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2-dimensional closed TQFT

A 222-dimensional closed TQFT is a symmetric monoidal functor

Z :
(

Bord2,t, ∅
)
−→

(
VectC,⊗C,C

)

Every 2-dimensional manifold can be decomposed into

Theorem.
{

2d closed TQFTs
} ∼= {commutative Frobenius algebras

}
Proof sketch: Set H := Z(S1) ∈ VectC.

multiplication Z
( )

: H⊗H −→ H, pairing Z
( )

: H⊗H −→ C

= = etc.

Atiyah 1988
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Examples of 2d closed TQFT

Dijkgraaf-Witten models:
H = C[G] for finite abelian group G

Sigma models:
H = Hd(M) for compact oriented manifold M

Landau-Ginzburg models:
H = C[x1, . . . , xn]/(∂xW ) for isolated singularity W ∈ C[x1, . . . , xn]

State sum models:

input: separable symmetric Frobenius C-algebra (A,µ,∆)

choose oriented triangulation for every bordism Σ

on Poincaré dual graph, associate A to edges, (co)multiplication
µ,∆ to vertices:

A
A A

A

µ

A A

A
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on Poincaré dual graph, associate A to edges, (co)multiplication
µ,∆ to vertices:

A
A A

A

µ

A A

A

∆



Examples of 2d closed TQFT

Dijkgraaf-Witten models:
H = C[G] for finite abelian group G

Sigma models:
H = Hd(M) for compact oriented manifold M

Landau-Ginzburg models:
H = C[x1, . . . , xn]/(∂xW ) for isolated singularity W ∈ C[x1, . . . , xn]

State sum models:

input: separable symmetric Frobenius C-algebra (A,µ,∆)

choose oriented triangulation for every bordism Σ
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State sum models in 2d

input: separable symmetric Frobenius C-algebra (A,µ,∆)

associate A to edges, (co)multiplication µ,∆ to vertices of Poincaré
dual of triangulation of bordisms Σ

associate A⊗k to dual triangulation of circle with k points:
7−→ A⊗3

get maps πΣ : A⊗k1 ⊗ · · · ⊗A⊗km −→ A⊗l1 ⊗ · · · ⊗A⊗ln from
bordism Σ: (S1)×m −→ (S1)×n

if Σ: S1 −→ S1 is cylinder, then πΣ : A⊗k −→ A⊗k is projector

define state sum model

Zss
A : Bord2 −→ VectC

S1 7−→ Im
(
πS1×[0,1] : A

⊗k −→ A⊗k
)
∼= Z(A)(

Σ: (S1)×m −→ (S1)×n
)
7−→

(
induced linear map Z(A)⊗m −→ Z(A)⊗n

)

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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State sum models in 2d

Theorem.
State sum model for A is independent of choice of triangulation, and
Zss
A (S1) ∼= Z(A).

Proof sketch: Need to show invariance under Pachner moves

2-2←→ 1-3←→

or dually:

2-2 1-3

Satisfied for separable symmetric Frobenius C-algebras A!

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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2-dimensional defect TQFT

A 222-dimensional defect TQFT is a symmetric monoidal functor

Z : Borddef
2 (D) −→ VectC

where the defect data D consist of

a set D2 to label 2-strata of surfaces
a set D1 to label 1-strata of surfaces
a set D0 to label 0-strata of surfaces
allowed ways for strata to meet locally:

α ∈ D2

αβ

X ∈ D1

+

ϕ ∈ D0

α

β

γ

−
ψ ∈ D0

α′

β′

γ′

objects:

X

Y

Z

α

β

γ morphisms:

Davydov/Kong/Runkel 2011
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Examples of 2d defect TQFTs

A-models: symplectic manifolds & Fukaya categories (conj.)

B-models: Calabi-Yau manifolds & Fourier-Mukai kernels (conj.)

LG models: isolated singularities & matrix factorisations (conj.)

trivial defect TQFT Ztriv : Borddef
2 (Dtriv) −→ VectC

I Dtriv
2 = {C}

I Dtriv
1 = {C-bimodules} = {C-vector spaces}

I Dtriv
0 = {bimodule maps} = {linear maps}

I Ztriv
( Ck1

...
Ckm

)
def
= Ck1 ⊗ · · · ⊗ Ckm

I Ztriv
( )

def
= (evaluate line and point defect in VectC)

state sum models 2.0 Zss : Borddef
2 (Dss) −→ VectC

I Dss
2 = {separable symmetric Frobenius C-algebras A,B, . . . }

I Dss
1 = {B-A-bimodules}

I Dss
0 = {bimodule maps}
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Orbifolds by groups

orbifoldable action of finite group G on Z : Borddef
2 (D) −→ VectC

 GGG-orbifold theory ZG: “averaging & twisted sectors”

Equivalently :

group action gives ρ(g) ∈ D1 for all g ∈ G
AG :=

⊕
g∈G ρ(g), algebra structure from ρ(g ◦ h) ∼= ρ(g) ◦ ρ(h)

define ZG as AG-state sum construction internal to Z:

ZG
( )

= Z
(

AG

)

consistent if AG is separable symmetric Frobenius algebra
internal to 2-category associated to Z

=⇒ group orbifolds from special types of algebras
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Orbifolds

Let Z : Borddef
2 (D) −→ VectC be any defect TQFT.

