Orbifolds of defect TQFTs

Nils Carqueville

Universität Wien \& Erwin Schrödinger Institute

Motivation and outline

Motivation and outline

$$
\text { geometry } \longrightarrow \text { algebra }
$$

Motivation and outline

$$
\text { geometry } \longrightarrow \text { algebra }
$$

Motivation and outline

Motivation and outline

Example 1. geometry $=$ knots and algebra $=$ homological algebra

Motivation and outline

Example 1. geometry $=$ knots and algebra $=$ homological algebra
Example 2a. geometry $=$ topology and algebra $=$ vector spaces

Motivation and outline

Example 1. geometry $=$ knots and algebra $=$ homological algebra
Example 2a. geometry $=$ topology and algebra $=$ vector spaces:
$\left\{\right.$ Bord $_{2} \longrightarrow$ Vect $\left._{k}\right\} \cong\{$ commutative Frobenius algebras $\}$

Motivation and outline

Example 1. geometry $=$ knots and algebra $=$ homological algebra
Example 2a. geometry $=$ topology and algebra $=$ vector spaces:

$$
\left\{\operatorname{Bord}_{2} \longrightarrow \text { Vect }_{\mathrm{k}}\right\} \cong\{\text { commutative Frobenius algebras }\}
$$

Example 2b. decorated stratified manifolds and vector spaces

Motivation and outline

Example 1. geometry $=$ knots and algebra $=$ homological algebra
Example 2a. geometry $=$ topology and algebra $=$ vector spaces:

$$
\left\{\operatorname{Bord}_{2} \longrightarrow \text { Vect }_{\mathrm{k}}\right\} \cong\{\text { commutative Frobenius algebras }\}
$$

Example 2b. decorated stratified manifolds and vector spaces: \Longrightarrow categories, 2-categories, ..., n-categories

Motivation and outline

Example 1. geometry $=$ knots and algebra $=$ homological algebra
Example 2a. geometry $=$ topology and algebra $=$ vector spaces:

$$
\left\{\operatorname{Bord}_{2} \longrightarrow \text { Vect }_{\mathrm{k}}\right\} \cong\{\text { commutative Frobenius algebras }\}
$$

Example 2b. decorated stratified manifolds and vector spaces:
\Longrightarrow categories, 2-categories, ..., n-categories
\Longrightarrow orbifold TQFTs
\Longrightarrow new equivalences

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$.

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$. multiplication $\mathcal{Z}($ §) $): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$. multiplication $\mathcal{Z}($ § $): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$, pairing $\mathcal{Z}\left(\Omega_{0}\right): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C}$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$. multiplication $\mathcal{Z}\left(\bigcap_{0}\right): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$, pairing $\mathcal{Z}\left(\Omega_{\Omega}\right): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C}$

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G
Sigma models:
$\mathcal{H}=H_{d}(M)$ for compact oriented manifold M

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G
Sigma models:
$\mathcal{H}=H_{d}(M)$ for compact oriented manifold M
Landau-Ginzburg models:
$\mathcal{H}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x} W\right)$ for isolated singularity $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G
Sigma models:
$\mathcal{H}=H_{d}(M)$ for compact oriented manifold M
Landau-Ginzburg models:
$\mathcal{H}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x} W\right)$ for isolated singularity $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
State sum models:

- input: separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
- choose oriented triangulation for every bordism Σ
- on Poincaré dual graph, associate A to edges, (co)multiplication μ, Δ to vertices:

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ, Δ to vertices of Poincaré dual of triangulation of bordisms Σ

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ, Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points:$\longmapsto A^{\otimes 3}$

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ, Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points:$\longmapsto A^{\otimes 3}$
- get maps $\pi_{\Sigma}: A^{\otimes k_{1}} \otimes \cdots \otimes A^{\otimes k_{m}} \longrightarrow A^{\otimes l_{1}} \otimes \cdots \otimes A^{\otimes l_{n}}$ from bordism $\Sigma:\left(S^{1}\right)^{\times m} \longrightarrow\left(S^{1}\right)^{\times n}$

