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Motivation

Cosmic Microwave Background (CMB) radiation:

WMAP (2003-2012) and Planck (2013) satellites:
Detailed map of CMB temperature fluctuations on the sky




According to CMB data:

e On large scales:

Universe is homogeneous and isotropic

e In Early Universe:

Small perturbations that seed structure formation
| (Clusters of ) Galaxies |

e Spectrum of temperature fluctuations:
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Rotationally invariant angular power spectrum:
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Cosmological inflation:

Period of very fast expansion of space in Early Universe
(faster than speed of light)

= homogeneity and isotropy observed today

CMB power spectrum:
— Can extract values of cosmological observables
In particular, scalar spectral index: ngs~ 1
= Long thought that this requires

slow roll approximation

Will see that the slow roll approximation is not necessary !



Cosmological inflation:

Standard description:

— expansion driven by the potential energy of a

scalar field o, called inflaton, with action:

R 1

S = /d4$ \/— detg [5 — 59“”@@ 81/90 - V(SO)

— slow roll approximation:

/ 2 1/
_ 1 [V _v
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(almost exponential expansion)



Constant roll inflation

Constant roll regime: modification of ultra-slow roll
Ultra-slow roll inflation: (arXiv:gr-qc/0503017, W. Kinney)
e << 1 : n=3

Gives ny = 1 (i.e. scale-invariant spectrum), but does not

last for more than a few e-foldings
Constant roll inflation: n = const

For some values of 1 = const £ 3: stable expansion
(arXiv:1411.5021 [astro-ph.CO], H. Motohashi, A. Starobinsky, J. Yokoyama)

Goal: to study the constant roll regime systematically



General set-up:

Standard metric ansatz: dsi, = —dt* + a(t)*dz?

EoMs (Friedman equations):

.2

3H2:%+v and  2H = —¢?

H - Hubble parameter , H(t) = %
a

Note: ¢p-EoM , o +3Hp + 0,V =0 , automatically satisfied for
P

any solution of Friedman equations |

Inflationary slow roll parameters:

Ez—m and N = — ———



General set-up:

Canonical definition: [H = H(p), H, = dH/dp]
EZQEZ and 77:2H9w
H H

2 : .
H H H 0
o — 2 - = ——= , — 2 L _ -
‘ ( i ) m 0 T Hy
In slow roll approx.: (for all solutions of the EoMs)
€ X €y , N =Ty — €

2% v,
[ Recall: €, = %(7@) and 71, = £ ]



Constant roll inflation:

Rewrite the n-parameter, by using EoMs, as:

i

07

Then, constant roll condition becomes an ODE for H(t):

ﬁ —_—
oOHH

C : Cc = const

— Can systematically find all solutions'!

e recover the known ones

e find new solutions



Constant roll inflation:

Note: Finding the function H(t) determines the

inflationary model completely

Indeed, all other functions follow from H(t):

e the scale factor a(t) from solving H = a/a
e the inflaton ¢(?) from ¢ = :|:/ vV —2H dt

e the scalar potential V() from inverting ¢(t)
to obtain t = t(y) and substituting the result

In EoM: .9

P
V =3H" - -
2



General solution:

Unifying form of Hubble parameter:

k 6hct 1+ e—hct
k ehct _ e—hct ?

H(t) = h

h, k - complex integration constants

Can show: above H (t) real only for:
a) both h and k: real ; b) h =iR and k = £

Four real solutions, obtained for following (h, k) pairs:

(heR,k>0)q , (ReER,k<0)g ,
(h=iR, k=e")g , (h=1iR, k=—e")qy



Four real solutions:
1
Hy(t) = h Coth<hct+§lnk) for he R, k>0,
1
H(2)(t) = h tanh(hct—l—§ln\k\> for heR, k<O,
. . 0 . i0
H3y(t) = —ih cot —zhct—|—§ for h=1R , k=¢",

0 .
H4y(t) = ih tan (—ihct + 5) for h=14R , k= —e'

H1y , H2) - known  (arXiv:1411.5021 [astro-ph.CO], H.M.,A.S.,J.Y.)

H(g) ; H(4) - NEW



Four real solutions:

Require real inflaton = constraint on parameter space:

e sol. with Hyy: ¢ >0 e sol. with Hoy: ¢ <0
| H ) solution: hilltop inflation ]

e sol. with H3y: ¢ >0 e sol. with H4y: ¢ >0
Require H > (0 =- constraint on argument of H
— together with ¢ > O:

= solutions (3) and (4) are equivalent

— consider (3) from now on



New solution:

Convenient to introduce: N = —thc € R

(set # = 0: no loss of generality)

Four-parameter family of solutions:

N
Hzy = — cot(Nt) , a@) = 2 sint/¢(Nt) |

C
2 Nt
90(3) — :I:\/; ln [COt (7)] —|—C§0 ,
N, (%, C’?qf - integration constants

Also: t € (O, %) , due to requirement that H > 0



Parameter space:

