BEREZIN TRANSFORMS ATTACHED TO LANDAU LEVEL

Zouhaïr MOUAYN Sultan Moulay Slimane University, Morocco

Geometry and Physics Seminary

Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering (IFIN-HH)

August 10, 2016, Bucharest, Romania

COHERENT STATES FOR THE HARMONIC OSCILLATOR: $|z\rangle$

GLAUBER (1951)

• CS as eigenstates of the annihilation operator a

$$a|z>=z|z>,z\in\mathbb{C}$$

it is defined by

$$a=\frac{1}{\sqrt{2}}(\widehat{x}+i\widehat{p}),$$

GLAUBER (1951)

• CS as eigenstates of the annihilation operator a

$$a|z>=z|z>,z\in\mathbb{C}$$

it is defined by

$$a=\frac{1}{\sqrt{2}}(\widehat{x}+i\widehat{p}),$$

• it is conjugate a^* , the creation operator,

$$a^* = \frac{1}{\sqrt{2}}(\widehat{x} - i\widehat{p})$$

 \hat{x} and \hat{p} are the position and momentum operators.

GLAUBER (1951)

• CS as eigenstates of the annihilation operator a

$$a|z>=z|z>,z\in\mathbb{C}$$

it is defined by

$$a=\frac{1}{\sqrt{2}}(\widehat{x}+i\widehat{p}),$$

• it is conjugate a^* , the creation operator,

$$a^* = \frac{1}{\sqrt{2}}(\widehat{x} - i\widehat{p})$$

 \hat{x} and \hat{p} are the position and momentum operators.

• The operators a and a^* satisfy $[a, a^*] = 1$.

GLAUBER (1951)

• CS as eigenstates of the annihilation operator a

$$a|z>=z|z>,z\in\mathbb{C}$$

it is defined by

$$a=\frac{1}{\sqrt{2}}(\widehat{x}+i\widehat{p}),$$

• it is conjugate a^* , the creation operator,

$$a^* = \frac{1}{\sqrt{2}}(\widehat{x} - i\widehat{p})$$

 \hat{x} and \hat{p} are the position and momentum operators.

- The operators a and a^* satisfy $[a, a^*] = 1$.
- The Hamiltonian of the harmonic oscillator: $H = a^*a + \frac{1}{2}$

IWATA (1951)

The number state expansion for the normalized CS:

$$|z> = \left(e^{|z|^2}\right)^{-\frac{1}{2}} \sum_{k>0} \frac{z^k}{\sqrt{k!}} |k>.$$

Eigenstates of \widehat{H} are denoted |k>, k=0,1,2,... with the condition a|0>=0.

IWATA (1951)

The number state expansion for the normalized CS:

$$|z> = \left(e^{|z|^2}\right)^{-\frac{1}{2}} \sum_{k \geq 0} \frac{z^k}{\sqrt{k!}} |k>.$$

Eigenstates of \widehat{H} are denoted |k>, k=0,1,2,... with the condition a|0>=0.

GLAUBER & FEYNMAN (1951)

CS as the states produced by the action of the displacement operator

$$D(z) = \exp(za^* - z^*a)$$

on the vacuum |0> as

$$|z>=D(z)|0>$$

Schrödinger (1926)

• CS as minimum uncertainty states:

$$\langle \xi \mid z
angle = \pi^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \xi^2 + \sqrt{2} \xi z - \frac{1}{2} z^2 - \frac{1}{2} \left| z
ight|^2
ight), \quad \xi \in \mathbb{R}$$

The fluctuations are

$$\begin{cases} (\Delta \widehat{p})^2 = \langle z | \widehat{p}^2 | z \rangle - (\langle z | \widehat{p} | z \rangle)^2 = \frac{1}{2}, \\ (\Delta \widehat{x})^2 = \langle z | \widehat{x}^2 | z \rangle - (\langle z | \widehat{x} | z \rangle)^2 = \frac{1}{2} \end{cases}$$

so that

$$\Delta p \Delta x = \frac{1}{2}.$$

Schrödinger (1926)

• CS as minimum uncertainty states:

$$\left\langle \xi\mid z\right\rangle =\pi^{-\frac{1}{2}}\exp\left(-\frac{1}{2}\xi^{2}+\sqrt{2}\xi z-\frac{1}{2}z^{2}-\frac{1}{2}\left|z\right|^{2}\right),\quad\xi\in\mathbb{R}$$

