Orbifolds of defect TQFTs

Nils Carqueville

Universität Wien & Erwin Schrödinger Institute

geometry — algebra

Example 1. geometry = knots and algebra = homological algebra

Example 1. geometry = knots and algebra = homological algebra **Example 2a.** geometry = topology and algebra = vector spaces

Example 1. geometry = knots and algebra = homological algebra Example 2a. geometry = topology and algebra = vector spaces: $\left\{ Bord_2 \longrightarrow Vect_{\Bbbk} \right\} \cong \left\{ commutative Frobenius algebras \right\}$

Example 1. geometry = knots and algebra = homological algebra Example 2a. geometry = topology and algebra = vector spaces: $\left\{ Bord_2 \longrightarrow Vect_k \right\} \cong \left\{ commutative Frobenius algebras \right\}$

Example 2b. decorated stratified manifolds and vector spaces

Example 1. geometry = knots and algebra = homological algebra Example 2a. geometry = topology and algebra = vector spaces: $\left\{ Bord_2 \longrightarrow Vect_k \right\} \cong \left\{ commutative Frobenius algebras \right\}$

Example 2b. decorated stratified manifolds and vector spaces: \implies categories, 2-categories, ..., *n*-categories

Example 1. geometry = knots and algebra = homological algebra

Example 2a. geometry = **topology** and algebra = **vector spaces**: $\left\{ Bord_2 \longrightarrow Vect_{\Bbbk} \right\} \cong \left\{ commutative Frobenius algebras \right\}$

Example 2b. decorated stratified manifolds and vector spaces:

- \implies categories, 2-categories, ..., *n*-categories
- \implies orbifold TQFTs
- \implies new equivalences

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset\right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C}\right)$$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2d \text{ closed } TQFTs\} \cong \{\text{commutative Frobenius algebras}\}$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

Theorem. {2d closed TQFTs} \cong {commutative Frobenius algebras} *Proof sketch*: Set $\mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}$.

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

Theorem. {2d closed TQFTs} \cong {commutative Frobenius algebras} *Proof sketch*: Set $\mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}$. multiplication $\mathcal{Z}(\bigcap) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

 $\begin{array}{l} \textbf{Theorem.} \quad \left\{ \text{2d closed TQFTs} \right\} \cong \left\{ \textbf{commutative Frobenius algebras} \right\} \\ \textit{Proof sketch: Set } \mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}. \\ \text{multiplication } \mathcal{Z}(\bigwedge) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}, \text{ pairing } \mathcal{Z}(\bigwedge) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C} \end{array}$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes_{\mathbb{C}}, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

 $\begin{array}{l} \textbf{Theorem.} \quad \left\{ \text{2d closed TQFTs} \right\} \cong \left\{ \textbf{commutative Frobenius algebras} \right\} \\ \textit{Proof sketch: Set } \mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}. \\ \textit{multiplication } \mathcal{Z}(\ref{eq:schemestress}) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}, \text{ pairing } \mathcal{Z}(\ref{eq:schemestress}) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C} \end{array}$

Atiyah 1988

Dijkgraaf-Witten models:

 $\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G

Dijkgraaf-Witten models:

 $\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G

Sigma models:

 $\mathcal{H}=H_d(M)$ for compact oriented manifold M

Dijkgraaf-Witten models:

 $\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G

Sigma models:

 $\mathcal{H} = H_d(M)$ for compact oriented manifold M

Landau-Ginzburg models:

 $\mathcal{H}=\mathbb{C}[x_1,\ldots,x_n]/(\partial_x W)$ for isolated singularity $W\in\mathbb{C}[x_1,\ldots,x_n]$

Dijkgraaf-Witten models:

 $\mathcal{H}=\mathbb{C}[G]$ for finite abelian group G

Sigma models:

 $\mathcal{H} = H_d(M)$ for compact oriented manifold M

Landau-Ginzburg models:

 $\mathcal{H}=\mathbb{C}[x_1,\ldots,x_n]/(\partial_x W)$ for isolated singularity $W\in\mathbb{C}[x_1,\ldots,x_n]$

State sum models:

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)
- \bullet choose oriented triangulation for every bordism Σ
- on **Poincaré dual** graph, associate A to edges, (co)multiplication μ, Δ to vertices:

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

- \bullet input: separable symmetric Frobenius $\mathbb{C}\text{-algebra}~(A,\mu,\Delta)$
- associate A to edges, (co)multiplication μ,Δ to vertices of Poincaré dual of triangulation of bordisms Σ

- input: separable symmetric Frobenius $\mathbb{C} ext{-algebra}\left(A,\mu,\Delta\right)$
- associate A to edges, (co)multiplication μ,Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points:

 $\bigcirc \longmapsto A^{\otimes 3}$

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ,Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points: $\bigcirc \longrightarrow A^{\otimes 3}$
- get maps $\pi_{\Sigma} \colon A^{\otimes k_1} \otimes \cdots \otimes A^{\otimes k_m} \longrightarrow A^{\otimes l_1} \otimes \cdots \otimes A^{\otimes l_n}$ from bordism $\Sigma \colon (S^1)^{\times m} \longrightarrow (S^1)^{\times n}$

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ,Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points: $\bigcirc \longrightarrow A^{\otimes 3}$
- get maps $\pi_{\Sigma} \colon A^{\otimes k_1} \otimes \cdots \otimes A^{\otimes k_m} \longrightarrow A^{\otimes l_1} \otimes \cdots \otimes A^{\otimes l_n}$ from bordism $\Sigma \colon (S^1)^{\times m} \longrightarrow (S^1)^{\times n}$
- if $\Sigma \colon S^1 \longrightarrow S^1$ is cylinder, then $\pi_{\Sigma} \colon A^{\otimes k} \longrightarrow A^{\otimes k}$ is projector

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)
- associate A to edges, (co)multiplication μ,Δ to vertices of Poincaré dual of triangulation of bordisms Σ
- associate $A^{\otimes k}$ to dual triangulation of circle with k points: $\bigcirc \longrightarrow A^{\otimes 3}$
- get maps $\pi_{\Sigma} \colon A^{\otimes k_1} \otimes \cdots \otimes A^{\otimes k_m} \longrightarrow A^{\otimes l_1} \otimes \cdots \otimes A^{\otimes l_n}$ from bordism $\Sigma \colon (S^1)^{\times m} \longrightarrow (S^1)^{\times n}$
- if $\Sigma \colon S^1 \longrightarrow S^1$ is cylinder, then $\pi_{\Sigma} \colon A^{\otimes k} \longrightarrow A^{\otimes k}$ is projector
- define state sum model

$$\begin{aligned} \mathcal{Z}_A^{\mathrm{ss}} \colon \operatorname{Bord}_2 &\longrightarrow \operatorname{Vect}_{\mathbb{C}} \\ S^1 &\longmapsto \operatorname{Im} \left(\pi_{S^1 \times [0,1]} \colon A^{\otimes k} \longrightarrow A^{\otimes k} \right) \cong Z(A) \\ (S^1)^{\times m} &\longrightarrow (S^1)^{\times n} \right) &\longmapsto \left(\text{induced linear map } Z(A)^{\otimes m} \longrightarrow Z(A)^{\otimes n} \right) \end{aligned}$$

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

 Σ :

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Proof sketch: Need to show invariance under Pachner moves

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Proof sketch: Need to show invariance under Pachner moves

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Proof sketch: Need to show invariance under Pachner moves

Satisfied for separable symmetric Frobenius \mathbb{C} -algebras A!

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

A 2-dimensional defect TQFT is a symmetric monoidal functor $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data ${\mathbb D}$ consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces
- allowed ways for strata to meet locally:

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces
- allowed ways for strata to meet locally:

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces
- allowed ways for strata to meet locally:

• A-models: symplectic manifolds & Fukaya categories (conj.)