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ, Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points:
 $\longmapsto A^{\otimes 3}$
- get maps $\pi_{\Sigma}: A^{\otimes k_{1}} \otimes \cdots \otimes A^{\otimes k_{m}} \longrightarrow A^{\otimes l_{1}} \otimes \cdots \otimes A^{\otimes l_{n}}$ from bordism $\Sigma:\left(S^{1}\right)^{\times m} \longrightarrow\left(S^{1}\right)^{\times n}$
- if $\Sigma: S^{1} \longrightarrow S^{1}$ is cylinder, then $\pi_{\Sigma}: A^{\otimes k} \longrightarrow A^{\otimes k}$ is projector

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ, Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points:
 $\longmapsto A^{\otimes 3}$
- get maps $\pi_{\Sigma}: A^{\otimes k_{1}} \otimes \cdots \otimes A^{\otimes k_{m}} \longrightarrow A^{\otimes l_{1}} \otimes \cdots \otimes A^{\otimes l_{n}}$ from bordism $\Sigma:\left(S^{1}\right)^{\times m} \longrightarrow\left(S^{1}\right)^{\times n}$
- if $\Sigma: S^{1} \longrightarrow S^{1}$ is cylinder, then $\pi_{\Sigma}: A^{\otimes k} \longrightarrow A^{\otimes k}$ is projector
- define state sum model

$$
\mathcal{Z}_{A}^{\text {ss }}: \text { Bord }_{2} \longrightarrow \text { Vect }_{C}
$$

$$
S^{1} \longmapsto \operatorname{Im}\left(\pi_{S^{1} \times[0,1]}: A^{\otimes k} \longrightarrow A^{\otimes k}\right) \cong Z(A)
$$

$\left(\Sigma:\left(S^{1}\right)^{\times m} \longrightarrow\left(S^{1}\right)^{\times n}\right) \longmapsto\left(\right.$ induced linear map $\left.Z(A)^{\otimes m} \longrightarrow Z(A)^{\otimes n}\right)$

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\mathrm{SS}}\left(S^{1}\right) \cong Z(A)$.

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\text {ss }}\left(S^{1}\right) \cong Z(A)$.

Proof sketch: Need to show invariance under Pachner moves

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\mathrm{ss}}\left(S^{1}\right) \cong Z(A)$.

Proof sketch: Need to show invariance under Pachner moves

or dually:

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\text {ss }}\left(S^{1}\right) \cong Z(A)$.

Proof sketch: Need to show invariance under Pachner moves

or dually:

Satisfied for separable symmetric Frobenius \mathbb{C}-algebras A !

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}
$$

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1-strata of surfaces
- a set D_{0} to label 0-strata of surfaces

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1 -strata of surfaces
- a set D_{0} to label 0 -strata of surfaces
- allowed ways for strata to meet locally:
$\alpha \in D_{2}$

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1 -strata of surfaces
- a set D_{0} to label 0 -strata of surfaces
- allowed ways for strata to meet locally:

objects:

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1 -strata of surfaces
- a set D_{0} to label 0 -strata of surfaces
- allowed ways for strata to meet locally:

objects:

morphisms:

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{\mathbb{C}}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$
- $\left.\mathcal{Z}^{\text {triv }}()_{0} \mathbb{C}\right) \stackrel{\text { def }}{=}\left(\right.$ evaluate line and point defect in $\left.\operatorname{Vect}_{\mathrm{C}}\right)$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{0}\right.$ C $) \stackrel{\text { def }}{=}\left(\right.$ evaluate line and point defect in Vect ${ }_{C}$)
- state sum models $2.0 \quad \mathcal{Z}^{\text {ss }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {ss }}\right) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels (conj.)
- LG models: isolated singularities \& matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{\mathbb{C}}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{0}\right.$ C $) \stackrel{\text { def }}{=}$ (evaluate line and point defect in Vect $_{C}$)
- state sum models $2.0 \quad \mathcal{Z}^{\text {ss }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {ss }}\right) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$
- $D_{2}^{\mathrm{ss}}=\{$ separable symmetric Frobenius \mathbb{C}-algebras $A, B, \ldots\}$
- $D_{1}^{\mathrm{ss}}=\{B$ - A-bimodules $\}$
- $D_{0}^{\text {ss }}=\{$ bimodule maps $\}$

Orbifolds by groups

orbifioldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$ $\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$ $\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"

Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"
Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g), \quad$ algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"
Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g)$, algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$
- define \mathcal{Z}^{G} as A_{G}-state sum construction internal to \mathcal{Z}