An orbifold datum for Z is A ≡ (T,A, µ,∆):

T

T ∈ D2

A
T T

A ∈ D1

A A

A

µ

µ ∈ D0

A A

A

∆

∆ ∈ D0

such that Pachner moves are identities under Z:

Z

( )
= Z

( )
Z

( )
= Z

( )

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

ZA : Bord2 −→ VectC

Carqueville/Runkel 2012
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Examples of 2d orbifolds

G-orbifold ZG = ZAG

state sum model Zss
A = (Ztriv)A(

LG model with WDn+1 = xn + xy2
)

=
(
Z2-orbifold of LG model with WA2n−1 = u2n + v2

)
=⇒ hmf(WDn+1) ∼= hmf(WA2n−1)Z2(
LG model with potential WE6 = x3 + y4

)
=
(

non-group orbifold of LG model with WA11 = u12 + v2
)

=⇒ hmf(WE6) ∼= modhmf(WA11
)(AAE) (also E7/A17 and E8/A29)(

LG model with potential WQ10
= x2z + y3 + z4

)
=
(

orbifold of LG model with WE14 = u3 + v8 + w2
)

(also S11/W13 and Z13/Q11 and E13/Z11)

. . .
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In any dimension n > 1, the generalised
orbifold construction works for any
n-dimensional defect TQFT

Z : Borddef
n (D) −→ VectC .

Carqueville/Runkel/Schaumann 2017



Triangulations

standard nnn-simplex ∆n :=

{
n+1∑
i=1

tiei

∣∣∣ ti > 0 ,

n+1∑
i=1

ti = 1

}
⊂ Rn+1

simplicial complex C is finite collection of simplices such that
I all faces of all σ ∈ C are also in C
I σ, σ′ ∈ C =⇒ σ ∩ σ′ = ∅ or σ ∩ σ′ = face

triangulation of manifold M is simplicial complex C with
homeomorphism |C| −→M

(details for smooth, oriented, . . . )
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Pachner moves

Let F ⊂ ∂∆n+1 be collection of n-simplices.

Let M be triangulated

manifold with K ⊂M such that K
ϕ∼= F .

A Pachner move “glues the other side of ∂∆n+1 into M”:

M 7−→
(
M \K

)
∪ϕ|∂K

(
∂∆n+1 \

◦
F
)

n = 2 :
2-2←→ 1-3←→

n = 3 : 2-3 1-4

Theorem.
If triangulated PL manifolds are PL isomorphic, then there exists a finite
sequence of Pachner moves between them.
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n-dimensional defect TQFT

An nnn-dimensional defect TQFT is a symmetric monoidal functor

Z : Borddef
n (D) −→ VectC

where the defect data D consist of

a set Dj to label j-strata of bordisms for all j 6 n

allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For n = 3:

u ∈ D3

α ∈ D2

u
v

X ∈ D1

α
β

γ

+

ψ ∈ D0

Carqueville/Runkel/Schaumann 2017
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Orbifolds

An orbifold datum A for defect TQFT Z : Borddef
n (D) −→ VectC

is

an element Aj ∈ Dj for each j ∈ {1, . . . , n},
two elements A+

0 ,A
−
0 ∈ D0, such that

compatibility:
Aj can consistently label j-strata dual to (n− j)-simplices in ∆n;
A+

0 ,A
−
0 can label duals of the two oppositely oriented n-simplices ∆n.

invariance:
Let B,B′ be A-decorated n-balls which are dual to the two sides of a
Pachner move. Then Z(B) = Z(B′).

Recovers case n = 2:

Z

( )
= Z

( )
Z

( )
= Z

( )
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Orbifold datum A for n = 3

Poincaré
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A1 A1
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2-3
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dual

+ Poincaré
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Orbifolds

Let A be orbifold datum for defect TQFT Z : Borddef
n (D) −→ VectC.

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

ZA : Bordn −→ VectC

Theorem.
For n = 3, it is sufficient that under Z:

A+
0

A+
0

=

A+
0

A+
0

A+
0

A1

A2

A2

A2 =

A2

A�
0

A+
0

=

A�
0

A+
0

=

A�
0

A+
0

=

5
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Examples of 3d orbifolds

Turaev-Viro models (= state sum models) ZTV,A = (Ztriv)A

from spherical fusion category A (e. g. A = rep(G)):
I A3 = ∗
I A2 = A
I A1 = ⊗ : A×A −→ A
I A±0 = associator (+ details. . . )

Reshetikhin-Turaev theory (= quantised Chern-Simons theory)

from modular tensor category M (e. g. M = ŝl(2)k):
I D3 = {M}
I D2 = {separable symmetric Frobenius algebras A ∈M}
I D1 = {cyclic modules}
I D0 = {bimodule maps}
I orbifold datum for ŝl(2)k: A = (0)⊕ (k) for k = 0 mod 4

A = (0)⊕AZ2 for k = 2 mod4

G-crossed modular tensor categories M×G =
⊕

g∈GMg (work in progress)

topological quantum computation: M = C�n (work in progress)
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