal{G},\mathcal{V}}$ are equivalent with the cosmological equations:

$$\nabla_t \dot{\varphi} + 3H \dot{\varphi} + (\operatorname{grad}_{\mathcal{G}} V) \circ \varphi = 0$$
$$\dot{H} + 3H^2 - V \circ \varphi = 0$$
$$\dot{H} + \frac{1}{2} ||\dot{\varphi}||_{\mathcal{G}}^2 = 0$$

Remark

One can eliminate H algebraically from the cosmological equations as:

$$egin{aligned} \mathcal{H}(t) &= rac{1}{\sqrt{6}} \epsilon(t) \left[|| \dot{arphi}(t) ||_{\mathcal{G}}^2 + 2 V(arphi(t))
ight]^{1/2} \;, \; ext{where} \; \; \epsilon(t) \stackrel{ ext{def.}}{=} \operatorname{sign} \mathcal{H}(t) \; \; , \end{aligned}$$

thereby obtaining the reduced cosmological equation:

$$abla_t \dot{arphi}(t) + \sqrt{rac{3}{2}} \epsilon(t) \left[||\dot{arphi}(t)||_{\mathcal{G}}^2 + 2V(arphi(t))
ight]^{1/2} \dot{arphi}(t) + (ext{grad}_{\mathcal{G}} V)(arphi(t)) = 0 \;\;,$$

which defines a (dissipative) geometric dynamical system on TM.

The characteristic system for strong variational symmetries

We have a natural decomposition $T\mathcal{N} = T_1\mathcal{N} \oplus T_2\mathcal{N}$, where:

$$T_1\mathcal{N} \stackrel{\text{def.}}{=} p_1^*(T\mathbb{R}_{>0}) \ , \ T_2\mathcal{N} \stackrel{\text{def.}}{=} p_2^*(T\mathcal{M}) \ (p_1:T\mathcal{N} \to \mathbb{R}_{>0}, \ p_2:T\mathcal{N} \to \mathcal{M})$$

Theorem

A vector field $X \in \mathcal{X}(\mathcal{N})$ is a time-independent Noether symmetry iff:

$$X(a, \varphi) = X_{\Lambda, Y}(a, \varphi) = \frac{\Lambda(\varphi)}{\sqrt{a}} \partial_a + Y(\varphi) - \frac{4}{a^{3/2}} (\operatorname{grad}_{\mathcal{G}} \Lambda)(\varphi)$$

where $\Lambda \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R})$ and $Y \in \mathcal{X}(\mathcal{M})$ satisfy the Λ -system:

$$\operatorname{Hess}_{\mathcal{G}}(\Lambda) = rac{3}{8}\mathcal{G}\Lambda \quad , \ \ \langle \mathrm{d}V,\mathrm{d}\Lambda
angle_{\mathcal{G}} = rac{3}{4}V\Lambda$$

and Y-system:

$$\mathcal{K}_{\mathcal{G}}(Y) = 0$$
 , $Y(V) = 0$

which can also be written as follows:

$$\begin{split} & \left(\partial_i \partial_j - \Gamma^k_{ij} \partial_k\right) \Lambda = \frac{3}{8} \mathcal{G}_{ij} \Lambda \quad , \quad \nabla_i Y_j + \nabla_j Y_i = 0 \\ & \mathcal{G}^{ij} \partial_i V \partial_j \Lambda = \frac{3}{4} V \Lambda \qquad , \quad Y^i \partial_i V = 0 \quad . \end{split}$$

A time-independent Noether symmetry $X = X_{\Lambda,Y}$ is called:

- visible if $\Lambda = 0$.
- Hessian if Y = 0.

The scalar triple $(\mathcal{M}, \mathcal{G}, V)$ and cosmological model are called visibly-symmetric or Hessian if they admit visible or Hessian symmetries, respectively.

Let $N_H(\mathcal{M}, \mathcal{G}, V)$, $N_V(\mathcal{M}, \mathcal{G}, V)$ and $N(\mathcal{M}, \mathcal{G}, V)$ be respectvely the linear spaces of Hessian, visible and time-independent symmetries.

Proposition

We have a linear isomorphism $N(\mathcal{M}, \mathcal{G}, V) \simeq_{\mathbb{R}} N_H(\mathcal{M}, \mathcal{G}, V) \oplus N_V(\mathcal{M}, \mathcal{G}, V)$.