The fluctuations are

$$\begin{cases} (\Delta \hat{p})^2 = \langle z | \hat{p}^2 | z \rangle - (\langle z | \hat{p} | z \rangle)^2 = \frac{1}{2}, \\ (\Delta \hat{x})^2 = \langle z | \hat{x}^2 | z \rangle - (\langle z | \hat{x} | z \rangle)^2 = \frac{1}{2} \end{cases}$$

so that

$$\Delta p \Delta x = \frac{1}{2}.$$

SUMMARY: CS OF THE HARMONIC OSCILLATOR

- are obtained by the 4 ways.
- satisfy the resolution of the identity: $\mathbf{1}_{L^2(\mathbb{R})} = \frac{1}{\pi} \int d^2z \, |z\rangle \, \langle z|$.
- form an overcomplet set.
- are not orthogonal: $\langle z|w\rangle \neq 0$. A big advantage!

SOME GENERALIZATIONS

GENERALIZATION "À LA GILMORE-PERELOMOV"

CS are produced by the action T_g of the group element $g \in G$ on a reference state ϕ_0 in a representation Hilbert space as:

$$\widetilde{\Phi}_{\mathfrak{g}}=T_{\mathfrak{g}}\left[\phi_{0}\right].$$

SOME GENERALIZATIONS

GENERALIZATION "À LA GILMORE-PERELOMOV"

CS are produced by the action T_g of the group element $g \in G$ on a reference state ϕ_0 in a representation Hilbert space as:

$$\widetilde{\Phi}_{\mathfrak{g}} = T_{\mathfrak{g}} [\phi_0].$$

GENERALIZATION " À LA GLAUBER"

Look for "continuous" families of eigenstates of new operator A satisfying

$$\widetilde{A} \mid \Psi_{
u} \rangle =
u \mid \Psi_{
u} \rangle$$

SOME GENERALIZATIONS

GENERALIZATION "À LA GILMORE-PERELOMOV"

CS are produced by the action T_g of the group element $g \in G$ on a reference state ϕ_0 in a representation Hilbert space as:

$$\widetilde{\Phi}_{\mathfrak{g}}=T_{g}\left[\phi_{0}\right].$$

GENERALIZATION " À LA GLAUBER"

Look for "continuous" families of eigenstates of new operator A satisfying

$$\widetilde{A} \mid \Psi_{\nu} \rangle = \nu \mid \Psi_{\nu} \rangle$$

• Example: Barut-Girardello CS.

$$\widetilde{A} = K_{-} := K_{1} - iK_{2}$$

 K_1 , K_2 and K_3 are generators of the Lie algebra su(1,1).

GENERALIZATION "À LA SCHRÖDINGER"

Try to "minimize" the generalized Heisenberg uncertainty relation for Hermitian operators \widehat{A} and \widehat{B} different from \widehat{x} and \widehat{p} :

$$\triangle A \triangle B \geq \frac{1}{2} \left| \left\langle \left[\widehat{A}, \widehat{B} \right] \right\rangle \right|$$

looking for states for which this becomes an equality.

GENERALIZATION "À LA SCHRÖDINGER"

Try to "minimize" the generalized Heisenberg uncertainty relation for Hermitian operators \widehat{A} and \widehat{B} different from \widehat{x} and \widehat{p} :

$$\triangle A \triangle B \geq \frac{1}{2} \left| \left\langle \left[\widehat{A}, \widehat{B} \right] \right\rangle \right|$$

looking for states for which this becomes an equality.

GENERALIZATION "À LA IWATA"

By choosing different set of coefficients $\{c_n(z)\}\$ and functions $\{\varphi_n\}$ satisfying suitable conditions as

$$\widetilde{\Phi}_{z} = \sum_{n} c_{n}(z) | \varphi_{n} \rangle.$$

Ref: V V Dodonov 2002, *Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years.* J. Opt. B: Quantum Semiclass. Opt. **(451 Refs)**

Ref: A coherent states formalism starting from a measure space "as a set of data": J. P. Gazeau 2009, *Coherent states in quantum physics*.

• Let $X = \{x \mid x \in X\}$ be a set equipped with a measure $d\mu$ and $L^2(X, d\mu)$ the space of $d\mu$ -square integrable functions on X.

Ref: A coherent states formalism starting from a measure space "as a set of data": J. P. Gazeau 2009, *Coherent states in quantum physics*.