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

•
$$D_2^{\text{triv}} = \{\mathbb{C}\}$$

- ► $D_1^{\text{triv}} = \{\mathbb{C}\text{-bimodules}\} = \{\mathbb{C}\text{-vector spaces}\}$
- $D_0^{\text{triv}} = \{\text{bimodule maps}\} = \{\text{linear maps}\}$

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

•
$$D_2^{\text{triv}} = \{\mathbb{C}\}$$

• $D_1^{\text{triv}} = \{\mathbb{C}\text{-bimodules}\} = \{\mathbb{C}\text{-vector spaces}\}$
• $D_0^{\text{triv}} = \{\text{bimodule maps}\} = \{\text{linear maps}\}$
• $\mathcal{Z}^{\text{triv}}\left(\bigoplus_{\substack{i \in k_m \\ i \in k_m}}^{\mathbb{C}^{k_1}} \right) \stackrel{\text{def}}{=} \mathbb{C}^{k_1} \otimes \cdots \otimes \mathbb{C}^{k_m}$

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Vect_€)

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)
- trivial defect TQFT \mathcal{Z}^{triv} : $Bord_2^{def}(\mathbb{D}^{triv}) \longrightarrow Vect_{\mathbb{C}}$

• state sum models 2.0 $\mathcal{Z}^{ss} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}^{ss}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

(0

- A-models: symplectic manifolds & Fukaya categories (conj.)
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)
- LG models: isolated singularities & matrix factorisations (conj.)
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

$$D_2^{\text{triv}} = \{\mathbb{C}\}$$

$$D_1^{\text{triv}} = \{\mathbb{C}\text{-bimodules}\} = \{\mathbb{C}\text{-vector spaces}\}$$

• $D_0^{\text{triv}} = \{\text{bimodule maps}\} = \{\text{linear maps}\}$

$$\blacktriangleright \ \mathcal{Z}^{\mathrm{triv}} \left(\bigoplus_{\mathbb{C}^{k_m}}^{\mathbb{C}^{k_1}} \right) \stackrel{\mathrm{def}}{=} \mathbb{C}^{k_1} \otimes \cdots \otimes \mathbb{C}^{k_m}$$

• state sum models 2.0 $\mathcal{Z}^{ss} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}^{ss}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

- ▶ $D_2^{ss} = \{ separable symmetric Frobenius C-algebras A, B, ... \}$
- $D_1^{ss} = \{B \text{-}A \text{-}bimodules\}$
- $D_0^{\rm ss} = \{ \text{bimodule maps} \}$

Davydov/Kong/Runkel 2011

n+nin.

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors"

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors" *Equivalently*:

• group action gives $\rho(g) \in D_1$ for all $g \in G$

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors"

Equivalently:

- group action gives $\rho(g) \in D_1$ for all $g \in G$
- $A_G:=\bigoplus_{g\in G}\rho(g)$, algebra structure from $\rho(g\circ h)\cong\rho(g)\circ\rho(h)$

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors"

Equivalently:

- group action gives $\rho(g) \in D_1$ for all $g \in G$
- $\bullet \ A_G:= \bigoplus_{g\in G} \rho(g), \ \text{ algebra structure from } \rho(g\circ h)\cong \rho(g)\circ \rho(h)$
- define \mathcal{Z}^G as A_G -state sum construction internal to \mathcal{Z}

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors"

Equivalently:

- group action gives $ho(g) \in D_1$ for all $g \in G$
- $\bullet \ A_G:= \bigoplus_{g\in G} \rho(g), \ \text{ algebra structure from } \rho(g\circ h)\cong \rho(g)\circ \rho(h)$
- define Z^G as A_G -state sum construction internal to Z:

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory $\mathcal{Z}^G \colon$ "averaging & twisted sectors" *Equivalently*:

- group action gives $\rho(g) \in D_1$ for all $g \in G$
- $A_G:=\bigoplus_{g\in G}\rho(g)$, algebra structure from $\rho(g\circ h)\cong\rho(g)\circ\rho(h)$
- define \mathcal{Z}^G as A_G -state sum construction internal to \mathcal{Z} :

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors" *Equivalently*:

- group action gives $ho(g)\in D_1$ for all $g\in G$
- $A_G:=\bigoplus_{g\in G}\rho(g)$, algebra structure from $\rho(g\circ h)\cong\rho(g)\circ\rho(h)$
- define \mathcal{Z}^G as A_G -state sum construction internal to \mathcal{Z} :

- consistent if A_G is separable symmetric Frobenius algebra internal to 2-category associated to \mathcal{Z}
- \implies group orbifolds from special types of algebras

Let $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ be any defect TQFT.

