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Motivation

In�ation in the early universe can be described reasonably well by so-called
α-attractor models. In the two-�eld version, they arise from cosmological
solutions of four-dimensional gravity coupled to a nonlinear sigma model
whose scalar manifold Σ is the open unit disk endowed with its unique
complete metric G of Gaussian curvature K(G) = − 1

3α
(Poincaré disk).

The �universal� behavior of such models in the radial one-�eld truncation
close to the conformal boundary of the unit disk is a consequence of the
hyperbolic character of G.

We consider a generalization of such models obtained by replacing the
scalar manifold with a general non-compact hyperbolic surface (Σ,G).
For technical reasons, we concentrate on geometrically �nite surfaces.

This generalization is extremely rich.
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Two-�eld cosmological models with general scalar manifold

Consider:

(Σ,G) = oriented, connected, non-compact, borderless and complete
two-dimensional Riemannian manifold (called the scalar manifold)
Φ : Σ→ R a smooth function (called the scalar potential)

and the Einstein-Scalar theory de�ned by (Σ,G,Φ) on an oriented
four-manifold X :

S [g , ϕ] =

∫
X

volg

[
− M2

2
R(g)− 1

2
Trgϕ

∗(G)− Φ ◦ ϕ
]

(1)

where:

g = Lorentzian metric on X

ϕ : X −→ Σ is a smooth map which locally describes two real scalar �elds

ϕ∗(G)= the pull-back through ϕ of the metric G on Σ

volg = the volume form of X w.r.t. g

M = the reduced Planck mass

R(g) = the scalar curvature of g
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Two-�eld cosmological models with general scalar manifold

Let:

X = R4 with global coordinates (t, x), x = (x1, x2, x3)
ds2 = −dt2 + a(t)2

∑3
i=1 (dx i )2 (FLRW metric with �at spatial section)

ϕ = ϕ(t) (independent of x).

The equations of motion reduce to:

∇t ϕ̇+ 3Hϕ̇+ (gradΦ) ◦ ϕ = 0 (2)

1

3
Ḣ + H2 − Φ ◦ ϕ

3M2
= 0 (3)

Ḣ +
||ϕ̇||2

2M2
= 0 , (4)

where:

H
def.
=

ȧ

a
, ∇t

def.
= ∇ϕ̇(t) , ˙

def.
=

d

dt
.

H(t) is the Hubble parameter.
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Conditions for in�ation

Assuming that H(t) > 0, we have:

H(t) =
1

M
√
6

[
||ϕ̇(t)||2 + 2Φ(ϕ(t))

]1/2
and the e.o.m. reduce to the single equation:

∇t ϕ̇(t) +
1

M

√
3

2

[
||ϕ̇(t)||2 + 2Φ(ϕ(t))

]1/2
ϕ̇(t) + (gradΦ)(ϕ(t)) = 0

with initial conditions ϕ(t0) = ϕ0, ϕ̇(t0) = v0.

The conditions for in�ation ȧ > 0 and ä > 0 are equivalent with:

{H > 0 and Φ > 2M2H2} ⇐⇒
{

Φ(ϕ(t)) > 0 and 0 < H(t) <
1

M

√
Φ(ϕ(t))

2

}
These conditions on ϕ and ϕ̇ de�ne the in�ationary region of the phase space.
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The gradient �ow approximation

In the gradient �ow approximation the cosmological trajectories of the model
are replaced by gradient �ow lines of the scalar potential Φ. This allows one to
derive features of the model using the well-known properties of gradient �ows
on Riemann surfaces, which is especially useful when Φ is a Morse function
(smooth function with non-degenerate Hessian for all critical points).

Assuming H(t) > 0, de�ne the gradient �ow vector parameter through:

η(t)
def.
= − 1

H

∇t ϕ̇

||ϕ̇|| = M
√
6
[
||ϕ̇(t)||2 + 2Φ(ϕ(t))

]−1/2 ∇t ϕ̇

||ϕ̇|| .