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"
Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g)$, algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$
- define \mathcal{Z}^{G} as A_{G}-state sum construction internal to \mathcal{Z} :

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{C}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"
Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g)$, algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$
- define \mathcal{Z}^{G} as A_{G}-state sum construction internal to \mathcal{Z} :

Orbifolds by groups

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{C}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"
Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g)$, algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$
- define \mathcal{Z}^{G} as A_{G}-state sum construction internal to \mathcal{Z} :

- consistent if A_{G} is separable symmetric Frobenius algebra internal to 2-category associated to \mathcal{Z}
\Longrightarrow group orbifolds from special types of algebras

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ be any defect TQFT.

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$ be any defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(T, A, \mu, \Delta)$:

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ be any defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ be any defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

Definition \& Theorem.
Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \text { Bord }_{2} \longrightarrow \text { Vect }_{\mathbb{C}}
$$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{D}_{n+1}}\right) \cong \operatorname{hmf}\left(W_{\mathrm{A}_{2 n-1}}\right)^{\mathbb{Z}_{2}}$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{D}_{n+1}}\right) \cong \operatorname{hmf}\left(W_{\mathrm{A}_{2 n-1}}\right)^{\mathbb{Z}_{2}}$
- (LG model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=\left(\right.$ non-group orbifold of LG model with $\left.W_{\mathrm{A}_{11}}=u^{12}+v^{2}\right)$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{D}_{n+1}}\right) \cong \operatorname{hmf}\left(W_{\mathrm{A}_{2 n-1}}\right)^{\mathbb{Z}_{2}}$
- (LG model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=\left(\right.$ non-group orbifold of LG model with $\left.W_{\mathrm{A}_{11}}=u^{12}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{E}_{6}}\right) \cong \bmod _{\mathrm{hmf}\left(W_{\mathrm{A}_{11}}\right)}\left(A_{\mathrm{AE}}\right)$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{D}_{n+1}}\right) \cong \operatorname{hmf}\left(W_{\mathrm{A}_{2 n-1}}\right)^{\mathbb{Z}_{2}}$
- (LG model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=$ (non-group orbifold of LG model with $W_{\mathrm{A}_{11}}=u^{12}+v^{2}$)
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{E}_{6}}\right) \cong \bmod _{\mathrm{hmf}\left(W_{\mathrm{A}_{11}}\right)}\left(A_{\mathrm{AE}}\right) \quad \quad$ (also $\mathrm{E}_{7} / \mathrm{A}_{17}$ and $\left.\mathrm{E}_{8} / \mathrm{A}_{29}\right)$

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{D}_{n+1}}\right) \cong \operatorname{hmf}\left(W_{\mathrm{A}_{2 n-1}}\right)^{\mathbb{Z}_{2}}$
- (LG model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=$ (non-group orbifold of LG model with $W_{\mathrm{A}_{11}}=u^{12}+v^{2}$)
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{E}_{6}}\right) \cong \bmod _{\mathrm{hmf}\left(W_{\mathrm{A}_{11}}\right)}\left(A_{\mathrm{AE}}\right) \quad \quad$ (also $\mathrm{E}_{7} / \mathrm{A}_{17}$ and $\mathrm{E}_{8} / \mathrm{A}_{29}$)
- (LG model with potential $\left.W_{\mathrm{Q}_{10}}=x^{2} z+y^{3}+z^{4}\right)$
$=\left(\right.$ orbifold of LG model with $\left.W_{\mathrm{E}_{14}}=u^{3}+v^{8}+w^{2}\right)$
(also $\mathrm{S}_{11} / \mathrm{W}_{13}$ and $\mathrm{Z}_{13} / \mathrm{Q}_{11}$ and $\mathrm{E}_{13} / \mathrm{Z}_{11}$)