Note: t-interval can be made as large as needed by choosing

suitably integration constant [V
But Nt-interval: at most (O,%), to ensure H > 0

Note: Nt-interval can be shortened at will, due to freedom

to rescale NV
Indeed: N — N, = %Q*N, with some fixed 0, < 5,

implies Nt € (0,5) — N.t € (0,0,)



Parameter space:

Require a(t) > 0 (condition for inflation) = ¢ < 1
So, inflationary parameter space: 0 <c <1
In standard dS inflation: a(t) - increasing

In present class of models:
o for % < c<1, a : always decreasing
ofor()<c<%, @ :  (depends on N and c)
— always increasing

— first increasing, then decreasing



Inflaton potential:

Any more restrictions on parameter space from V()7

From EoM V = 3H? — 25? upon using ¢ = t(y):

NZ
T 2¢2

V(e) = 55 | (8= ) cosh(V2e(p+ o)) = (3+0)] .

po =C3
In principle, can choose g such that V() - positive

But, even for oo = 0, can show that V' - positive-definite
In entire inflationary parameter space

— no new constraints from V



Scalar perturbations:

Perturbed inflaton and metric:

p(t, ) = @(t) +0p(t,T) ,
gpw(tvf) guV(t)‘i‘di(taf) ;

© , guv - classical background

Gauge transformations:
e time reparametrizations [t =t + ]

e spatial reparametrizations  [2' — 2'+6Y9,8 , i =1,2,3]

— 0¢ mixes with scalar degrees of freedom (d.o.f.) in dg,,,,



Scalar perturbations:

One independent scalar d.o.f.: curvature perturbation (

In comoving gauge: d¢o =0 , dg;; = a*[(1 — 2()d:; + hij]

ik T
Fourier transform: ((¢,7) = [ -2 (2w)3
Introduce v, = /22(;, with 22 = —a2%
— Mukhanov-Sasaki equation: [linearized EoMs]
//
2
vy, + (kz—?) v =0

k= \E\ and '=0, with 7 - conformal time [r: dt? = a?dr?]



Super-Hubble scales:

Inflationary model - stable, if there are no growing modes

on super-Hubble scales

To verify that for our new class of models:

— Need to study Mukhanov-Sasaki equation in regime
with k% << 2"/ 2

Z/,

/!
v, —— v =0
ooy

General solution for (%, implied by general solution for vy:

2

H
Ck :Ak‘|‘Bk/ .- dt , A, Bir = const
a




Super-Hubble scales:

Time-dependent part of (:

H? o cos®(IN't) 3 ¢c+3 5
a3H BCN(C:?)

Denote 2 = cos?(Nt), then functional dependence:

3 3 ¢c+3 b
f(z) = o F(§ ’ ,5;93), vl as t1

Recall: entire inflationary parameter space:

Nt e (0,%) and ce(0,1)

Showed: f - always decreasing with ¢ = stable expansion



Super-Hubble scales:

f(Nt,c):

Inflationary parameter space:

Nt e (0,Z) and ce(0,1)

2



Scalar spectral index:

From current observations: n, = 0.96
Is our class of models consistent with this?

To compute ng, need to solve Mukhanov-Sasaki equation

with both k2 and 2" [z terms (around time of horizon crossing)

Conformal time 7= [dt/a

Nt 1 1 3
e —C(gng) 2F1<§7 C;_C 753 COSZ(Nt)> + const

Can choose const so that: 7 € (—o00, 0]

(just as in de Sitter case, i.e. with H = const)



Scalar spectral index:

Take standard initial condition:

e—ikT
VE(T) = for T — —00

V2k

24

3 1 1 1
Note: Z; — a’H? (2 — €1 + 562 —+ ZG% — 56162 =+ §€2€3> ;

H €;
S €; 1 —
E[Q 9 1+ E[Gi

€1 = —

In general, need numerical methods to solve mode equation

But forc << 1: e €1 x2c, ea~2c, €3~ 4c

e aH~ —1/7



Scalar spectral index:
So solution for ¢ << 1:

Vg (T) = g\/—T HY(—kr) , v2==+c+3c

| ©

Knowing v, — (x — Ps(k) [scalar power spectrum]

Spectral index ng:  Pg(k) ~ k™1

9
— nS:4—2\/Z+c+SC2
Impose ng =0.96 = ¢=0.052 [2nd root < 0]

— New model - compatible with observations



Scalar spectral index:

Note:

In slow roll: all three ¢; - negligible in Mukhanov-Sasaki

equation

In Starobinsky et al. class of solutions: €1 3 << €3
(arXiv:1411.5021 [astro-ph.CO])

In our new class of solutions: all three €¢; - non-negligible
and of the same order

— (More) Genuine deviation from slow roll !



Summary
Found so far:

e Studied systematically constant roll inflation
e Found new class of solutions

e Showed that they produce stable inflationary expansion

[in entire parameter space |

e Showed that they give ng = 1 [in part of parameter space]

Open issues:
e Compute (numerically) ng for entire parameter space...
e Other stable non-slow roll regimes?...

e Constant roll in composite inflation models ?...



Thank youl!



