15 years of the SEENET-MTP cooperation

Nonstandard Lagrangian in Cosmology Constrained System

Dragoljub D. Dimitrijevic ${ }^{1}$, Goran S. Djordjevic ${ }^{1}$, Milan Milosevic ${ }^{1}$, Marko Dimitrijevic ${ }^{2}$

${ }^{1}$ Faculty of Sciences and Mathematics, University of Nis, Serbia ${ }^{2}$ Faculty of Electronic Engineering, University of Nis, Serbia

Department of Theoretical Physics, IFIN-HH
Department of Theoretical Physics, Faculty of Physics
Bucharest
23 April, 2018

1 Introduction

2 Cosmology
3 Cosmological Perturbations
4 Non-standard Lagrangian
5 Extension
6 Constraints
7 Conclusion

Introduction

- We study real scalar field with non-standard Lagrangian density, imortant (at least for us) in Cosmological context.
- General space-time metric:

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}, \quad \mu, v=0,1,2,3
$$

- Metric tensor: \hat{g}
- Components of metric tensor: $g_{\mu \nu}$
- Determinant of metric tensor: $g \equiv \operatorname{det} \hat{g}$

Introduction

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}, \quad \mu, \nu=0,1,2,3
$$

- Mostly used:
- Minkowski space-time (Special Relativity):

$$
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}=-d t^{2}+d \vec{x}^{2}
$$

- Friedmann-Robertson-Walker-Lemaitre (FRWL) flat spacetime (General Relativity/Cosmology):

$$
d s^{2}=-N(t)^{2} d t^{2}+a^{2}(t) d \vec{x}^{2}
$$

- Scale factor (how much the Universe changes its size): $a(t)$
- Lapse function: $N(t)$

Cosmology

- Real scalar field with non-standard Lagrangian density.
- General Lagrangian action:
$S=\int d^{4} x \sqrt{-g} \mathbb{H}(X(\partial \phi), \phi)$
- Lagrangian (Lagrangian density) of the standard form:
$\mathrm{L}(\phi, \partial \phi)=X(\partial \phi)-V(\phi)$
- Non-standard Lagrangian:
$\mathrm{L}_{\text {tach }}(T, X)=-V(T) \sqrt{1+2 X(\partial T)} \quad X=\frac{1}{2} g^{\mu \nu} \partial_{\mu} T \partial_{\nu} T$

Cosmology

- The action:

$$
S=\int d^{4} x \sqrt{-g} \mathbb{l}(X, T)
$$

- In cosmology, scalar fields can be connected with a perfect fluid which describes (dominant) matter in the Universe.
- Components of the energy-momentum tensor:

$$
T_{\mu \nu}=-\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}}
$$

$$
T_{\mu \nu}=(P+\rho) u_{\mu} u_{v}-P g_{\mu v}
$$

Cosmology

$$
T_{\mu \nu}=(P+\rho) u_{\mu} u_{v}-P g_{\mu \nu}
$$

- Pressure, matter density and velocity 4 -vector, respectively:

$$
\begin{aligned}
& P(X, T) \equiv \mathrm{L}(X, T) \\
& \rho(X, T) \equiv 2 X \frac{\partial \mathrm{~L}}{\partial X}-\mathrm{L}(X, T) \\
& u_{\mu}=\frac{\partial_{\mu} T}{\sqrt{2 X}}
\end{aligned}
$$

Cosmology

- Total action: term which describes gravity (Ricci scalar, Einstein-Hilbert action) plus term that describes cosmological fluid (scalar field minimally coupled to gravity):

$$
S=\int d^{4} x \sqrt{-g}(R+\mathrm{L}(X, T))
$$

- Einstein equations:

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=T_{\mu \nu}
$$

Cosmological Perturbations

- Very important: cosmological perturbations around the classical background (give us information about Universe at the very beginning, i.e. CMB and cosmological structure formation).
- ADM decomposition of the metric:

$$
\begin{aligned}
& d s^{2}=g_{\mu \nu} d x^{\mu} d x^{v}=-N^{2} d t^{2}+\gamma_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right) \\
& S=\int d^{4} x \sqrt{-g}\left(4 \pi^{i j} \dot{\gamma}_{i j}-N H_{G}-N_{i} H_{G}^{i}+\mathrm{L}(X, T)\right)
\end{aligned}
$$

Cosmological Perturbations

- Perturb everything:

$$
\begin{gathered}
\pi^{i j}=\pi^{i j}(t)+\delta \pi^{i j} \\
\gamma_{i j}=\gamma_{i j}(t)+\delta \gamma_{i j} \\
T=T(t)+\delta T \ldots \\
S=S^{(0)}+S^{(1)}+S^{(2)}+\ldots
\end{gathered}
$$