Let \mathcal{Z} : Bord₂^{def}(\mathbb{D}) \longrightarrow Vect_{\mathbb{C}} be any defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (T, A, \mu, \Delta)$:

Let \mathcal{Z} : Bord₂^{def}(\mathbb{D}) \longrightarrow Vect_{\mathbb{C}} be any defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Let \mathcal{Z} : Bord₂^{def}(\mathbb{D}) \longrightarrow Vect_{\mathbb{C}} be any defect TQFT. An **orbifold datum** for \mathcal{Z} is $\mathcal{A} \equiv (T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Definition & Theorem.

Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

$$\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_2 \longrightarrow \operatorname{Vect}_{\mathbb{C}}$$

Carqueville/Runkel 2012

• *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$

- *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$
- state sum model $\mathcal{Z}_A^{\mathrm{ss}} = (\mathcal{Z}^{\mathrm{triv}})_A$

- *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$
- state sum model $\mathcal{Z}^{\mathrm{ss}}_A = (\mathcal{Z}^{\mathrm{triv}})_A$

•
$$\left(\mathsf{LG} \text{ model with } W_{\mathsf{D}_{n+1}} = x^n + xy^2 \right)$$

= $\left(\mathbb{Z}_2 \text{-orbifold of LG model with } W_{\mathsf{A}_{2n-1}} = u^{2n} + v^2 \right)$

• *G*-orbifold $Z^G = Z_{A_G}$ • state sum model $Z_A^{ss} = (Z^{triv})_A$ • $\left(\mathsf{LG} \text{ model with } W_{\mathsf{D}_{n+1}} = x^n + xy^2 \right)$ $= \left(\mathbb{Z}_2 \text{-orbifold of } \mathsf{LG} \text{ model with } W_{\mathsf{A}_{2n-1}} = u^{2n} + v^2 \right)$ $\implies \operatorname{hmf}(W_{\mathsf{D}_{n+1}}) \cong \operatorname{hmf}(W_{\mathsf{A}_{2n-1}})^{\mathbb{Z}_2}$

• *G*-orbifold $Z^G = Z_{A_G}$ • state sum model $Z_A^{ss} = (Z^{triv})_A$ • $\left(\text{LG model with } W_{D_{n+1}} = x^n + xy^2 \right)$ $= \left(\mathbb{Z}_2 \text{-orbifold of LG model with } W_{A_{2n-1}} = u^{2n} + v^2 \right)$ $\implies \text{hmf}(W_{D_{n+1}}) \cong \text{hmf}(W_{A_{2n-1}})^{\mathbb{Z}_2}$ • $\left(\text{LG model with potential } W_{E_6} = x^3 + y^4 \right)$ $= \left(\text{non-group orbifold of LG model with } W_{A_{11}} = u^{12} + v^2 \right)$

• *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$ • state sum model $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$ • (LG model with $W_{D_{n+1}} = x^n + xy^2$) $= \left(\mathbb{Z}_2$ -orbifold of LG model with $W_{A_{2n-1}} = u^{2n} + v^2\right)$ $\implies \operatorname{hmf}(W_{\mathbf{D}_{n+1}}) \cong \operatorname{hmf}(W_{\mathbf{A}_{2n-1}})^{\mathbb{Z}_2}$ • (LG model with potential $W_{\rm E_6} = x^3 + y^4$) = (non-group orbifold of LG model with $W_{\mathrm{A}_{11}} = u^{12} + v^2$) $\implies \operatorname{hmf}(W_{\operatorname{E}_6}) \cong \operatorname{mod}_{\operatorname{hmf}(W_{\operatorname{Aut}})}(A_{\operatorname{AE}})$

