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Motivation

We want to understand matrix factorizations over non-Noetherian rings, such as the
ring of holomorphic functions defined on a complex manifold. This has a few possible
applications:

The homotopy category of matrix factorizations provides a “derived” version of
the arithmetic of such rings

Applications to holomorphic (as aopposed to algebraic) Landau-Ginzburg models.
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Matrix factorizations over an integral domain

Let R be an integral domain and W ∈ R× be a non-zero element of R. Consider the
following R-linear and Z2-graded categories of matrix factorizations of W over R:

1 MF(R,W )=dg category of R-valued matrix factorizations of W of finite rank.
Objects: a = (M,D), where M is a free Z2-graded R-module of finite rank and D
is an odd endomorphism of M such that D2 = W idM . Morphisms:

HomMF(R,W )(a1, a2) = HomR(M1,M2) = Hom0̂
R(M1,M2)⊕Hom1̂

R(M1,M2) ,

with differential da1,a2 determined by:

da1,a2 (f ) = D2 ◦ f − (−1)κf ◦ D1 , ∀f ∈ Homκ
R(M1,M2) ∀κ ∈ Z2 .

2 ZMF(R,W )=cocycle category of MF(R,W ). Same objects as MF(R,W ) but:

HomZMF(R,W )(a1, a2)
def.
= {f ∈ HomMF(R,W )(a1, a2)|da1,a2 (f ) = 0} .

3 BMF(R,W )=coboundary category of MF(R,W ). Same objs. as MF(R,W ) but:

HomBMF(R,W )(a1, a2)
def.
= {da1,a2 (f )|f ∈ HomMF(R,W )(a1, a2)} .

4 HMF(R,W )=total cohomology category of MF(R,W ). Same objs. but:

HomHMF(R,W )(a1, a2)
def.
= HomZMF(R,W )(a1, a2)/HomBMF(R,W )(a1, a2) .
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Also consider the subcategories obtained by restricting to morphisms of even degree:

1 mf(R,W )
def.
= MF0̂(R,W )

2 zmf(R,W )
def.
= ZMF0̂(R,W )

3 bmf(R,W )
def.
= BMF0̂(R,W )

4 hmf(R,W )
def.
= HMF0̂(R,W ).

Some facts:

MF(R,W ), BMF(R,W ) and ZMF(R,W ) admit double direct sums but do not
have zero objects.

HMF(R,W ) is additive, the matrix factorization

[
0 1
W 0

]
being a zero object.

hmf(R,W ) is triangulated with involutive shift functor and HMF(R,W ) is the
graded completion of HMF(R,W ).

Definition

Let a = (M,D) be a finite rank matrix factorization of W ∈ R×. Then rkM 0̂ = rkM 1̂

is called the reduced rank of a and is denoted by ρ(a).
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Elementary matrix factorizations

Definition

A matrix factorization a = (M,D) of W over R is called elementary if it has unit
reduced rank, i.e. if ρ(a) = 1.

Any elementary matrix factorization is isomorphic in zmf(R,W ) to one of the form

ev
def.
= (R1|1,Dv ), where v is a divisor of W and Dv

def.
=

[
0 v
u 0

]
, with

u
def.
= W /v ∈ R.

Let EF(R,W ) be the full subcategory of MF(R,W ) whose objects are the elementary
factorizations. Let ZEF(R,W ) and HEF(R,W ) denote the cocycle and total

cohomology categories of EF(R,W ). Let zef(R,W )
def.
= ZEF0̂(R,W ) and

hef(R,W )
def.
= HEF0̂(R,W ).

Remark

An elementary factorization is indecomposable in zmf(R,W ), but it need not be
indecomposable in the triangulated category hmf(R,W ).
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Bezout domains

Definition

An integral domain R is called a GCD domain if any two elements f , g admit a
greatest common divisor (gcd).

We say that the Bézout identity holds for two elements f and g of a GCD domain R if
for one/any gcd d of f and g , there exist a, b ∈ R such that d = af + bg .

Definition

An integral domain R is called a Bézout domain if any (and hence all) of the following
equivalent conditions hold:

R is a GCD domain and the Bézout identity holds for any two non-zero elements
f , g ∈ R.
The ideal generated by any two elements of R is principal.
Any finitely-generated ideal of R is principal.