- Action for classical background: $S^{(0)}$

$$
\begin{aligned}
& S^{(1)}=0 \\
& S^{(2)}=S_{Q U A D}^{(2)}+S_{I N T}^{(2)}
\end{aligned}
$$

Cosmological Perturbations

- Path integral quantization of cosmological perturbations:

$$
K \square \int D \mu \exp \left[i S_{Q U A D}^{(2)}+i S_{I N T}^{(2)}\right]
$$

- Transition amplitude (tells us how the system evolve quantummehanically): K
- Path integral measure: $D \mu$
- If you are lucky, „standard" Feynman measure (no constraints)
- If you are less lucky, Faddeev-Popov measure (first class constraints)
- No luck at all, Senjanovic measure (both first and second class constraints)

Cosmological Perturbations

- Background FLRW space-time:

$$
d s_{F L R W}^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+a^{2}(t) d \vec{x}^{2}
$$

- Friedmann equation (H-Hubble parameter):

$$
H^{2}=\frac{1}{3} \rho(X, T), \quad H=\frac{\dot{a}}{a}
$$

- Acceleration equation:

$$
\frac{\ddot{a}}{a}=-\frac{1}{6}(\rho(X, T)+3 P(X, T))
$$

- Continuity equation:

$$
\dot{\rho}=-3 H(\rho(X, T)+P(X, T))
$$

Non-standard Lagrangian

- Effective field theory of non-standard lagrangian of DBI-type (tachyon scalar field):

$$
\mathrm{L}_{\text {tach }}=-V(T) \sqrt{1+g_{\mu \nu} \partial^{\mu} T \partial^{\nu} T}
$$

- EoM:

$$
\left(g^{\mu \nu}-\frac{\partial^{\mu} T \partial^{\nu} T}{1-(\partial T)^{2}}\right) \partial_{\mu} T \partial_{\nu} T=-\frac{1}{V(T)} \frac{d V}{d T}\left(1-(\partial T)^{2}\right)
$$

Non-standard Lagrangian

- Minisuperspace model for the background:
$d s_{F L R W}^{2}=-N^{2}(t) d t^{2}+a^{2}(t) d \vec{x}^{2}$
- Total Lagrangian:
$\mathrm{L}=\mathrm{L}_{g}(N, a, \dot{a})+\mathrm{L}_{\text {tach }}(T, \dot{T}, N, a)$
$\mathrm{L}_{g}(N, a, \dot{a})=-6 \frac{a \dot{a}^{2}}{N}+6 k N a$
$\mathrm{L}_{\text {tach }}(T, \dot{T}, N, a)=-N a^{3} V(T) \sqrt{1-N^{-2} \dot{T}^{2}}$

Extension

- Minisuperspace model for the background :

$$
d s_{F L R W}^{2}=-N^{2}(t) d t^{2}+a^{2}(t) d \vec{x}^{2}
$$

- Auxiliary field : σ
- Total Lagrangian:

$$
\mathrm{L}=\mathrm{L}_{g}(N, a, \dot{a})+\mathrm{L}_{e x t}(T, \dot{T}, N, a, \sigma)
$$

$$
\mathrm{L}_{g}(N, a, \dot{a})=-6 \frac{a \dot{a}^{2}}{N}+6 k N a
$$

$$
\mathrm{L}_{e x t}(T, \dot{T}, N, a, \sigma)=+N a^{3}\left[\frac{1}{2 N^{2}} \frac{\dot{T}^{2}}{\sigma}-\frac{1}{2} \sigma V^{2}(T)-\frac{1}{2 \sigma}\right]
$$

Extension

- From the EoM for σ :

$$
\begin{aligned}
& \sigma=f(T, \dot{T}, N)=\frac{1}{V(T)} \sqrt{1-N^{-2} \dot{T}^{2}} \\
& \left.\mathrm{~L}_{e x t}(T, \dot{T}, N, a, \sigma)\right|_{\sigma=f(T, \dot{T}, N)}=\mathrm{L}_{\text {tach }}(T, \dot{T}, N, a) \\
& \mathrm{L}=-6 \frac{a \dot{a}^{2}}{N}+6 k N a+\frac{a^{3}}{2 N} \frac{\dot{T}^{2}}{\sigma}-\frac{1}{2} \sigma N a^{3} V^{2}(T)-\frac{N a^{3}}{2 \sigma} \\
& S^{(0)}=\int d t \mathrm{~L}
\end{aligned}
$$