The gradient �ow condition on the potential is:

||η|| � 1 ⇐⇒ 1

9H4

||∇gradΦgradΦ||2

||dΦ||2 − 1

54M2H6
∂gradΦ||dΦ||2+

||dΦ||4

324M4H8
� 1

When this condition is satis�ed, solutions of the e.o.m are well approximated by
gradient �ow lines of Φ.

This approximation is much less restrictive than SRST.
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The SRST approximation

Let (τ, n) be a Frenet frame and η = η‖τ + η⊥n , ξ
def.
= ξ‖τ + ξ⊥n where:

η‖
def.
=

σ̈

Hσ̇
, η⊥

def.
=

σ̇

H
κ , ξ‖

def.
= −

...
σ

Hσ̈
, ξ⊥

def.
= − ˙η⊥

Hη⊥

σ(t) is the proper length parameter on the curve ϕ : R→ Σ

κ(t) is the extrinsic curvature of ϕ.

The kinematic slow-roll/slow-turn (SRST) conditions are:

0 < ε
def.
= − Ḣ

H2
� 1 , ||η|| � 1 , ||ξ|| � 1

1st , 2nd , 3rd slow-roll parameters, respectively 1st , 2nd slow-turn parameters are:

{ε , η‖ , ξ‖} ,
{
η⊥ , ξ⊥

}
These imply the SRST conditions on the potential:

M||d logΦ|| � 1 , M2

∣∣∣∣Hess(Φ)(τ, τ)

Φ

∣∣∣∣� 1 , M2

∣∣∣∣Hess(Φ)(n, τ)

Φ

∣∣∣∣� 1 .

It turns out that the SRST approximation is not very well suited for the study

of our models, being too restrictive.
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Hyperbolic surfaces and generalized α-attractor models

A hyperbolic surface Σ is an orientable, connected, possibly non-compact
2-dim. manifold endowed with a hyperbolic metric G (i.e. a complete

Riemannian metric with constant negative Gaussian curvature K(G) = −1).

De�nition

Let (Σ,G) be a complete hyperbolic surface and Φ : Σ→ R be a smooth
potential function. The generalized two-�eld α-attractor model is the two-�eld

cosmological model de�ned by the triplet (Σ,G,Φ), where G def.
= 3αG with

α > 0.

The only hyperbolic surface considered before in the study of two-�eld
α-attractors was the Poincaré disk.

For simplicity we restrict to geometrically �nite hyperbolic surfaces (Σ,G), i.e.
those for which the fundamental group π1(Σ) is �nitely-generated.
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Hyperbolic surfaces

The hyperbolic disk (Poincaré disk) (D, ds2D) is the open unit disk:

D def.
= {u ∈ C||u| < 1} ,

endowed with its unique hyperbolic metric (Poincaré disk metric):

ds2D = λ2D(u, ū)|du|2 , λD(u, ū) =
2

1− |u|2 .

For Σ = D we get the two-�eld version of the α-attractor model of Linde
& Kallosh.

The hyperbolic plane (Poincaré half-plane) (H, ds2H) is the upper
half-plane:

H def.
= {τ ∈ C|Imτ > 0}

endowed with its unique hyperbolic metric (Poincaré plane metric):

ds2H = λH(τ, τ̄)2dτ2 with λH(τ, τ̄) =
1

Imτ
.
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Hyperbolic surfaces

Figure: The Poincaré plane and Poincaré disk and some geodesics and horocycles.

Their conformal boundaries:

∂∞H = R ∪ {∞} ' S
1 , ∂∞D ' S

1 =⇒ ∂∞H ' ∂∞D
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Isometry groups

(H, ds2H) is isometric with (D,ds2D) through the Cayley transform:

f : D −→ H , τ = f (u)
def.
=

u + i

iu + 1
⇒ u =

i− τ
iτ − 1

. (5)

The group of orientation-preserving isometries of H is Iso+(H) ' PSL(2,R),
acting on H through the Möbius transformation:

τ −→ Aτ =
aτ + b

cτ + d
, ∀ A =

[
a b
c d

]
∈ SL(2,R)

PSL(2,R) = SL(2,R)/{±I}

The group of orientation-preserving isometries of D is Iso+(D) = PSU(1, 1),
which is isomorphic with PSL(2,R).