Proposition

Every finitely-generated projective module over a Bézout domain is free.
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Bézout domains

Proposition

Let R be a Bézout domain. Then the following statements are equivalent:

R is Noetherian
R is a principal ideal domain (PID)
R is a unique factorization domain (UFD)
R satisfies the ascending chain condition on principal ideals (ACCP)

Some examples of non-Noetherian Bézout domains:

Any generalized valuation domain is a Bézout domain.
The ring O(Σ) of holomorphic complex-valued functions defined on any1 smooth
connected non-compact Riemann surface Σ is a non-Noetherian Bézout domain.
In particular, the ring O(C) of entire functions is a non-Noetherian Bézout
domain.
The ring A of all algebraic integers (the integral closure of Z inside C) is a
non-Noetherian Bézout domain which has no prime elements.

1Notice that Σ need not be algebraic. In particular, Σ can have infinite genus and an infinite number of ends.

Calin Lazaroiu, IBS-Center for Geometry and Physics, Pohang Matrix factorizations over Bezout and elementary divisor domains 8/31



Matrix factorizations over an integral domain
Motivation

Bezout domains
Elementary matrix factorizations over Bezout domains

Elementary divisor domains
Some examples

Elementary matrix factorizations over Bezout domains

Let R be a Bézout domain and W ∈ R×. Let v1, v2 be divisors of W and e1 := ev1 ,
e2 := ev2 be the corresponding elementary matrix factorizations of W . Let

u1
def.
= W /v1, u2 = W /v2 and a be a gcd of v1 and v2. Define:

b
def.
= v1/a , c

def.
= v2/a , d

def.
=

W

abc
, a′

def.
= a/s , d ′

def.
= d/s , (1)

where s is a gcd of a and d . In this notation, we have:

Dv1
=

[
0 v1
u1 0

]
=

[
0 ab
cd 0

]
= s

[
0 a′b

cd′ 0

]
Dv2

=

[
0 v2
u2 0

]
=

[
0 ac
bd 0

]
= s

[
0 a′c

bd′ 0

]
.

Define:

ε0̂(v1, v2)
def.

=

[
c 0
0 b

]
∈

 (v2)
(v1,v2)

0

0
(v1)

(v1,v2)

 def.
= ε0̂(v1, v2)

ε1̂(v1, v2; W )
def.

=

[
0 a′

−d′ 0

]
∈

 0
(v2)

(u1,v2)

− (u1)
(u1,v2)

0

 def.
= ε1̂(v1, v2; W ) ,

where the matrices in the right hand side are equivalence classes under the relation:

A ∼n B iff ∀i , j ∈ {1, . . . , n} : ∃qij ∈ U(R) such that Bij = qijAij (A,B ∈ Mat(n,R)) .
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Morphisms in HEF(R,W )

Proposition

Let vi be as above. Then Hom0̂
HMF(R,W )(e1, e2) and Hom1̂

HMF(R,W )(e1, e2) are

cyclically presented cyclic R-modules generated respectively by the matrices ε0̂(v1, v2)
and ε1̂(v1, v2;W ), whose annihilators are equal to each other and given by:

αW (v1, v2)
def.
= 〈v1, u1, v2, u2〉 = 〈s〉 .

Proposition

Let v be a divisor of W and u = W /v . Then:

1 The R-algebra Endzmf(R,W )(ev ) is isomorphic with R.
2 We have an isomorphism of Z2-graded R-algebras:

EndZMF(R,W )(ev ) '
R[ω]

〈u2 + t〉
,

where ω is an odd generator and t ∈ [u,v ]
(u,v)

. In particular, EndZMF(R,W )(ev ) is a

commutative Z2-graded ring.
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Let Div(W )
def.
= {d ∈ R

∣∣ d |W } and αW : Div(W )×Div(W )→ G+(R) be the
function defined in the previous proposition. This function is symmetric since
αW (v1, v2) = αW (v2, v1). Let 1G(R) = 〈1〉 = R denote the neutral element of the
group of divisibility G(R), whose group operation we write multiplicatively.

Proposition

The symmetric function αW (v1, v2) is multiplicative with respect to each of its
arguments in the following sense:

For any two relatively prime elements v2 and ṽ2 of R such that v2ṽ2 is a divisor of
W , we have:

αW (v1, v2ṽ2) = αW (v1, v2)αW (v1, ṽ2) (2)

and αW (v1, v2) + αW (v1, ṽ2) = 1G(R), where + denotes the sum of ideals of R.
For any two relatively prime elements v1 and ṽ1 of R such that v1ṽ1 is a divisor of
W , we have:

αW (v1ṽ1, v2) = αW (v1, v2)αW (ṽ1, v2) (3)

and αW (v1, v2) + αW (ṽ1, v2) = 1G(R), where + denotes the sum of ideals of R.
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Isomorphisms in HEF(R,W )

Proposition

With the notations above, we have:

1 e1 and e2 are isomorphic in hef(R,W ) iff a′, b, c, d ′ are pairwise coprime and
(bc, s) = (1).