Remark

Existence of a Hessian symmetry simplifies various cosmological problems. For example, it gives:

$$\left[\frac{a(t)}{a(t_0)}\right]^{3/2} \Lambda(\varphi(t)) - \Lambda_0 = \left(\frac{3}{2}H_0\Lambda_0 + (\mathrm{d}_{\varphi_0}\Lambda)(\dot{\varphi}_0)\right)(t-t_0)$$

Rescaling the metric. The Hesse and Λ -V-equations

Let $\beta = \sqrt{3/8}$ and $G = \beta^2 \mathcal{G}$.

Definition

The rescaled scalar manifold is the Riemannian manifold (\mathcal{M}, G) .

Then Λ -system of $(\mathcal{M}, \mathcal{G}, V)$ is equivalent with:

- $\operatorname{Hess}_{G}(\Lambda) = \Lambda G$ (the Hesse equation of the rescaled scalar manifold)
- $\langle dV, dA \rangle_G = 2VA$ (the A-V equation of the rescaled scalar manifold)

Definition

Let (\mathcal{M}, G) be a complete Riemannian manifold. A Hesse function of (\mathcal{M}, G) is a smooth solution of the Hesse equation of (\mathcal{M}, G) :

$$\operatorname{Hess}_{G}(\Lambda) = \Lambda G$$
.

Let $S(\mathcal{M}, G)$ be the linear space of Hesse functions of (\mathcal{M}, G) . The Hesse index of (\mathcal{M}, G) is defined through:

$$\mathfrak{h}(\mathcal{M},\mathcal{G}) \stackrel{\mathrm{def.}}{=} \dim \mathcal{S}(\mathcal{M},\mathcal{G})$$
 .

The complete Riemannian manifold (\mathcal{M}, G) is called a Hesse manifold if it admits non-trivial Hesse functions, i.e. if $\mathfrak{h}(\mathcal{M}, G) > 0$.

Proposition

We have $\mathfrak{h}(\mathcal{M}, G) \leq n + 1$. We say that (\mathcal{M}, G) is maximally Hesse if equality is attained.

Definition

The Hesse pairing of (\mathcal{M}, G) is the symmetric \mathbb{R} -bilinear map $(,)_G : \mathcal{C}^{\infty}(\mathcal{M}) \times \mathcal{C}^{\infty}(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$ defined through:

$$(f_1,f_2)_{{{\mathcal G}}}\stackrel{{\rm def.}}{=} f_1f_2 - \langle \mathrm{d} f_1,\mathrm{d} f_2\rangle_{{{\mathcal G}}} = f_1f_2 - \langle \operatorname{grad}_{{{\mathcal G}}}f_1,\operatorname{grad}_{{{\mathcal G}}}f_2\rangle_{{{\mathcal G}}} \ , \ \forall f_1,f_2\in {\mathcal C}^\infty({\mathcal M}) \ .$$

Proposition

Let $\Lambda_1, \Lambda_2 \in S(\mathcal{M}, G)$ be two Hesse functions on (\mathcal{M}, G) . Then the Hesse pairing $(\Lambda_1, \Lambda_2)_G$ is constant on \mathcal{M} .

Hence the Hesse pairing restricts to a symmetric \mathbb{R} -bilinear map:

$$(\ ,\)_{G}:\mathcal{S}(\mathcal{M},G)\times\mathcal{S}(\mathcal{M},G)\rightarrow\mathbb{R}\ ,\ (\Lambda_{1},\Lambda_{2})_{G}\stackrel{\mathrm{def.}}{=}(\Lambda_{1},\Lambda_{2})_{G}$$

on the vector space $\mathcal{S}(\mathcal{M}, G)$.

Theorem

For any non-trivial Hesse function $\Lambda \in S(\mathcal{M}, G)$, any smooth solution of the Λ -V-equation of (\mathcal{M}, G) takes the following form:

$$V = \Omega ||\mathrm{d}\Lambda||_G^2 = \Omega \left[\Lambda^2 - (\Lambda, \Lambda)_G\right] \quad , \tag{4}$$

where $\Omega \in \mathcal{C}^{\infty}(\mathcal{M} \setminus \operatorname{Crit}(\Lambda))$ is constant along the gradient flow of Λ :

$$\langle \mathrm{d}\Omega, \mathrm{d}\Lambda \rangle_G = 0$$
 . (5)

Definition

The cosmological model defined by the scalar triple $(\mathcal{M}, \mathcal{G}, V)$ is called *weakly Hessian* if the rescaled scalar manifold (\mathcal{M}, G) is Hesse. It is called *Hessian* if it admits non-trivial Hessian symmetries.