• *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$ • state sum model $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$ • (LG model with $W_{D_{n+1}} = x^n + xy^2$) $= \left(\mathbb{Z}_2$ -orbifold of LG model with $W_{A_{2n-1}} = u^{2n} + v^2\right)$ $\implies \operatorname{hmf}(W_{\mathbf{D}_{n+1}}) \cong \operatorname{hmf}(W_{\mathbf{A}_{2n-1}})^{\mathbb{Z}_2}$ • (LG model with potential $W_{\rm E_6} = x^3 + y^4$) = (non-group orbifold of LG model with $W_{\mathrm{A}_{11}} = u^{12} + v^2$) $\implies \operatorname{hmf}(W_{\operatorname{E}_6}) \cong \operatorname{mod}_{\operatorname{hmf}(W_{\operatorname{Aut}})}(A_{\operatorname{AE}})$ (also E_7/A_{17} and E_8/A_{29})

• *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$ • state sum model $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$ • (LG model with $W_{D_{n+1}} = x^n + xy^2$) $= \left(\mathbb{Z}_2$ -orbifold of LG model with $W_{A_{2n-1}} = u^{2n} + v^2\right)$ $\implies \operatorname{hmf}(W_{\mathbf{D}_{n+1}}) \cong \operatorname{hmf}(W_{\mathbf{A}_{2n-1}})^{\mathbb{Z}_2}$ • (LG model with potential $W_{\rm E_6} = x^3 + y^4$) = (non-group orbifold of LG model with $W_{\mathrm{A}_{11}} = u^{12} + v^2$) $\implies \operatorname{hmf}(W_{\operatorname{E}_6}) \cong \operatorname{mod}_{\operatorname{hmf}(W_{\operatorname{A_{1,1}}})}(A_{\operatorname{AE}})$ (also E_7/A_{17} and E_8/A_{29}) • (LG model with potential $W_{\mathrm{Q}_{10}}=x^2z+y^3+z^4$) = (orbifold of LG model with $W_{\mathrm{E}_{14}} = u^3 + v^8 + w^2$) $(also S_{11}/W_{13} and Z_{13}/Q_{11} and E_{13}/Z_{11})$

Ο...

• *G*-orbifold $\mathcal{Z}^G = \mathcal{Z}_{A_G}$ • state sum model $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$ • (LG model with $W_{D_{n+1}} = x^n + xy^2$) $= \left(\mathbb{Z}_2$ -orbifold of LG model with $W_{A_{2n-1}} = u^{2n} + v^2\right)$ $\implies \operatorname{hmf}(W_{\mathbf{D}_{n+1}}) \cong \operatorname{hmf}(W_{\mathbf{A}_{2n-1}})^{\mathbb{Z}_2}$ • (LG model with potential $W_{\rm E_6} = x^3 + y^4$) = (non-group orbifold of LG model with $W_{\mathrm{A}_{11}} = u^{12} + v^2$) $\implies \operatorname{hmf}(W_{\operatorname{E}_6}) \cong \operatorname{mod}_{\operatorname{hmf}(W_{\operatorname{A_{1,1}}})}(A_{\operatorname{AE}})$ (also E_7/A_{17} and E_8/A_{29}) • (LG model with potential $W_{\mathrm{Q}_{10}}=x^2z+y^3+z^4$) = (orbifold of LG model with $W_{\mathrm{E}_{14}} = u^3 + v^8 + w^2$) $(also S_{11}/W_{13} and Z_{13}/Q_{11} and E_{13}/Z_{11})$

Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Newton/Ros Camacho 2015, Recknagel/Weinreb 2015–2017

In any dimension $n \ge 1$, the generalised orbifold construction works for any *n*-dimensional defect TQFT

$$\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}.$$

• standard *n*-simplex
$$\Delta^n := \left\{ \sum_{i=1}^{n+1} t_i e_i \mid t_i \ge 0, \sum_{i=1}^{n+1} t_i = 1 \right\} \subset \mathbb{R}^{n+1}$$

• standard *n*-simplex $\Delta^n := \left\{ \sum_{i=1}^{n+1} t_i e_i \mid t_i \ge 0, \sum_{i=1}^{n+1} t_i = 1 \right\} \subset \mathbb{R}^{n+1}$

• standard *n*-simplex $\Delta^n := \left\{ \sum_{i=1}^{n+1} t_i e_i \mid t_i \ge 0, \sum_{i=1}^{n+1} t_i = 1 \right\} \subset \mathbb{R}^{n+1}$