An element A ∈ PSL(2,R) is called:

elliptic if |tr(A)| < 2
parabolic, if |tr(A)| = 2
hyperbolic, if |tr(A)| > 2.
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Fuchsian and surface groups. Uniformization of hyperbolic surfaces

De�nition

A Fuchsian group is a discrete subgroup of PSL(2,R). A surface group is a
Fuchsian group without elliptic elements.

Uniformization theorem (Poincaré-Hopf)

For any hyperbolic surface (Σ,G) there is a surface group Γ and a holomorphic
covering map (uniformization map) πH : H −→ Σ such that Σ ' H/Γ.

The projection
πD : D −→ Σ

is also called uniformization map, where

πD = πH ◦ f , f : D −→ H

To study the cosmological trajectories ϕ(t) on the hyperbolic surface Σ it is
convenient to �rst study lifted trajectories ϕ̃(t) to H (or to D) and then to
project them back to Σ.
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Projecting back to Σ

The projection from H to Σ can be computed if we know the tiling of H
determined by a fundamental polygon of Γ. This tiling can be very non-trivial.

A fundamental polygon DH ⊂ H is a convex polygon whose sides can be either
geodesic segments or free sides (i.e. intervals of the conformal boundary ∂∞H).

Computing fundamental polygons

There is no fully general stopping algorithm known for computing fundamental
polygons of surface groups. But a general algorithm is known for the case when
Γ is an arithmetic Fuchsian group such that H/Γ has �nite hyperbolic area.

Figure: Example of a fundamental polygon on H (for the annulus)
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Projecting back to Σ

For aplications to cosmology it is important to allow (Σ,G) to be non-compact
and of possibly in�nite area.
For example, (D, ds2D) (which gives the original two-�eld alpha-attractor models
of Kallosh and Linde) is non-compact and of in�nite area.

Cosmological applications require sophisticated results from uniformization

theory, closely connected to number theory.
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Classi�cation of surface groups and hyperbolic surfaces

Let ΛH ⊂ ∂∞H denote the set of limit points of the orbit of Γ on H.

Theorem (Poincare, Fricke, Klein)

One has the trichotomy:

ΛH is �nite (contains 0, 1 or 2 points), in which case Γ (and (Σ,G)) is
called elementary.

ΛH = ∂∞H, in which case Γ (and (Σ,G)) is called of the �rst kind.

ΛH is a perfect and nowhere-densea subset of ∂∞H, in which case Γ (and
(Σ,G)) is called of the second kind.

aNamely a closed set with empty interior and without isolated points.
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Classi�cation of surface groups and hyperbolic surfaces

Elementary hyperbolic surfaces

There are only of three types:

Σ = D (hyperbolic disk)
Σ = D∗ (hyperbolic punctured disk)
Σ = A(R) for R > 1 (hyperbolic annuli)

All elementary hyperbolic surfaces have in�nite hyperbolic area.

Hyperbolic surfaces of the �rst kind

The following statements are equivalent:

(a) (Σ,G) is of the �rst kind

(b) areaG (Σ) is �nite

(c) the fundamental polygon has no free sides.
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End compacti�cation vs. conformal compacti�cation

Let Σ be a topologically �nite surface, i.e. Σ is homeomorphic with
Σ̂ \ {p1, . . . , pn}, where Σ̂ is a borderless compact oriented surface and
p1, . . . , pn are a �nite number of distinct points. Σ̂ can be identi�ed with the
end (a.k.a. Kerekjarto-Stoilow) compacti�cation of Σ, where p1, . . . , pn
correspond to the Kerekjarto-Stoilow ideal points, a.k.a. Freudenthal ends of Σ.

Consider a partition {1, . . . , n} = {i1, . . . , inc } t {j1, . . . , jnf } where nc ≥ 0 and
nf ≥ 0 are natural numbers. Since any annulus is di�eomorphic with the
punctured unit disk, Σ is di�eomorphic with the borderless surface
Σ̂ \ ({pi1 , . . . , pinc } ∪ D̄j1 ∪ . . .∪ D̄jnf

), where D̄j are closed disks embedded in Σ̂
and centered at the points pj1 , . . . , pjnf , such that no two closed disks meet
each other and no closed disk meets any of the points pi1 , . . . , pinc .