Proposition

The cosmological model defined by the scalar triple $(\mathcal{M}, \mathcal{G}, V)$ is Hessian iff it is weakly Hessian and the scalar potential V has the form (4), with Ω a solution of (5).

Theorem

Let $\Lambda \in S(\mathcal{M}, G)$ be a Hesse function of (\mathcal{M}, G) and suppose that V satisfies the Λ -V- equation with respect to Λ . Then the minisuperspace Lagrangian takes the following form in natural local coordinates (a_0, y, v) on the configuration space \mathcal{N} :

$$L(y, \dot{y}, v, \dot{v}) = -3(\Lambda, \Lambda)_G \dot{v}^2 - 3a_0 \dot{a}_0^2 + a_0^3 L_\lambda(y, \dot{y}) \quad , \tag{6}$$

where the reduced Lagrangian L_{λ} is given by:

$$L_{\lambda}(y,\dot{y}) \stackrel{\text{def.}}{=} \frac{1}{2\beta^2} ||\dot{y}||_g^2 - V_{\lambda}(y) \quad . \tag{7}$$

with $V_{\lambda} \stackrel{\text{def.}}{=} V|_{\mathcal{M}_{\Lambda}(\lambda)}$ the restriction of V to the level set $\mathcal{M}_{\Lambda}(\lambda)$ and g the metric induced by G on this level set. We have:

$$V_{\lambda}(y) = \left[\lambda^2 - (\Lambda, \Lambda)_G\right] \Omega(y) \quad , \tag{8}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

with Ω a smooth arbitrary function defined on $\mathcal{M}_{\Lambda}(\lambda)$.

The Hesse norm of a Hesse function $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ is the non-negative number $\kappa_{\Lambda} \stackrel{\text{def.}}{=} \sqrt{|(\Lambda, \Lambda)_G|}$, while its type indicator is the sign factor $\epsilon_{\Lambda} \stackrel{\text{def.}}{=} \operatorname{sign}(\Lambda, \Lambda)_G$. A non-trivial Hesse function Λ is called timelike, *spacelike* or lightlike when ϵ_{Λ} equals +1, -1 or 0.

Proposition

Let $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ be a non-trivial Hesse function. Then:

- If Λ is timelike, then Z(Λ) = Ø and Λ has constant sign η_Λ on M.
 Moreover, Λ has exactly one critical point, with critical value η_Λκ_Λ, which is a global minimum or maximum according to whether η_Λ = +1 or -1.
- If ∧ is spacelike, then Crit(∧) = Ø. Moreover, the zero locus of ∧ is the following non-singular hypersurface in M:

$$Z(\Lambda) = \{m \in \mathcal{M} \, | \, || \mathrm{d}_m \Lambda ||_G = \kappa_\Lambda \}$$

and coincides with the locus where $\operatorname{grad}_{G}\Lambda$ has minimal norm.

• If Λ is lightlike, then $Z(\Lambda) = \operatorname{Crit}(\Lambda) = \emptyset$ and Λ has constant sign on \mathcal{M} , which we denote by η_{Λ} .

医下 不良下

nan

Hesse functions

Definition

A timelike or lightlike non-trivial Hesse function $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ is called future or past pointing when $\eta_{\Lambda} = +1$ or -1.

Definition

Let $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ be a non-trivial Hesse function of \mathcal{M} . The characteristic set of Λ is the following closed subset of \mathcal{M} :

$$Q_{\Lambda} \stackrel{\text{def.}}{=} \left\{ egin{array}{cc} \operatorname{Crit}(\Lambda) \ , & ext{if } \Lambda \ ext{is timelike} \ Z(\Lambda) \ , & ext{if } \Lambda \ ext{is spacelike} \ \mathcal{M}_{|\Lambda|}(1) \ , & ext{if } \Lambda \ ext{is lightlike} \end{array}
ight.$$

The characteristic constant of Λ is defined through:

$$C_{\Lambda} \stackrel{\mathrm{def.}}{=} \left\{ egin{array}{ll} \kappa_{\Lambda} \ , & \mathrm{if} \ \epsilon = +1 \\ 0 \ , & \mathrm{if} \ \epsilon = -1 \\ 1 \ , & \mathrm{if} \ \epsilon = 0 \end{array}
ight.$$

Setting $\mathcal{U}_{\Lambda} \stackrel{\mathrm{def.}}{=} \mathcal{M} \setminus \operatorname{Crit}(\Lambda)$, we have:

 $Q_{\Lambda} = \{m \in \mathcal{U}_{\Lambda} \mid |\Lambda(m)| = C_{\Lambda}\}$.