• simplicial complex C is finite collection of simplices such that

- all faces of all $\sigma \in C$ are also in C
- $\blacktriangleright \ \sigma, \sigma' \in C \quad \Longrightarrow \quad \sigma \cap \sigma' = \emptyset \quad \text{or} \quad \sigma \cap \sigma' = \mathsf{face}$

• simplicial complex C is finite collection of simplices such that

- all faces of all $\sigma \in C$ are also in C
- $\blacktriangleright \ \sigma, \sigma' \in C \quad \Longrightarrow \quad \sigma \cap \sigma' = \emptyset \quad \text{or} \quad \sigma \cap \sigma' = \mathsf{face}$
- triangulation of manifold M is simplicial complex C with homeomorphism $|C| \longrightarrow M$
Triangulations

• simplicial complex C is finite collection of simplices such that

- all faces of all $\sigma \in C$ are also in C
- $\blacktriangleright \ \sigma, \sigma' \in C \quad \Longrightarrow \quad \sigma \cap \sigma' = \emptyset \quad \text{or} \quad \sigma \cap \sigma' = \mathsf{face}$
- triangulation of manifold M is simplicial complex C with homeomorphism $|C| \longrightarrow M$
- (details for smooth, oriented, ...)

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices.

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A **Pachner move** "glues the other side of $\partial \Delta^{n+1}$ into M":

$$M\longmapsto \left(M\setminus K\right)\cup_{\varphi\mid_{\partial K}}\left(\partial\Delta^{n+1}\setminus \overset{\circ}{F}\right)$$

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A **Pachner move** "glues the other side of $\partial \Delta^{n+1}$ into M":

Pachner 1991

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A **Pachner move** "glues the other side of $\partial \Delta^{n+1}$ into M":

 $M \longmapsto (M \setminus K) \cup_{\omega \mid_{\partial K}} (\partial \Delta^{n+1} \setminus \check{F})$

Theorem.

If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them. $_{\mbox{Pachner 1991}}$

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For n = 3:

Carqueville/Runkel/Schaumann 2017

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For n = 3:

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For n = 3:

Carqueville/Runkel/Schaumann 2017

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For n = 3:

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \ldots, n\}$,
- two elements $\mathcal{A}^+_0, \mathcal{A}^-_0 \in D_0$

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label j-strata dual to (n-j)-simplices in Δ^n

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label *j*-strata dual to (n-j)-simplices in Δ^n ; $\mathcal{A}_0^+, \mathcal{A}_0^-$ can label duals of the two oppositely oriented *n*-simplices Δ^n

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label *j*-strata dual to (n-j)-simplices in Δ^n ; $\mathcal{A}_0^+, \mathcal{A}_0^-$ can label duals of the two oppositely oriented *n*-simplices Δ^n .

• invariance:

Let B, B' be A-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B) = \mathcal{Z}(B')$.

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label *j*-strata dual to (n-j)-simplices in Δ^n ; $\mathcal{A}_0^+, \mathcal{A}_0^-$ can label duals of the two oppositely oriented *n*-simplices Δ^n .

• invariance:

Let B, B' be A-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B) = \mathcal{Z}(B')$.

Recovers case n = 2:

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Orbifold datum ${\cal A}$ for n=3

Orbifold datum ${\cal A}$ for n=3

Orbifold datum ${\cal A}$ for n=3

 $\mathcal{A}_2 \quad \mathcal{A}_3$

Orbifold datum ${\cal A}$ for n=3

Orbifold datum ${\cal A}$ for n=3

Orbifold datum \mathcal{A} for n=3

Orbifold datum \mathcal{A} for n=3

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Let \mathcal{A} be orbifold datum for defect $\mathsf{TQFT} \ \mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

 $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

$$\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$$

Theorem.