- Let $X = \{x \mid x \in X\}$ be a set equipped with a measure $d\mu$ and $L^2(X, d\mu)$ the space of $d\mu$ -square integrable functions on X.
- Let $A^2 \subset L^2(X, d\mu)$ be a subspace of infinite dimension with an orthonormal basis $\{\Phi_j\}_{j=0}^{\infty}$.

Ref: A coherent states formalism starting from a measure space "as a set of data": J. P. Gazeau 2009, *Coherent states in quantum physics*.

- Let $X = \{x \mid x \in X\}$ be a set equipped with a measure $d\mu$ and $L^2(X, d\mu)$ the space of $d\mu$ -square integrable functions on X.
- Let $A^2 \subset L^2(X, d\mu)$ be a subspace of infinite dimension with an orthonormal basis $\{\Phi_j\}_{j=0}^{\infty}$.
- Let \mathcal{H} be another (functional) space with $\dim \mathcal{H} = \infty$ and $\{\varphi_j\}_{j=1}^{\infty}$ is a given orthonormal basis of \mathcal{H} .

Ref: A coherent states formalism starting from a measure space "as a set of data": J. P. Gazeau 2009, *Coherent states in quantum physics*.

- Let $X = \{x \mid x \in X\}$ be a set equipped with a measure $d\mu$ and $L^2(X, d\mu)$ the space of $d\mu$ -square integrable functions on X.
- Let $A^2 \subset L^2(X, d\mu)$ be a subspace of infinite dimension with an orthonormal basis $\{\Phi_j\}_{j=0}^{\infty}$.
- Let \mathcal{H} be another (functional) space with dim $\mathcal{H} = \infty$ and $\{\varphi_j\}_{j=1}^{\infty}$ is a given orthonormal basis of \mathcal{H} .
- The family of states $\{|x>\}_{x\in X}$ in \mathcal{H} ,

$$\mid x>:=\left(\mathcal{N}\left(x\right)\right)^{-\frac{1}{2}}\sum_{j=0}^{+\infty}\overline{\Phi_{j}(x)}\mid\varphi_{j}>$$

Ref: A coherent states formalism starting from a measure space "as a set of data": J. P. Gazeau 2009, *Coherent states in quantum physics*.

- Let $X = \{x \mid x \in X\}$ be a set equipped with a measure $d\mu$ and $L^2(X, d\mu)$ the space of $d\mu$ -square integrable functions on X.
- Let $A^2 \subset L^2(X, d\mu)$ be a subspace of infinite dimension with an orthonormal basis $\{\Phi_j\}_{j=0}^{\infty}$.
- Let \mathcal{H} be another (functional) space with dim $\mathcal{H} = \infty$ and $\{\varphi_j\}_{j=1}^{\infty}$ is a given orthonormal basis of \mathcal{H} .
- The family of states $\{|x>\}_{x\in X}$ in \mathcal{H} ,

$$\mid x>:=\left(\mathcal{N}\left(x\right)\right)^{-\frac{1}{2}}\sum_{j=0}^{+\infty}\overline{\Phi_{j}(x)}\mid\varphi_{j}>$$

• where $\mathcal{N}(x) = \sum_{i=0}^{+\infty} \Phi_i(x) \overline{\Phi_i(x)} < \infty$.

• These coherent states obey the normalization condition $\langle x \mid x \rangle_{\mathcal{H}} = 1$

- These coherent states obey the normalization condition $\langle x \mid x \rangle_{\mathcal{H}} = 1$
- ullet The resolution of the identity of ${\cal H}$

$$\mathbf{1}_{\mathcal{H}} = \int_{X} |x\rangle \langle x| \mathcal{N}(x) d\mu(x)$$
 (RI)

The Dirac's bra-ket notation |x| < x means the rank-one -operator

$$\varphi \mapsto |\mathbf{X}\rangle \langle \mathbf{X} | \varphi \rangle_{\mathcal{H}}$$
.

- These coherent states obey the normalization condition $\langle x \mid x \rangle_{\mathcal{H}} = 1$
- ullet The resolution of the identity of ${\cal H}$

$$\mathbf{1}_{\mathcal{H}} = \int_{X} |x\rangle \langle x| \mathcal{N}(x) d\mu(x)$$
 (RI)

The Dirac's bra-ket notation |x| < x means the rank-one -operator

$$\varphi \mapsto |\mathbf{X}\rangle \langle \mathbf{X} | \varphi \rangle_{\mathcal{H}}.$$

An isometry

$$W: \quad \mathcal{H} \longrightarrow \mathcal{A}^2 \subset L^2(X, \mu)$$
$$\varphi \mapsto W[\phi](x) = (\mathcal{N}(x))^{1/2} \langle \phi | x \rangle$$

called a coherent states transform (CST).