2 An odd isomorphism between e1 and e2 in HEF(R,W ) exists iff a′, b, c, d ′ are
pairwise coprime and (a′d ′, s) = (1).

Corollary

An elementary matrix factorization ev is a zero object of hmf(R,W ) iff (u, v) = (1),
where u = W /v .
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Primary matrix factorizations

Recall that an element of R is called primary if it is a power of a prime element.

Definition

An elementary factorization ev of W is called primary if v is a primary divisor of W .

Let ev be a primary matrix factorization of W . Then v = pi for some prime divisor p
of W and some integer i ∈ {0, . . . , n}, where n is the order of p as a divisor of W .
We have W = pnW1 for some element W1 ∈ R such that p does not divide W1 and
u = pn−iW1. Thus (u, v) = (pmin(i,n−i)).

Definition

The prime divisor p of W is called the prime locus of ev . The order n of p is called
the order of ev while the integer i ∈ {0, . . . , n} is called the size of ev .

Calin Lazaroiu, IBS-Center for Geometry and Physics, Pohang Matrix factorizations over Bezout and elementary divisor domains 13/31



Matrix factorizations over an integral domain
Motivation

Bezout domains
Elementary matrix factorizations over Bezout domains

Elementary divisor domains
Some examples

Let R be a Bézout domain and p ∈ R be a prime element. Fix an integer n ≥ 2 and
consider the quotient ring:

An(p)
def.
= R/〈pn〉 .

Let mn(p) = pAn(p) = 〈p〉/〈pn〉 and kp = R/〈p〉.

Lemma

The following statements hold:

1 The principal ideal 〈p〉 generated by p is maximal.
2 The primary ideal 〈pn〉 is contained in a unique maximal ideal of R.
3 The quotient An(p) is a quasi-local ring with maximal ideal mn(p) and residue

field kp .
4 An(p) is a generalized valuation ring.
5 An(p) is an Artinian local principal ideal ring, whose ideals are 〈pi 〉/〈pn〉 for

i = 0, . . . , n.

Proposition

Let ev be a primary factorization of W with prime locus p, order n and size i . Then ev
is an indecomposable object of hmf(R,W ) whose endomorphism ring
Endhmf(R,W )(ev ) is a quasi-local ring isomorphic with Amin(i,n−i)(p).
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Critically-finite superpotentials

Definition

A non-zero non-unit W of R is called:

non-critical, if W has no critical divisors;
critically-finite if it has a factorization of the form:

W = W0Wc with Wc = pn1
1 . . . p

nN
N , (4)

where nj ≥ 2, p1, . . . , pN are critical prime divisors of W (with pi 6∼ pj for i 6= j)
and W0 is non-critical and coprime with Wc .

Notice that the elements W0, Wc and pi in the factorization (4) are determined by W
up to association, while the integers ni are uniquely determined by W . The factors
W0 and Wc are called respectively the non-critical and critical parts of W . The
integers ni ≥ 2 are called the orders of the critical prime divisors pi .
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Proposition

Let ev be an elementary factorization of W over R such that v =
∏n

i=1 vi , where
vi ∈ R are mutually coprime divisors of W . Then there exists a natural isomorphism in
hmf(R,W ):

ev 'hmf(R,W )

n⊕
i=1

evi

In particular, an elementary factorization ev for which v is finitely-factorizable divisor
of W is isomorphic in hmf(R,W ) with a direct sum of primary factorizations.

Let hef(R,W ) denote the full subcategory of hef(R,W ) which is additively generated
by the elementary matrix factorizations of W . Recall that a Krull-Schmidt category is
an additive category for which every object decomposes into a finite direct sum of
objects having quasi-local endomorphism rings.

Theorem

Suppose that W is critically-finite. Then the additive category hef(R,W ) is
Krull-Schmidt and its non-zero indecomposable objects are the non-trivial primary
matrix factorizations of W .
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Theorem

Suppose that W is critically-finite with decomposition (4). Then there exists an
equivalence of categories:

hef(R,W ) ' ∨Ni=1hef(R, p
ni
i ) ,

where ∨ denotes the coproduct of additive categories.