Let J be an orientation-compatible complex structure on Σ. Then it was shown
by Maskit that there exists a unique complex structure Ĵ on Σ̂ such that (Σ, J)
is biholomorphic with the surface ΣJ obtained from (Σ̂, Ĵ) by removing a �nite
set of points and a disjoint union of so-called "closed circular disk domains".

The conformal compacti�cation Σ̄J of Σ with respect to J is the surface
obtained by taking the closure of ΣJ inside Σ̂. The topological boundary
∂J
∞Σ = Σ̄J \Σ of ΣJ consists of nc isolated points and nf disjoint simple closed

curves; this is called the conformal boundary of (Σ, J).

Mirela Babalic IBS-Center for Geometry and Physics, Pohang, Korea (with Calin Lazaroiu & Carlos Shahbazi)Two-�eld models and the uniformization theorem 18/36



Geometrically �nite hyperbolic surfaces

We shall concentrate on geometrically �nite hyperbolic surfaces.

Proposition

Let (Σ,G) be a hyperbolic surface uniformized by the surface group
Γ ⊂ PSL(2,R). One says that Γ and (Σ,G) are geometrically �nite i� the
following statements are equivalent:

Σ ' H/Γ is topologically �nite (i.e. Σ has �nite Euler characteristic
χ(Σ) = 2− 2g − 2n, where g = genus, n = number of ends).

Γ (which is isomorphic with π1(Σ)) is �nitely-generated.

Γ admits a fundamental polygon with a �nite number of sides (some of
which may be free).

All elementary surfaces, all surfaces of the �rst kind and part of those of the
second kind are geometrically �nite. (Siegel)
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Hyperbolic type of ends for geometrically-�nite hyperbolic surfaces

The explicit forms of the hyperbolic metric in semi-geodesic coordinates (r , θ)
(geodesic polar coordinates) on the canonical neighborhood of each type of end
are as follows:

cusp end: ds2 = dr2 + e−2r dθ2

(2π)2

funnel end: ds2 = dr2 + `2p cosh(r)2 dθ2

(2π)2

plane end: ds2 = dr2 + sinh(r)2dθ2

horn end: ds2 = dr2 + e2r dθ2

(2π)2

The plane and horn end arise only for the Poincaré disk and for the hyperbolic
punctured disk, while the hyperbolic annulus has two funnel ends:

Figure: Elementary hyperbolic surfaces and the hyperbolic type of their corresponding
ends. Their end compacti�cation is S2.
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Hyperbolic type of ends for geometrically-�nite hyperbolic surfaces

Theorem (Borthwick)

A non-elementary geometrically-�nite hyperbolic surface (Σ,G) can have only
cusp and/or funnel ends. The surface Σ can be decomposed as:

Σ = K t C1 t . . . t Cnc t F1 t . . . t Fnf

where K is a compact surface, Ci are hyperbolic cusps and Fj are hyperbolic
funnels. Moreover:

(Σ,G) is of the �rst kind (has �nite area) i� it has no funnels (nf = 0).
(Σ,G) is compact i� it has no ends (no cusps and no funnels).

Figure: Example of a non-elementary geometrically-�nite hyperbolic surface with 2
cusp ends and one funnel ens. Its end compacti�cation is T 2
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Well-behaved scalar potentials

Let Σ̂ be the end compacti�cation of Σ. A scalar potential Φ : Σ→ R is called
well-behaved at an end p ∈ Σ̂ \ Σ if there exists a smooth function
Φ̂p : Σ t {p} → R such that Φ = Φ̂p|Σ .

The potential Φ is called globally well-behaved if there exists a globally-de�ned
smooth function Φ̂ : Σ̂→ R such that Φ = Φ̂|Σ . Thus Φ is globally
well-behaved if it is well-behaved at each end of Σ.