For n = 3, it is sufficient that under \mathcal{Z} :

• Turaev-Viro models (= state sum models) $\mathcal{Z}^{TV,\mathcal{A}} = (\mathcal{Z}^{triv})_{\mathcal{A}}$

$$\begin{array}{l} \blacktriangleright \ \mathcal{A}_3 = \ast \\ \blacktriangleright \ \mathcal{A}_2 = \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_1 = \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_0^{\pm} = \text{associator (+ details...)} \end{array}$$

•
$$\mathcal{A}_3 = *$$

•
$$\mathcal{A}_2 = \mathcal{A}$$

$$\blacktriangleright \ \mathcal{A}_1 = \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$$

- A[±]₀ = associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category *M* (e.g. *M* = *sl*(2)_k):
 - $\blacktriangleright D_3 = \{\mathcal{M}\}$
 - $D_2 = \{ \text{separable symmetric Frobenius algebras } A \in \mathcal{M} \}$
 - ▶ D₁ = {cyclic modules}
 - ▶ D₀ = {bimodule maps}

•
$$\mathcal{A}_3 = *$$

•
$$\mathcal{A}_2 = \mathcal{A}$$

$$\blacktriangleright \ \mathcal{A}_1 = \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$$

- A[±]₀ = associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category *M* (e.g. *M* = *sl*(2)_k):

$$\blacktriangleright D_3 = \{\mathcal{M}\}$$

- $D_2 = \{$ separable symmetric Frobenius algebras $A \in \mathcal{M} \}$
- ▶ D₁ = {cyclic modules}
- ▶ D₀ = {bimodule maps}
- orbifold datum for $\widehat{\mathfrak{sl}}(2)_k$: $A = (0) \oplus (k)$ for $k = 0 \mod 4$

$$A = (0) \oplus A_{\mathbb{Z}_2}$$
 for $k = 2 \mod 4$

• Turaev-Viro models (= state sum models) $\mathcal{Z}^{\text{TV},\mathcal{A}} = (\mathcal{Z}^{\text{triv}})_{\mathcal{A}}$ from spherical fusion category \mathcal{A} (e. g. $\mathcal{A} = \text{rep}(G)$):

•
$$\mathcal{A}_3 = *$$

•
$$\mathcal{A}_2 = \mathcal{A}$$

$$\blacktriangleright \ \mathcal{A}_1 = \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$$

- A[±]₀ = associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category \mathcal{M} (e.g. $\mathcal{M} = \widehat{\mathfrak{sl}}(2)_k$):

$$\blacktriangleright D_3 = \{\mathcal{M}\}$$

- $D_2 = \{$ separable symmetric Frobenius algebras $A \in \mathcal{M} \}$
- ▶ D₁ = {cyclic modules}
- ▶ D₀ = {bimodule maps}
- orbifold datum for $\widehat{\mathfrak{sl}}(2)_k$: $A = (0) \oplus (k)$ for $k = 0 \mod 4$

$$A = (0) \oplus A_{\mathbb{Z}_2}$$
 for $k = 2 \mod 4$

• G-crossed modular tensor categories $\mathcal{M}_G^{\times}=\bigoplus_{g\in G}\mathcal{M}_g$ (work in progress)

•
$$\mathcal{A}_3 = *$$

•
$$\mathcal{A}_2 = \mathcal{A}$$

$$\blacktriangleright \ \mathcal{A}_1 = \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$$

- A[±]₀ = associator (+ details...)
- Reshetikhin-Turaev theory (= quantised Chern-Simons theory) from modular tensor category *M* (e.g. *M* = *sl*(2)_k):

$$\blacktriangleright D_3 = \{\mathcal{M}\}$$

- $D_2 = \{$ separable symmetric Frobenius algebras $A \in \mathcal{M} \}$
- ▶ D₁ = {cyclic modules}
- ▶ D₀ = {bimodule maps}
- orbifold datum for $\widehat{\mathfrak{sl}}(2)_k$: $A = (0) \oplus (k)$ for $k = 0 \mod 4$

$$A = (0) \oplus A_{\mathbb{Z}_2}$$
 for $k = 2 \mod 4$

- *G*-crossed modular tensor categories $\mathcal{M}_G^{\times} = \bigoplus_{g \in G} \mathcal{M}_g$ (work in progress)
- topological quantum computation: $\mathcal{M} = \mathcal{C}^{oxtimes n}$ (work in progress)