Consider the inclusion functor:

ι : hef(R,W )→ hmf(R,W )

Conjecture

The inclusion functor ι is an equivalence of R-linear categories.

This conjecture and the previous theorem imply:

Conjecture

Let R be a Bézout domain and W be a critically-finite element of R. Then
hmf(R,W ) is a Krull-Schmidt category.
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Counting elementary factorizations over Bézout domains

Let R be a Bezout domain and W be a critically-finite element with the
decomposition:

W = W0Wc with Wc = pn1
1 . . . p

nN
N ,

where nj ≥ 2, p1, . . . , pN are critical prime divisors of W (with pi 6∼ pj for i 6= j) and
W0 is non-critical and coprime with Wc .

Theorem

The number of isomorphism classes of objects in the category hef(R,W ) is given by:

Ň(R,W ) =
r 1̂∑
k=0

∑
K(I ,

|K 1̂|=k

2r
0̂+k

∏
i∈K

⌊ni − 1

2

⌋
. (5)

while the number if isomorphism classes of objects in the category HEF(R,W ) is
given by:

N(R,W ) = 2r
0̂

+
r 1̂∑
k=0

2r
0̂+k−1

∑
K(I

|K 1̂|=k

∏
i∈K

⌊ni − 1

2

⌋
. (6)
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Elementary divisor domains

Definition

An integral domain R is called an elementary divisor domain (EDD) if for any three
elements a, b, c ∈ R, there exist p, q, x , y ∈ R such that (a, b, c) = pxa + pyb + qyc is
a GCD of a, b and c.

Definition

Let R be a commutative ring. We say that R satisfies Kaplansky’s condition if for any
three elements a, b, c in R such that (a, b, c) ∼ 1, there exist elements p, q ∈ R such
that (pa, pb + qc) ∼ 1.

Proposition

An integral domain R is an EDD iff it satisfies the following two conditions:

R is a Bézout domain

R satisfies Kaplansky’s condition.
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Smith normal form theorem over an EDD

Definition

Let A ∈ Mat(m, n,R) be an m by n matrix with coefficients from a GCD domain R.
For any k ∈ {1, . . . , r}, the k-th determinantal invariant δk (A) ∈ R/U(R) of A is
defined to be the gcd class of all k × k minors of A. We also define δ0(A) = (1).

Proposition

Let R be a GCD domain. For any A ∈ Mat(m, n,R), we have:

δk−1(A)|δk (A) ∀k ∈ {1, . . . , rkA}

Defining the invariant factors dk (A) ∈ R/U(R) by:

dk (A)
def.
=

{
δk (A)

δk−1(A)
if δk−1(A) 6= 0

(1) if δk−1(A) = 0
∀k ∈ {1, . . . , rkA} ,

we have:
dk−1(A)|dk (A) ∀k ∈ {2, . . . , rkA} .
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Theorem

Let R be an EDD. For any matrix A ∈ Mat(m, n,R), there exist matrices
U ∈ GL(m,R) and V ∈ GL(n,R) such that:

UAV−1 = D ,

where Dij = 0 for all i 6= j and the diagonal entries di
def.
= Dii (with i ∈ {1, . . . , r},

where r
def.
= rkA ≤ min(m, n)) are non-zero elements which satisfy the condition:

d1|d2| . . . |dk .

In this case, the matrix D is called the Smith normal form of A. Moreover, the
association classes of dk coincide with the invariant factors of A:

(dk ) = dk (A) , ∀k ∈ {1, . . . , r} .

Proposition

Let R be an EDD and A,B ∈ Mat(m, n,R). Then A and B are equivalent iff they
have the same rank and their invariant factors coincide.
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Some examples of EDDs

Any Bezout domain which is an F -domain (i.e. for which any non-zero element is
contained in at most a finite number of maximal ideals) is an EDD. In particular,
any PID is an EDD.
The ring O(Σ) of holomorphic functions on any connected and non-compact
borderless Riemann surface is an EDD.
The ring A of all algebraic integers is an EDD which has no prime elements.
If R is an EDD with quotient field K and J is any integral domain such that
R ⊂ J ⊂ K , then J is an EDD.
Any generalized valuation domains is an EDD. If V1, . . . ,Vn are generalized

valuation domains with the same quotient field K , then R
def.
= ∩ni=1Vi is an EDD.