We consider for example the following well-behaved scalar potentials on Σ̂ = S2

written in spherical coordinates:

Φ̂0(ψ, θ) = M

√
3

2
(1 + sinψ cos θ) (6)

Φ̂+(ψ) = M

√
3

2
cos2

(
ψ

2

)
(7)

Φ̂−(ψ) = M

√
3

2
sin2

(
ψ

2

)
(8)
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In�ation near the ends in the naive one-�eld truncation

Suppose that Φ is independent of θ in semigeodesic coordinates (r , θ) near
some end and that it has an asymptotic expansion:

Φ(x) =x�1 V0

(
1− cx + O(x2)

)
(9)

where x = e−r and V0 > 0, c > 0.

Then the generalized α-attractor model admits a local naive truncation to a
one-�eld model, obtained by setting θ = constant. In the slow-roll
approximation for this truncated model, the spectral index ns and the tensor to
scalar ratio r are given by:

ns ≈ 1− 2

N
, r ≈ 12α

N2
. (10)

where N
def.
= log a(t1)

a(t0)
is the number of e-folds.

Universal behavior near the ends

For �xed α, all generalized two-�led α-attractor models lead to the same values
of ns and r in the leading order of the slow-roll approximation near any end, in
the naive one-�eld truncation near those ends.
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Two-�eld in�ation near the ends

A In semi-geodesic coordinates near an end p ∈ Σ̂ \ Σ, we have:

ds2G 'r�1 3α

[
dr2 +

(
Cp

4π

)2

e2εp rdθ2
]

,

where Cp and εp are known constants which depend on the type of end. We
�nd that the e.o.m. in a vicinity of an end reduces to:

r̈ − 3εα

(
Cp

4π

)2

e2εp r θ̇2 + 3Hṙ +
1

3α
∂rΦ = 0 , (11)

θ̈ + 2εp ṙ θ̇ + 3H θ̇ +
1

3α

(
4π

Cp

)2

e−2εp r∂θΦ = 0 . (12)

The generic solution of this system has ṙ 6= 0 and θ̇ 6= 0, thus being a portion
of a spiral which �winds� around the ideal point. This gives a form a spiral
in�ation in our class of models.

Spiral trajectories near the ends

Since θ is periodic, a generic trajectory will spiral around the ends. Our models
can admit spiral trajectories when Φ is well-behaved at the ends already for
Φ = 0.
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Example 1: the hyperbolic punctured disk D∗

The hyperbolic punctured disk is the punctured unit disk endowed with the
unique complete hyperbolic metric:

ds2 = λ2D∗(u, ū)|du|2 , where λD∗(u, ū) =
1

|u| log(1/|u|) (0 < |u| < 1) .

Γ ' Z is the parabolic cyclic group generated by the translation τ → τ + 1.
A holomorphic covering map πH : H→ D∗ is given by πH(τ) = e2πiτ .
A fundamental polygon: DH = {τ ∈ H | 0 ≤ Re(τ) < 1}.

Let's choose the globally well-behaved potential Φ̂0 given in (6) which takes
the following form in polar coordinates on D∗:

Φ0 = M

√
3

2

[
1 +

2| log ρ|
1 + (log ρ)2

cos θ

]
(u = ρe iθ)

and which lifts to H as:

Φ̃0 = Φ0 ◦ πH = M

√
3

2

[
1 +

4πy cos(2πx)

1 + 4π2y2

]
where x = Reτ and y = Imτ .
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Choices of trajectories on H and D∗

For any u0 ∈ Σ = D∗ take τ0 = x0 + iy0 ∈ H such that
πH(τ0) = u0 , ṽ0 = v0 ◦ πH = τ̇0

Figure: Examples of trajectories for the potential Φ0 on H and D∗
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Choices of trajectories on H and D∗

For the same initial conditions, but with zero potential:

Figure: Examples of trajectories on H and D∗ for Φ = 0
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Example 2: the hyperbolic annulus A(R)

The annulus:

A(R) = {u ∈ C | 1
R
≤ |u| ≤ R} (R > 1)

of modulus µ = 2 logR > 0 has the unique complete hyperbolic metric:

ds2 = |λR(u)|2|du|2 , where λR(u) =
π

2 logR

1

|u| cos
(
π log |u|
2 log R

) .