Constraints

- We need to know what are the constraints in order to proceed with $S^{(2)}$.
- Conugated momenta:

$$
\begin{aligned}
& p_{a}=\frac{\partial \mathrm{L}}{\partial \dot{a}}=-12 \frac{a \dot{a}}{N} \Rightarrow \dot{a}=-\frac{N}{12 a} p_{a} \\
& p_{T}=\frac{\partial \mathrm{L}}{\partial \dot{T}}=\frac{a^{3}}{N} \frac{\dot{T}}{\sigma} \Rightarrow \dot{T}=\frac{N \sigma}{a^{3}} p_{T} \\
& p_{N}=\frac{\partial \mathrm{L}}{\partial \dot{N}}=0 \\
& p_{\sigma}=\frac{\partial \mathrm{L}}{\partial \dot{\sigma}}=0
\end{aligned}
$$

Constraints

- Primary constraints:

$$
\begin{aligned}
& \phi_{1} \equiv p_{N}-0 \approx 0 \\
& \phi_{2} \equiv p_{\sigma}-0 \approx 0
\end{aligned}
$$

- Canonical Hamiltonian:

$$
\mathrm{H}_{c} \equiv \mathrm{NH}_{0}
$$

$$
\mathrm{H}_{0} \equiv-\frac{1}{24} \frac{p_{a}^{2}}{a}-6 k a+\frac{\sigma}{2 a^{3}} p_{T}^{2}+\frac{1}{2} \sigma a^{3} V^{2}(T)+\frac{a^{3}}{2 \sigma}
$$

- Total Hamiltonian (add all constraints to canonical Hamiltonian): $\mathrm{H}_{T} \equiv \mathrm{H}_{c}+\lambda_{1} \phi_{1}+\lambda_{2} \phi_{2}$

Constraints

- Consistency conditions:

$$
\begin{aligned}
& \dot{\phi}_{1}=\left\{\phi_{1}, \mathrm{H}_{T}\right\} \approx 0 \\
& \dot{\phi}_{2}=\left\{\phi_{2}, \mathrm{H}_{T}\right\} \approx 0
\end{aligned}
$$

- Secondary constraints:

$$
\begin{aligned}
& \chi_{1} \equiv-\mathrm{H}_{0} \approx 0 \\
& \chi_{2} \equiv-N\left[\frac{1}{2 a^{3}} p_{T}^{2}+\frac{1}{2} a^{3} V^{2}(T)-\frac{a^{3}}{2 \sigma^{2}}\right] \approx 0
\end{aligned}
$$

- Consistency conditions on secondary constraints:

$$
\begin{aligned}
& \dot{\chi}_{1}=\left\{\chi_{1}, \mathrm{H}_{T}\right\} \approx 0 \\
& \dot{\chi}_{2}=\left\{\chi_{2}, \mathrm{H}_{T}\right\} \approx 0
\end{aligned}
$$

Constraints

- (Reminder) First class constraints: their Poisson brackets with other constraints vanish:

$$
\left\{\phi_{1 s t}, \text { any constr. }\right\} \approx 0
$$

- (Reminder) Constraints that are not of the first class are called second class.
- (Reminder) The number of second class constraints is always even.
- For this extended model:
- two first class constraints and
- two second class constraints.

Conclusion

- There are both type of constraints.
- So, Senjanovic method/measure should be used.
- As already mentioned, extended model is classically equivalent to the initial one.
- As already mentioned, extended model is more suitable for path integral quantization.

References

- D.A. Steer and F. Vernizzi, Phys. Rev. D 70, 043527 (2004).
- N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic and M. Milosevic, Int. J. Mod. Phys. A32, 1750039 (2017).
- A. Sen, JHEP 04, 048 (2002).
- G.S. Djordjevic, D.D. Dimitrijevic and M. Milosevic, Rom. Rep. Phys. 68, No. 1, 1 (2016).
- S. Anderegg and V. Mukhanov, Phys. Lett. B331, 30-38 (1994).
- T. Prokopec and G. Rigopoulos, Phys. Rev. D82, 023529 (2010).
- J.O. Gong, M.S. Seo and G. Shiu, JHEP 07, 099 (2016).
- This work is supported by the SEENET-MTP Network under the ICTP grant NT-03.
- The financial support of the Serbian Ministry for Education and Science, Projects OI 174020 and OI 176021 is also kindly acknowledged.

THANK YOU! X B A J A!