Example I: The Landau problem on the Euclidean plane $\mathbb C$

- $X \equiv \mathbb{C}$,
- The measure: $e^{-|z|^2}d\mu(z)$, $d\mu$ the Lebesgue measure on $\mathbb C$
- $\mathcal{A}^2 \equiv \mathcal{A}_m^2(\mathbb{C}) := \left\{ \varphi \in L^2(\mathbb{C}, e^{-|z|^2} d\mu), \ \widetilde{\Delta} \varphi = m\varphi \right\}, \ m \in \mathbb{N}.$ The Landau Hamiltonian

$$\widetilde{\Delta} = -\frac{\partial^2}{\partial z \partial \overline{z}} + \overline{z} \frac{\partial}{\partial \overline{z}}.$$

• $|\varphi_p\rangle$: eingenstates of the harmonic oscillator.

$$\langle \xi | \varphi_p \rangle = := \left(\sqrt{\pi} 2^p p! \right)^{-\frac{1}{2}} e^{-\frac{1}{2} \xi^2} H_p(\xi), \ p = 0, 1, 2, \dots \quad \xi \in \mathbb{R}$$

 $H_p(\xi)$: Hermite polynomial.

The coefficients

$$\Phi_{p}^{m}(z) = (-1)^{m \wedge p} (m \wedge p)! (\pi m! p!)^{-\frac{1}{2}} |z|^{|m-p|} e^{-i(m-p) \arg z} L_{m \wedge p}^{(|m-p|)} (z\overline{z})$$
$$\tilde{\triangle} \Phi_{p}^{m}(z) = m \Phi_{p}^{m}(z)$$

• The coherent states:

$$|z,m\rangle = (\mathcal{N}(z))^{-1/2} \sum_{p=0}^{\infty} \frac{\overline{\Phi_p^n(z)}}{\sqrt{\pi m! \rho!}} |\varphi_p\rangle$$

• The overlap function between two CS:

$$\langle z, m | w, m \rangle = (\mathcal{N}(z) \mathcal{N}(w))^{-\frac{1}{2}} e^{z\overline{w}} L_m^{(0)}(|z-w|^2)$$

• A closed form for these CS is

$$\phi_{z,m}(\xi) = (-1)^m \left(2^m m! \sqrt{\pi} \right)^{-\frac{1}{2}} e^{-\frac{1}{2}\overline{z}^2 + \sqrt{2}\xi \overline{z} - \frac{1}{2}|z|^2 - \frac{1}{2}\xi^2} H_m \left(\xi - \frac{z + \overline{z}}{\sqrt{2}} \right)$$

• A closed form for these CS is

$$\phi_{z,m}(\xi) = (-1)^m \left(2^m m! \sqrt{\pi}\right)^{-\frac{1}{2}} e^{-\frac{1}{2}\overline{z}^2 + \sqrt{2}\xi \overline{z} - \frac{1}{2}|z|^2 - \frac{1}{2}\xi^2} H_m\left(\xi - \frac{z + \overline{z}}{\sqrt{2}}\right)$$

• The coherent state transform: $B_m^{\operatorname{arg}}: L^2(\mathbb{R}, d\xi) \to \mathcal{A}_m^2(\mathbb{C})$

$$B_m^{\operatorname{arg}}[f](z) := (\mathcal{N}_m(z))^{\frac{1}{2}} \langle f, \phi_{z,m} \rangle_{L^2(\mathbb{R})}$$

Explicitly,

$$B_{m}^{\operatorname{arg}}[f](z) = \mathfrak{c}_{m} \int_{\mathbb{R}} f(\xi) e^{-\frac{1}{2}z^{2} + \sqrt{2}\xi z - \frac{1}{2}\xi^{2}} H_{m}\left(\xi - \frac{z + \overline{z}}{\sqrt{2}}\right) d\xi$$

is a generalized Bargmann transform of index m = 0, 1, 2, ...

• Case m = 0: The Bargmann transform B_0^{arg} (V. Bargmann, 1961) corresponds to the lowest Landau level LLL.

Example 2: The Landau problem on the Poincaré disk $\mathbb D$

• $X = \mathbb{D}$, $(1 - |z|^2)^{-2} d\mu$, $d\mu$ the Lebesgue measure on \mathbb{D} .

EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARÉ DISK **D**

- $X = \mathbb{D}$, $(1 |z|^2)^{-2} d\mu$, $d\mu$ the Lebesgue measure on \mathbb{D} .
- $A^2 \equiv A_m^{2,\nu}(\mathbb{D})$: eigenspace associated with *m*th hyperbolic Landau level.

EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARÉ DISK D

- $X = \mathbb{D}$, $(1 |z|^2)^{-2} d\mu$, $d\mu$ the Lebesgue measure on \mathbb{D} .
- $A^2 \equiv A_m^{2,\nu}(\mathbb{D})$: eigenspace associated with *m*th hyperbolic Landau level.
- The coefficients

$$\Phi_{k}^{\nu,m}(z) = (-1)^{k} \left(\frac{2(\nu - m) - 1}{\pi} \right)^{\frac{1}{2}} \left(\frac{k!\Gamma(2(\nu - m) - m)}{m!\Gamma(2(\nu - m) + k)} \right)^{\frac{1}{2}} \times \left(1 - |z|^{2} \right)^{-m} \overline{z}^{m-k} P_{k}^{(m-k,2(\nu - m) - 1)} \left(1 - 2|z|^{2} \right)$$

 $P_k^{(\alpha,\beta)}(.)$ Jacobi polynomial.

Example 2: The Landau problem on the Poincaré disk $\mathbb D$

- $X = \mathbb{D}$, $(1 |z|^2)^{-2} d\mu$, $d\mu$ the Lebesgue measure on \mathbb{D} .
- $A^2 \equiv A_m^{2,\nu}(\mathbb{D})$: eigenspace associated with *m*th hyperbolic Landau level.
- The coefficients

$$\Phi_{k}^{\nu,m}(z) = (-1)^{k} \left(\frac{2(\nu - m) - 1}{\pi}\right)^{\frac{1}{2}} \left(\frac{k!\Gamma(2(\nu - m) - m)}{m!\Gamma(2(\nu - m) + k)}\right)^{\frac{1}{2}} \times \left(1 - |z|^{2}\right)^{-m} \overline{z}^{m-k} P_{k}^{(m-k,2(\nu - m) - 1)} \left(1 - 2|z|^{2}\right)$$

 $P_k^{(\alpha,\beta)}(.)$ Jacobi polynomial.

• $\mathcal{H}=L^2(\mathbb{R}_+^*,\xi^{-1}d\xi)$: states Hilbert space of the pseudoharmonic oscillator (PHO) $H_{\gamma}=-\partial_x^2+x^2+\gamma^{\nu,m}x^{-2}$

EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARÉ DISK D

- $X = \mathbb{D}$, $(1 |z|^2)^{-2} d\mu$, $d\mu$ the Lebesgue measure on \mathbb{D} .
- $A^2 \equiv A_m^{2,\nu}(\mathbb{D})$: eigenspace associated with *m*th hyperbolic Landau level.
- The coefficients

$$\Phi_{k}^{\nu,m}(z) = (-1)^{k} \left(\frac{2(\nu - m) - 1}{\pi} \right)^{\frac{1}{2}} \left(\frac{k!\Gamma(2(\nu - m) - m)}{m!\Gamma(2(\nu - m) + k)} \right)^{\frac{1}{2}} \times \left(1 - |z|^{2} \right)^{-m} \overline{z}^{m-k} P_{k}^{(m-k,2(\nu - m) - 1)} \left(1 - 2|z|^{2} \right)$$

 $P_k^{(\alpha,\beta)}(.)$ Jacobi polynomial.

- $\mathcal{H} = L^2(\mathbb{R}_+^*, \xi^{-1} d\xi)$: states Hilbert space of the pseudoharmonic oscillator (PHO) $H_{\gamma} = -\partial_x^2 + x^2 + \gamma^{\nu,m} x^{-2}$
- The vectors $|\varphi_k\rangle \in \mathcal{H}$: eigenstates of the PHO

$$\varphi_k^{\nu,m}(\xi) := \left(\frac{k!}{\Gamma(2\nu - 2m + k)}\right)^{\frac{1}{2}} \xi^{\nu - m} e^{-\frac{1}{2}\xi} L_k^{(2(\nu - m) - 1)}(\xi),$$

THE LANDAU PROBLEM ON THE POINCARÉ DISK $\mathbb D$

• The coherent states:

$$|z,\nu,m\rangle:=\left(\pi^{-1}\left(2\nu-2m-1\right)\left(1-|z|^2\right)^{-2\nu}\right)^{-\frac{1}{2}}\sum_{k=0}^{+\infty}\overline{\Phi_k^{\nu,m}(z)}\mid\varphi_k^{\nu,m}>$$