Э

The characteristic sign function $\Theta_{\Lambda} : \mathcal{M} \to \mathbb{R}$ of a non-trivial Hesse function $\Lambda \in \mathcal{S}(\mathcal{M}, G)$ is defined through:

$$\Theta_{\Lambda}(m) \stackrel{\mathrm{def.}}{=} \left\{ egin{array}{cc} 1 \ , & \mathrm{if} \ \epsilon_{\Lambda} = +1 \ \mathrm{sign}(\Lambda(m)) \ , & \mathrm{if} \ \epsilon_{\Lambda} = -1 \ \mathrm{sign}(|\Lambda(m)| - 1) \ , & \mathrm{if} \ \epsilon_{\Lambda} = 0 \end{array}
ight.$$

The A-distance function $d_{\Lambda} : \mathcal{M} \to \mathbb{R}$ is defined through:

$$d_{\wedge}(m) \stackrel{\text{def.}}{=} \Theta_{\wedge}(m) \text{dist}_{G}(m, Q_{\wedge})$$

Theorem

Let $\Lambda \in S(\mathcal{M}, G)$ be a non-trivial Hesse function. Then the following relation holds for all $m \in \mathcal{M}$:

$$\Lambda(m) = \begin{cases} \operatorname{sign}(\Lambda)\kappa_{\Lambda}\cosh d_{\Lambda}(m) , & \text{if } \epsilon_{\Lambda} = +1 \\ \kappa_{\Lambda}\sinh d_{\Lambda}(m) , & \text{if } \epsilon_{\Lambda} = -1 \\ \operatorname{sign}(\Lambda)e^{d_{\Lambda}(m)} , & \text{if } \epsilon_{\Lambda} = 0 \end{cases}$$

.

.

同下 イヨト イヨト

3

nar

The isometry group $Iso(\mathcal{M}, G)$ acts on $\mathcal{C}^{\infty}(\mathcal{M})$ through:

$$\psi^*(f) \stackrel{\text{def.}}{=} f \circ \psi^{-1} \;, \;\; \forall \psi \in \operatorname{Iso}(\mathcal{M}, \mathcal{G}) \;, \;\; \forall f \in \mathcal{C}^\infty(\mathcal{M}) \;\;.$$

This action preserves the subspace of Hesse functions and hence corestricts to the Hesse representation:

$$\mathcal{H}_{\mathcal{G}}(\psi)(f) \stackrel{\mathrm{def.}}{=} \psi^{*}(\Lambda) = \Lambda \circ \psi^{-1} \ , \ \forall \Lambda \in \mathcal{S}(\mathcal{M},\mathcal{G}) \ .$$

Proposition

The Hesse representation is $(,)_G$ -orthogonal, i.e. any representation operator $\mathcal{H}_G(\psi)$ preserves the Hesse pairing:

 $(\mathcal{H}_{G}(\psi)\Lambda_{1},\mathcal{H}_{G}(\psi)\Lambda_{2})_{G}=(\Lambda_{1},\Lambda_{2})_{G}, \ \forall \Lambda_{1},\Lambda_{2}\in \mathcal{S}(\mathcal{M},G)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ●

A Riemannian *n* manifold $(\mathcal{M}, \mathcal{G})$ is called locally maximally Hesse if the germ of local Hesse functions of \mathcal{M} has dimension n + 1 at any point.

Theorem

A Remannian manifold is locally maximally Hesse iff it is hyperbolic.

Theorem

Let (\mathcal{M}, G) be a complete Riemannian manifold. The following are equivalent:

- (\mathcal{M}, G) is Hesse and locally maximally Hesse.
- (M, G) is isometric with the Poincaré n-ball or with an elementary hyperbolic space form.

Moreover, (\mathcal{M}, G) is maximally Hesse iff it is isometric with the Poincaré n-ball.

An *n*-dimensional elementary hyperbolic space form is a complete hyperbolic *n*-manifold uniformized by a non-trivial torsion-free elementary discrete subgroup $\Gamma \subset SO_o(1, n)$.

Any torsion-free elementary discrete subgroups of $SO_o(1, n)$ is:

- hyperbolic, if it conjugates to a subgroup of the canonical squeeze group $\mathcal{T}_n \stackrel{\text{def.}}{=} \operatorname{Stab}_{\operatorname{SO}_o(1,n)}(E_n) \simeq \operatorname{SO}(1, n-1)$. In this case, Γ is a hyperbolic cyclic group.
- parabolic if it conjugates to a subgroup of the canonical shear group $\mathcal{P}_n \stackrel{\text{def.}}{=} \operatorname{Stab}_{\mathrm{SO}_o(1,n)}(E_0 + E_n) \simeq \operatorname{ISO}(n)$. In this case, Γ is a free Abelian group of rank at most n 1.