Let B be an EDD with quotient field K and let m be the maximal ideal of the
power series ring K [[x]] in one variable. Then R := B + m is an EDD.
Let B be an EDD with quotient field K and X be an indeterminate. Then
R := B + XK [X ] is an EDD.
Let K be an algebraically closed field of characteristic different from two and let
x1 be an indeterminate over K . Let x2 be a square root of x1, x3 be a square root
of x2 and so on. Then the ring R := ∪∞n=1K [xn, 1/xn] is an EDD.
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Matrix factorizations over elementary divisor domains

Let R be an EDD and W ∈ R× be a non-zero element.

Proposition

Let a = (Rρ|ρ,D) and a′ = (Rρ
′|ρ′ ,D′) be two matrix factorizations of W over R,

where D =

[
0 v
u 0

]
and D′ =

[
0 v ′

u′ 0

]
. Let d1(v), . . . , dρ(v) and

d1(v ′), . . . , dρ′ (v
′) be respectively the invariant factors of the matrices

v ∈ Mat(ρ, ρ,R) and v ′ ∈ Mat(ρ′, ρ′,R). Then the following statements are
equivalent:

(a) a and a′ are strongly isomorphic, i.e. isomorphic in the category zmf(R,W ).
(b) We have ρ = ρ′ and the invariant factors of v and v ′ are equal:

di (v) = di (v
′) ∀i ∈ {1, . . . , ρ} .

Proposition

There exists an autoequivalence Ψ of hmf(R,W ) such that:

1 Ψ is isomorphic with the identity functor idzmf(R,W )

2 For any matrix factorization a = (Rρ|ρ,D) of W with D =

[
0 v
u 0

]
, we have:

Ψ(a) = ed1(v) ⊕ . . .⊕ edρ(v) ,

where d1(v), . . . , dρ(v) are representatives for the invariant factors of v .

In particular, the subcategories hef(R,W ) and HMF(R,W ) coincide.
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Theorem

Let W be a critically-finite element of R. Then hmf(R,W ) is a Krull-Schmidt
category whose non-zero indecomposables are the nontrivial primary matrix
factorizations of W .

Theorem

Let W be a critically-finite element of R with factorization (4). Then there exist
equivalences of triangulated categories:

hmf(R,W ) ' ∨Ni=1modAni
(pi )
' ∨Ni=1Dsing(Ani (pi )) ,

where ∨ denotes orthogonal sum and, for any prime element p ∈ R:

modAn(p) denotes the stable category of the category of finitely-generated

modules over the commutative ring An(p)
def.
= R/(pn) (which is a Frobenius ring)

Dsing(An(p)) ' modAn(p) is the category of singularities of this ring.
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The category modΛ

For simplicity, we denote An(p)
def.
= R/〈pn〉 by Λ, the residue field kn(p) by k and the

maximal ideal mn(p) by m. Let modΛ be the category of finitely-generated modules
over Λ. Since Λ is Artinian, the following statements are equivalent for a Λ-module M
by the Akizuki-Hopkins-Lewitzki theorem:

M is Noetherian
M is Artinian
M is finitely-generated
M has finite composition length.

Let Λi = 〈pn−i 〉/〈pn〉 = pn−iΛ with i ∈ {0, . . . , n} be the ideals of Λ, thus Λ0 = 0,

Λn−1 = m and Λn = Λ. Let Vi
def.
= Λ/Λn−i 'R R/〈pi 〉 (with i = 0, . . . , n) be the

cyclically-presented cyclic Λ-modules with annihilators Ann(Vi ) = Λn−i .

Recall that a commutative ring R is called an FGC ring if every finitely-generated
R-module is isomorphic with a finite direct sum of cyclic modules.

Proposition

Λ is an FGC ring whose indecomposable non-zero finitely-generated Λ-modules are the
cyclic modules V1, . . . ,Vn. Moreover, the decomposition of a finitely-generated
Λ-module into non-zero cyclic modules is unique up to permutation and isomorphism
of factors, hence modΛ is a Krull-Schmidt category.
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Proposition

The only non-zero indecomposable Λ-module which is projective is Vn ' Λn = Λ.

Notice that Λ is a uniserial ring and that the indecomposable cyclic modules Vi 'R Λi

are uniserial modules of length i . The unique composition series of Λi is given by:

0 = Λ0 ⊂ . . . ⊂ Λi .