THE LANDAU PROBLEM ON THE POINCARÉ DISK $\mathbb D$

• The coherent states:

$$\left|z,\nu,m\right\rangle := \left(\pi^{-1}\left(2\nu-2m-1\right)\left(1-\left|z\right|^{2}\right)^{-2\nu}\right)^{-\frac{1}{2}}\sum_{k=0}^{+\infty}\overline{\Phi_{k}^{\nu,m}\left(z\right)}\mid\varphi_{k}^{\nu,m}>$$

• A closed form for these CS is

$$\langle \xi | z, \nu, m \rangle = (-1)^m \left(\frac{m!}{\Gamma(2\nu - m)} \right)^{\frac{1}{2}} \frac{|1 - z|^{2m}}{(1 - z)^{2\nu}} \left(1 - |z|^2 \right)^{\nu - m} \xi^{\nu - m}$$
$$\times \exp\left(-\frac{\xi}{2} \frac{1 + z}{1 - z} \right) L_m^{2(\nu - m) - 1} \left(\xi \frac{1 - z\overline{z}}{|1 - z|^2} \right)$$

THEOREM ELWASSOULI, GHANMI, INTISSAR & MOUAYN, Ann. Henri Poincaré 2012

• The coherent state transform: $B_m^{arg}: L^2(\mathbb{R}_+^*, \xi^{-1}d\xi) \to \mathcal{A}_m^{2,\nu}(\mathbb{D})$ defined by

$$B_{m}^{\operatorname{arg}}\left[f\right]\left(z\right):=\left(\mathcal{N}_{m}\left(z\right)\right)^{\frac{1}{2}}\left\langle f,\phi_{z,m}^{\nu}\right
angle$$

Explicitly

$$B_{m}^{\text{arg}}[f](z) = c_{m}(1-z)^{-2\nu} \left(\frac{1-z\overline{z}}{|1-z|^{2}}\right)^{-m} \\ \times \int_{0}^{+\infty} \xi^{\nu-m} \exp\left(-\frac{\xi}{2}\left(\frac{1+z}{1-z}\right)\right) L_{m}^{2(\nu-m)-1}\left(\xi\frac{1-z\overline{z}}{|1-z|^{2}}\right) f(\xi) \frac{d\xi}{\xi}.$$

• For m = 0, B_0^{arg} is the second Bargmann transform (V. Bargmann 1961) corresponds to the lowest hyperbolic Landau level LHLL.

COMPLETNESS THEOREM ABREU, BALAZS, DE GOSSON & MOUAYN, Ann. Phys 2015

The Euclidean setting

Theorem 1. Let $(|(x,y),\pi,m\rangle)_{(x,y)\in\mathbb{R}^2}$ be a system of coherent states attached to the mth Landau level. Then the following holds

- if $\omega^2 < \frac{1}{m+1}$ the system $(|(x,y),\pi,m\rangle)_{(x,y)\in \bigwedge_{\omega}}$ is complete
- if $\omega^2 > 1$ then the system $(|(x, y), \pi, m\rangle)_{(x, y) \in \Lambda_{\omega}}$ is not complete

where $\bigwedge_{\omega} = \omega(\mathbb{Z} + i\mathbb{Z})$ is a square lattice of area ω^2 .

COMPLETNESS THEOREM ABREU, BALAZS, DE GOSSON & MOUAYN, Ann. Phys 2015

The Euclidean setting

Theorem 1. Let $(|(x,y),\pi,m\rangle)_{(x,y)\in\mathbb{R}^2}$ be a system of coherent states attached to the mth Landau level. Then the following holds

- if $\omega^2 < \frac{1}{m+1}$ the system $(|(x,y),\pi,m\rangle)_{(x,y)\in\Lambda_{\omega}}$ is complete
- if $\omega^2 > 1$ then the system $(|(x, y), \pi, m\rangle)_{(x, y) \in \Lambda_+}$ is not complete

where $\bigwedge_{\omega} = \omega(\mathbb{Z} + i\mathbb{Z})$ is a square lattice of area ω^2 .