Definition

An elementary hyperbolic space form is said to be of hyperbolic or parabolic type according to the type of its uniformizing group.

Example. The two-dimensional elementary hyperbolic space forms are:

- The hyperbolic annuli $\mathbb{A}(R)$ (hyperbolic type, $\Gamma \simeq \mathbb{Z}$, $\mathfrak{h}(\mathbb{A}(R) = 1)$
- The hyperbolic punctured disk \mathbb{D}^* (parabolic type, $\Gamma \simeq \mathbb{Z}$, $\mathfrak{h}(\mathbb{D}^*) = 1$.)

Theorem

Any Hesse surface (Σ, G) is locally maximally Hesse and hence is isometric with one of the following:

- The hyperbolic disk $\mathbb{D} := \mathbb{D}^2$ (Hesse index 3)
- The hyperbolic punctured disk \mathbb{D}^* (Hesse index 1)
- A hyperbolic annulus $\mathbb{A}(R)$ (Hesse index 1)

Theorem

The two-field cosmological model defined by the two-dimensional scalar triple (Σ, \mathcal{G}, V) is weakly-Hessian iff its rescaled scalar manifold (\mathcal{M}, G) is isometric with the hyperbolic disk, the hyperbolic punctured disk or a hyperbolic annulus $\mathbb{A}(R)$ of arbitrary modulus $\mu = 2 \log R > 0$. In this case, the model is Hessian iff the scalar potential V has the form $V = \Omega[\Lambda^2 - (\Lambda, \Lambda)_G]$, where $\Lambda \in \mathcal{S}(\Sigma, G)$ is a non-trivial Hesse function and Ω is a smooth function which is constant along the gradient flow of Λ .

The space $S(\Sigma, G)$ can be determined in each of the three cases. This leads to an explicit classification of all Hessian two-field cosmological models.

・ 同 ト ・ ヨ ト ・ ヨ ト

- One can descibe explicitly the space of Hesse functions on the Poincaré n-ball Dⁿ of any dimension n ≥ 2 and obtain the explicit form of all scalar potentials on Dⁿ which solve the Λ-V equation for any non-trivial Hesse function Λ. This leads to an explicit classification of all Hessian n-field models on the Poincaré ball.
- Deeper analysis allow one to characterize all Hessian *n*-field models.

Elementary discrete subgroups of $SO_o(1, n)$

The stabilizer of a nontrivial (n + 1)-vector $X \in \mathbb{R}^{n+1} \setminus \{0\}$ in the fundamental representation of $SO_o(1, n)$ conjugates to one of the canonical subgroups:

- X timelike: $\operatorname{Stab}_{\operatorname{SO}_o(1,n)}(X) \sim \mathcal{R}_n \stackrel{\operatorname{def.}}{=} \operatorname{Stab}_{\operatorname{SO}_o(1,n)}(E_0) \simeq \operatorname{SO}(n)$ (elliptic, rotation).
- X spacelike: $\operatorname{Stab}_{\operatorname{SO}_o(1,n)}(X) \sim \mathcal{T}_n \stackrel{\operatorname{def.}}{=} \operatorname{Stab}_{\operatorname{SO}_o(1,n)}(E_n) \simeq \operatorname{SO}(1, n-1)$ (hyperbolic, squeeze)
- X lightlike: $\operatorname{Stab}_{\operatorname{SO}_o(1,n)}(X) \sim \mathcal{P}_n \stackrel{\operatorname{def.}}{=} \operatorname{Stab}_{\operatorname{SO}_o(1,n)}(E_0 + E_n) \simeq \operatorname{ISO}(n)$ (parabolic, shear).

Definition

A discrete subgroup Γ of $SO_0(1, n)$ is called elementary if its action on the closure of the Poincaré ball fixes at least one point in $\overline{D^n}$.

An elementary discrete subgroup $\Gamma \subset SO_o(1, n)$ is:

- elliptic if it conjugates to a subgroup of \mathcal{R}_n . In this case, Γ is finite.
- hyperbolic if it conjugates to a subgroup of *T_n*. In this case, Γ contains a hyperbolic cyclic group of finite index, to which it reduces iff Γ is torsion-free.
- parabolic if it conjugates to a subgroup of *P_n*. In this case, Γ is a finite extension of a free Abelian group of rank at most *n* 1.