In particular, the only simple Λ-module is Λ1 'R V1 'R k. We have:

Vi+1/Vi ' Λi+1/Λi ' k

and the only composition factor of Λi 'R Vi is k, with multiplicity i .

Proposition

The ring Λ is a commutative Frobenius ring. In particular, Λ is self-injective and hence
it is a Gorenstein ring of dimension zero. Thus:

ExtiR(k,Λ) 'R

{
k if i = 0
0 if i 6= 0

.
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Let modΛ denote the projectively-stable category of finitely-generated Λ-modules.
Since any projective Λ-module is free, this category has the same objects as modΛ and
morphisms given by:

HomΛ(M,N)
def.
= HomΛ(M,N)/PΛ(M,N) ∀M,N ∈ Ob(modΛ) ,

where PΛ(M,N) ⊂ HomΛ(M,N) is the submodule consisting of those morphisms
from M to N which factor through a free module of finite rank. Since modΛ is a
Frobenius category, the stable category modΛ has a natural triangulated structure.
Let:

δn(i)
def.

= min(i, n−i) ∈ {1, . . . , n−1} , µn(i, j)
def.

= min[δn(i), δn(j)] =


i if i + j ≤ n & i ≤ j
j if i + j ≤ n & i > j
n − i if i + j > n & i > j
n − j if i + j > n & i ≤ j

.

(7)

Notice the relations δn(i) = δn(n − i) and δn(n) = 0 as well as:

µn(i , j) = µn(j , i) = µn(n − i , j) = µn(i , n − j) , µn(i , n) = 0 . (8)

Proposition

For any 1 ≤ i , j ≤ n − 1, we have:

HomΛ(Vi ,Vj ) 'Λ Vµn(i,j) .
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Proposition

The triangulated category modΛ is Krull-Schmidt and has indecomposable objects
V1, . . . ,Vn−1. Moreover, it has Auslander-Reiten triangles given by:

Vi

gi−→ Vi−1 ⊕ Vi+1

fi−→ Vi → Ω(Vi ) for all i ∈ {1, . . . , n − 1} . (9)

and its AR quiver is:

V2 V3
V4V1

Figure: Auslander-Reiten quiver for modΛ when n = 5. The translation fixes all vertices.

Proposition

The category modΛ is Calabi-Yau with idempotent translation functor given on
objects by Ω(Vi ) = Vn−i .
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Proposition

The smallest full subcategory of modΛ which contains the object V1 = kp and is
closed under isomorphisms, direct sums, direct summands and extensions coincides
with modΛ. Hence:

〈V1〉 = modΛ .
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Examples: Non-compact Riemann surfaces

Let Σ be any connected, smooth and borderless non-compact Riemann surface. The
non-Noetherian ring R = O(Σ) of holomorphic complex-valued functions defined on X
is an elementary divisor domain whose prime elements are those holomorphic functions
which have a single simple zero and no other zeros. A critically-finite superpotential is
a holomorphic function W ∈ O(Σ) of the form W = W0Wc , where W0 ∈ O(Σ) has
only simple zeros while Wc ∈ O(Σ) has a finite number of zeros, each of multiplicity
at least two.

Remark

1 Σ need not be algebraic (e.g.: the unit disk) It is (affine) algebraic iff it can be
written as a compact Riemann surface minus a finite number of points.

2 W0 can have a (countable) infinity of simple zeros.
3 Σ may have infinite genus as well as an infinite number of Freudenthal ends.

In this situation, our results allow one to:
Present the Krull-Schmidt category hmf(R,W ) in terms of its indecomposable
objects, which are the primary matrix factorizations
Count the number of isomorphism classes of elementary matrix factorizations
Completely describe the triangulated structure of hmf(R,W ) using the
Auslader-Reiten theory.

This has applications to the theory of Landau-Ginzburg models defined on
non-compact Riemann surfaces (notice that any such surface is a Stein manifold).
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Other examples

The class of non-Noetherian Bezout domains is very large. Indeed, the Jaffards-Ohm
theorem shows that there exists a Bézout domain whose group of divisibiity is
isomorphic with any given lattice ordered group. Our methods can be applied to
Bezout and elementary divisor domains obtained by this and other constructions:

Bézout and elementary divisor domains obtained through the Jaffards-Ohm
construction

Bézout and elementary divisor domains obtained from spectral posets

Robba rings.

We discuss a few such applications in our preprints.
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