The Hyperbolic setting

Theorem 2. Let $\{|z,B,m\rangle\}_{z\in\mathbb{C}^+}$ be a system of coherent states attached to the mth hyperbolic level. If the subsystem $\{|g,\xi_0,B,m\rangle\}_{g\in G}$ indexed by the Fuchsian group G associated with the automorphic form F_0 of weight m_0 , vanishing at one point $\xi_0\in\mathbb{C}^+$ is complete, then

$$m_0 \geq \frac{1}{2} \frac{B-m}{1+m}$$

EXAMPLE 3: THE LANDAU PROBLEM ON THE RIEMANN SPHERE

- $X = \mathbb{S}^2 \equiv \mathbb{C} \cup \{\infty\}$
- $d\mu(z) = (1 + z\overline{z})^{-2} d\eta(z)$, $d\eta(z)$ Lebesgue measure on \mathbb{C} .
- A^2 : a generalized Bergman space on the Riemann sphere

$$\mathcal{A}_{m}^{\nu}\left(\mathbb{S}^{2}\right)=\left\{ \Phi\in L^{2}\left(\mathbb{S}^{2},d\mu\left(z\right)\right),H_{2\nu}\,\Phi=\lambda_{\nu,m}\,\Phi\right\} .$$

• The Hamiltonian of ν magnetic field

$$H_{2\nu} = -\left(1 + z\overline{z}\right)^{2} \frac{\partial^{2}}{\partial z \partial \overline{z}} - \nu z \left(1 + z\overline{z}\right) \frac{\partial}{\partial z} + \nu \overline{z} \left(1 + z\overline{z}\right) \frac{\partial}{\partial \overline{z}} + \nu^{2} \left(1 + z\overline{z}\right) - \nu^{2}$$

- Spherical Landau levels: $\lambda_{m,\nu} := (2m+1)\nu + m(m+1), m=0,1,2,\cdots$
- $\mathcal{H} \equiv l^2(\Omega_{N+1})$ the Hibert space of square summable functions on the finite discrete set $\Omega_{N+1} = \{x_j = j pN, j = 0, 1, 2, \dots, N\}$
- The Kravchuk oscillator:

$$\mathcal{L}_{\xi}^{N} = 2p(1-p)N + \frac{1}{2} + (1-2p)\frac{\xi}{h} - \sqrt{p(1-p)}\left(\alpha(\xi)e^{h\partial_{\xi}} + \alpha(\xi-h)e^{-h\partial_{\xi}}\right),$$

$$h = \sqrt{2Np(1-p)}, \alpha(\xi) = \sqrt{((1-p)N - h^{-1}\xi)(pN + 1 + h^{-1}\xi)}$$

ZOUHAÏR MOUAYN (MOROCCO) 15

• We define a discrete Bargmann transform

$$\mathcal{B}_{\nu,m}: \mathit{I}^{2}(\Omega^{p,q}_{N+1})
ightarrow \mathcal{A}^{
u}_{m}\left(\mathbb{S}^{2}
ight).$$

$$\mathcal{B}_{\nu,m}[f](z) := \frac{(N+1)^{\frac{1}{2}} N!}{\sqrt{m! (N-m)!}} \left(\frac{\sqrt{q} - \overline{z}\sqrt{p}}{\sqrt{q(1+z\overline{z})}} \right)^{N} \left(\frac{z\sqrt{q} + \sqrt{p}}{\overline{z}\sqrt{p} - \sqrt{q}} \right)^{m}$$

$$\times \sum_{j=0}^{N} f(j - Np) \sqrt{\frac{p^{j}q^{N-j}}{j! (N-j)!}} \left(\frac{1 + \overline{z}\sqrt{\frac{q}{p}}}{1 - \overline{z}\sqrt{\frac{p}{q}}} \right)^{j} {}_{2}F_{1} \left(\begin{array}{c} -m, -j \\ -N \end{array} \middle| \frac{1 + z\overline{z}}{|\sqrt{p} + \overline{z}\sqrt{q}|^{2}} \right)$$

where ${}_2F_1\left(-m,-j,-N\mid\cdot\right)$: Gauss hypergeometric function (Kravchuk polynomial). Here, $0< p<1,\ q=1-p,\ N=2\left(\nu+m\right),\ m\in\mathbb{Z}_+$ and $2\nu=1,2,\cdots$.

• Case m = 0: $B_{\nu,0}$ is the analytic representation (A. Chenaghlou and O. Faizy, J. Math, Phys. 2007) corresponds to the lowest spherical Landau level LSLL.