It is uniformized to H by the hyperbolic cyclic group Γ generated by the

dilation τ → e`τ , where ` = π2

log R
= 2π2

µ
.

The same potential (6) takes the following form on A(R):

Φ0 = M

√
2

3

1 +
2 log

R− 1
R

ρ− 1
R

1 +
(
log

R− 1
R

ρ− 1
R

)2 cos θ


and lifts to H as:

Φ̃0(τ) = M

√
2

3

1 +
2 log

R− 1
R

ρ(τ)− 1
R

1 +
(
log

R− 1
R

ρ(τ)− 1
R

)2 cos(2π

`
log |τ |

)
Mirela Babalic IBS-Center for Geometry and Physics, Pohang, Korea (with Calin Lazaroiu & Carlos Shahbazi)Two-�eld models and the uniformization theorem 28/36



Choices of trajectories on H and A(R)

For any u0 ∈ Σ = A(R) take τ0 = x0 + iy0 ∈ H s.t πH(τ0) = u0 , ṽ0 = τ̇0

Figure: Examples of trajectories for the potential Φ0 on H and A(R)
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Example 3: the hyperbolic triply punctured sphere (the modular curve Y (2))

The triply punctured sphere Σ = Y (2)
def.
= CP1 \ {p1, p2, p3} endowed with the

hyperbolic metric:
ds2 = ρ(ζ, ζ̄)2|dζ2 ,

where:

ρ(ζ, ζ̄) =
π

8|ζ(1− ζ)|
1

Re[K(ζ)K(1− ζ̄)]
, K(ζ) =

∫ 1

0

dt√
(1− t2)(1− ζt2)

Each of the three punctures corresponds to a cusp end.
Its end compacti�cation Σ̂ = CP1 ' S2.
It is conformal to C \ {0, 1} .
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The hyperbolic triply punctured sphere

Y (2) is uniformized by the principal congruence subgroup of level 2:

Γ(2)
def.
=
{
A =

[
a b
c d

]
∈ PSL(2,Z) | a, d = odd , b, c = even

}
with uniformization map λ : H→ Y (2) given by the elliptic modular lambda
function:

λ(τ) =
℘τ ( 1+τ

2
)− ℘τ ( τ

2
)

℘τ ( 1
2

)− ℘τ ( τ
2

)

where ℘ is the Weierstrass elliptic function of modulus τ .

For scalar potentials which are invariant under the natural action on Y (2) of
the anharmonic group PSL(2,Z2), the generalized α-attractor model de�ned
by Y (2) is related to the PSL(2,Z) modular in�ation models of Schimmrigk
through the ∞ : 1 �eld rede�nition given by λ.
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Choices of trajectories on the hyperbolic triply punctured sphere

Let's consider Φ = 0 and the following initial conditions:

Figure: Corresponding trajectories for Φ = 0 on H and Y (2).
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Choices of trajectories on the hyperbolic triply punctured sphere

Let's choose the same initial conditions and the scalar potential Φ̂0 given in (6)

Figure: Level plof of Φ̃0 on H. Corresponding trajectories on H and Y (2)
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Choices of trajectories on the hyperbolic triply punctured sphere

Let's choose the same initial conditions and the scalar potential Φ̂− given in (8)

Figure: Level plof of Φ̃− on H. Corresponding trajectories on H and Y (2)
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Conclusions and further directions

Conclusions:

We proposed a wide generalization of two-�eld α-attractor models
obtained by promoting the scalar manifold from the Poincaré disk to a
more general geometrically �nite non-compact hyperbolic surface.

We proposed a general procedure for studying such models through
uniformization techniques and without using one-�eld truncations.

We showed that such models have the same universal behavior as ordinary
α-attractors in a naive one-�eld truncation near each end, provided that
the scalar potential is well-behaved near that end.

The SRST approximation is not very well suited for the study of our
models since it is too restrictive and can in particular fail near cusp ends.

Further directions:

Investigating cosmological perturbation (radiative corrections for CMB),
adapting the numerical approach developed by Mulryne et all.

Study of embeddings into N = 1 supergravity with a single chiral multiplet.

Extension of our models to the cases when Σ is not orientable, or when Σ
is not topologically �nite.
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