Examples of 2d orbifolds

- G-orbifold $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum model $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (LG model with $\left.W_{\mathrm{D}_{n+1}}=x^{n}+x y^{2}\right)$
$=\left(\mathbb{Z}_{2}\right.$-orbifold of LG model with $\left.W_{\mathrm{A}_{2 n-1}}=u^{2 n}+v^{2}\right)$
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{D}_{n+1}}\right) \cong \operatorname{hmf}\left(W_{\mathrm{A}_{2 n-1}}\right)^{\mathbb{Z}_{2}}$
- (LG model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=$ (non-group orbifold of LG model with $W_{\mathrm{A}_{11}}=u^{12}+v^{2}$)
$\Longrightarrow \operatorname{hmf}\left(W_{\mathrm{E}_{6}}\right) \cong \bmod _{\mathrm{hmf}\left(W_{\mathrm{A}_{11}}\right)}\left(A_{\mathrm{AE}}\right) \quad \quad$ (also $\mathrm{E}_{7} / \mathrm{A}_{17}$ and $\mathrm{E}_{8} / \mathrm{A}_{29}$)
- (LG model with potential $W_{\mathrm{Q}_{10}}=x^{2} z+y^{3}+z^{4}$)
$=\left(\right.$ orbifold of LG model with $\left.W_{\mathrm{E}_{14}}=u^{3}+v^{8}+w^{2}\right)$
(also $\mathrm{S}_{11} / \mathrm{W}_{13}$ and $\mathrm{Z}_{13} / \mathrm{Q}_{11}$ and $\mathrm{E}_{13} / \mathrm{Z}_{11}$)

In any dimension $n \geqslant 1$, the generalised orbifold construction works for any n-dimensional defect TQFT

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}} .
$$

Triangulations

- standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

Triangulations

- standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

Triangulations

- standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

Triangulations

- standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

- simplicial complex C is finite collection of simplices such that
- all faces of all $\sigma \in C$ are also in C
- $\sigma, \sigma^{\prime} \in C \quad \Longrightarrow \quad \sigma \cap \sigma^{\prime}=\emptyset \quad$ or $\quad \sigma \cap \sigma^{\prime}=$ face

Triangulations

- standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

- simplicial complex C is finite collection of simplices such that
- all faces of all $\sigma \in C$ are also in C
- $\sigma, \sigma^{\prime} \in C \quad \Longrightarrow \quad \sigma \cap \sigma^{\prime}=\emptyset \quad$ or $\quad \sigma \cap \sigma^{\prime}=$ face
- triangulation of manifold M is simplicial complex C with homeomorphism $|C| \longrightarrow M$

Triangulations

- standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

- simplicial complex C is finite collection of simplices such that
- all faces of all $\sigma \in C$ are also in C
- $\sigma, \sigma^{\prime} \in C \quad \Longrightarrow \quad \sigma \cap \sigma^{\prime}=\emptyset \quad$ or $\quad \sigma \cap \sigma^{\prime}=$ face
- triangulation of manifold M is simplicial complex C with homeomorphism $|C| \longrightarrow M$
- (details for smooth, oriented, ...)

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices.

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M^{\prime} :

$$
M \longmapsto(M \backslash K) \cup_{\left.\varphi\right|_{\partial K}}\left(\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right)
$$

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \xlongequal{\varrho} F$.

A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M^{\prime} :

$$
M \longmapsto(M \backslash K) \cup_{\left.\varphi\right|_{\partial K}}\left(\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right)
$$

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \xlongequal{\varrho} F$.

A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M ":

$$
M \longmapsto(M \backslash K) \cup_{\left.\varphi\right|_{\partial K}}\left(\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right)
$$

Theorem.

If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them.

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For $n=3$:

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For $n=3$:

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For $n=3$:

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For $n=3$:

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n}

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n}; $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}$can label duals of the two oppositely oriented n-simplices Δ^{n}

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n};
$\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}$can label duals of the two oppositely oriented n-simplices Δ^{n}.
- invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n};
$\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}$can label duals of the two oppositely oriented n-simplices Δ^{n}.
- invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.

Recovers case $n=2$:

Orbifold datum \mathcal{A} for $n=3$

Orbifold datum \mathcal{A} for $n=3$

Orbifold datum \mathcal{A} for $n=3$

Orbifold datum \mathcal{A} for $n=3$

Orbifold datum \mathcal{A} for $n=3$

Orbifold datum \mathcal{A} for $n=3$

Orbifold datum \mathcal{A} for $n=3$

dual to

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$.

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$. Definition \& Theorem.
Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.
Definition \& Theorem.
Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Theorem.

For $n=3$, it is sufficient that under \mathcal{Z} :

[^0]
Examples of 3d orbifolds

- Turaev-Viro models $\left(=\right.$ state sum models) $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}=\left(\mathcal{Z}^{\text {triv }}\right)_{\mathcal{A}}$

Examples of 3d orbifolds

- Turaev-Viro models (= state sum models) $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}=\left(\mathcal{Z}^{\text {triv }}\right)_{\mathcal{A}}$ from spherical fusion category \mathcal{A} (e.g. $\mathcal{A}=\operatorname{rep}(G)$):
- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator ${ }_{(+ \text {details...) }}$

Examples of 3d orbifolds

- Turaev-Viro models (= state sum models) $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}=\left(\mathcal{Z}^{\text {triv }}\right)_{\mathcal{A}}$ from spherical fusion category \mathcal{A} (e.g. $\mathcal{A}=\operatorname{rep}(G)$):
- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category \mathcal{M} (e.g. $\left.\mathcal{M}=\widehat{\mathfrak{s l}}(2)_{k}\right)$:
- $D_{3}=\{\mathcal{M}\}$
- $D_{2}=\{$ separable symmetric Frobenius algebras $A \in \mathcal{M}\}$
- $D_{1}=$ \{cyclic modules $\}$
- $D_{0}=\{$ bimodule maps $\}$

Examples of 3d orbifolds

- Turaev-Viro models (= state sum models) $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}=\left(\mathcal{Z}^{\text {triv }}\right)_{\mathcal{A}}$ from spherical fusion category \mathcal{A} (e.g. $\mathcal{A}=\operatorname{rep}(G)$):
- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category \mathcal{M} (e. g. $\left.\mathcal{M}=\widehat{\mathfrak{s l}}(2)_{k}\right)$:
- $D_{3}=\{\mathcal{M}\}$
- $D_{2}=\{$ separable symmetric Frobenius algebras $A \in \mathcal{M}\}$
- $D_{1}=$ \{cyclic modules $\}$
- $D_{0}=\{$ bimodule maps $\}$

$$
A=(0) \oplus A_{\mathbb{Z}_{2}} \text { for } k=2 \bmod 4
$$

Examples of 3d orbifolds

- Turaev-Viro models (= state sum models) $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}=\left(\mathcal{Z}^{\text {triv }}\right)_{\mathcal{A}}$ from spherical fusion category \mathcal{A} (e.g. $\mathcal{A}=\operatorname{rep}(G)$):
- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category \mathcal{M} (e. g. $\left.\mathcal{M}=\widehat{\mathfrak{s l}}(2)_{k}\right)$:
- $D_{3}=\{\mathcal{M}\}$
- $D_{2}=\{$ separable symmetric Frobenius algebras $A \in \mathcal{M}\}$
- $D_{1}=$ \{cyclic modules $\}$
- $D_{0}=\{$ bimodule maps $\}$

$$
A=(0) \oplus A_{\mathbb{Z}_{2}} \text { for } k=2 \bmod 4
$$

- G-crossed modular tensor categories $\mathcal{M}_{G}^{\times}=\bigoplus_{g \in G} \mathcal{M}_{g}$ (work in progress)

Examples of 3d orbifolds

- Turaev-Viro models (= state sum models) $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}=\left(\mathcal{Z}^{\text {triv }}\right)_{\mathcal{A}}$ from spherical fusion category \mathcal{A} (e.g. $\mathcal{A}=\operatorname{rep}(G)$):
- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category \mathcal{M} (e. g. $\left.\mathcal{M}=\widehat{\mathfrak{s l}}(2)_{k}\right)$:
- $D_{3}=\{\mathcal{M}\}$
- $D_{2}=\{$ separable symmetric Frobenius algebras $A \in \mathcal{M}\}$
- $D_{1}=$ \{cyclic modules $\}$
- $D_{0}=\{$ bimodule maps $\}$

$$
A=(0) \oplus A_{\mathbb{Z}_{2}} \text { for } k=2 \bmod 4
$$

- G-crossed modular tensor categories $\mathcal{M}_{G}^{\times}=\bigoplus_{g \in G} \mathcal{M}_{g}$ (work in progress)
- topological quantum computation: $\mathcal{M}=\mathcal{C}^{\boxtimes n}$ (work in progress)

[^0]: Carqueville/Runkel/Schaumann 2017