• The choice of \mathcal{H} defines a quantization of the space X by the CS, via the inclusion map $X \ni x \mapsto |x| > \in \mathcal{H}$

- The choice of \mathcal{H} defines a quantization of the space X by the CS, via the inclusion map $X \ni x \mapsto |x| > \in \mathcal{H}$
- The (RI) is bridge between the classical and the quantum mechanics.

$$\mathbf{1} \mapsto \mathbf{1}_{\mathcal{H}} = \int_{X} |x\rangle \langle x| \, \mathbf{1} \mathcal{N}(x) \, d\mu(x)$$

- The choice of \mathcal{H} defines a quantization of the space X by the CS, via the inclusion map $X \ni x \mapsto |x| > \in \mathcal{H}$
- The (RI) is bridge between the classical and the quantum mechanics.

$$\mathbf{1} \mapsto \mathbf{1}_{\mathcal{H}} = \int_{X} |x\rangle \langle x| \, \mathbf{1} \mathcal{N}(x) \, d\mu(x)$$

• The Klauder-Berezin coherent states quantization consists in associating to a classical observable, that is a function f(x) on X having specific properties, the operator-valued integral

$$f \mapsto A_f := \int_X |x> < x| f(x) \mathcal{N}(x) d\mu(x)$$

- The choice of \mathcal{H} defines a quantization of the space X by the CS, via the inclusion map $X \ni x \mapsto |x| > \in \mathcal{H}$
- The (RI) is bridge between the classical and the quantum mechanics.

$$\mathbf{1} \mapsto \mathbf{1}_{\mathcal{H}} = \int_{X} |x\rangle \langle x| \, \mathbf{1} \mathcal{N}(x) \, d\mu(x)$$

• The Klauder-Berezin coherent states quantization consists in associating to a classical observable, that is a function f(x) on X having specific properties, the operator-valued integral

$$f \mapsto A_f := \int_X |x| < x |f(x)| \mathcal{N}(x) d\mu(x)$$

The function f(x) is called upper (or contravariant) symbol of the operator A_f and is nonunique in general.

BEREZIN TRANSFORM

$$f \mapsto A_f := \int_X |x| < x |f(x)| \mathcal{N}(x) d\mu(x)$$

- The expectation value $\langle x \mid A_f \mid x \rangle$ of A_f with respect to the set of coherent states $\{\mid x >\}_{x \in X}$ is called lower (or covariant) symbol of A_f .
- Associating to the classical observable f(x) the obtained mean value $\langle x \mid A_f \mid x \rangle$, we get the Berezin transform of this observable. That is,

$$B[f](x) := \langle x \mid A_f \mid x \rangle, \ x \in X.$$

BEREZIN TRANSFORM

$$f \mapsto A_f := \int_X |x\rangle \langle x| f(x) \mathcal{N}(x) d\mu(x)$$

- The expectation value $\langle x \mid A_f \mid x \rangle$ of A_f with respect to the set of coherent states $\{\mid x >\}_{x \in X}$ is called lower (or covariant) symbol of A_f .
- Associating to the classical observable f(x) the obtained mean value $\langle x \mid A_f \mid x \rangle$, we get the Berezin transform of this observable. That is,

$$B[f](x) := \langle x \mid A_f \mid x \rangle, x \in X.$$

Some references:

- F. A. Berezin 1972, Covariant and contravariant symbols of operators, Izv. Akad. SSSR Ser. Mat.
- F.A. Berezin 1975, General concept of quantization, Comm. Math. Phys.
- A. Unterberger & H. Upmeir 1994: *The Berezin transform and invariant differential operators*. Comm. Math. Phys.

Example 1: The Euclidean complex plane $\mathbb C$

- $X \equiv \mathbb{C}$,
- The measure: $e^{-|z|^2}d\mu(z)$, $d\mu$ the Lebesgue measure on $\mathbb C$
- $\mathcal{A}^2 \equiv \mathfrak{F}(\mathbb{C})$: $e^{-|z|^2} d\mu(z)$ –square integrable analytic functions on \mathbb{C} , Segal-Bargmann-Fock space

Example 1: The Euclidean complex plane $\mathbb C$

- $X \equiv \mathbb{C}$,
- The measure: $e^{-|z|^2}d\mu(z)$, $d\mu$ the Lebesgue measure on $\mathbb C$
- $\mathcal{A}^2 \equiv \mathfrak{F}(\mathbb{C})$: $e^{-|z|^2} d\mu(z)$ –square integrable analytic functions on \mathbb{C} , Segal-Bargmann-Fock space
- The coherent states:

$$|z,0\rangle = (\mathcal{N}(z))^{-\frac{1}{2}} \sum_{p=0}^{+\infty} \frac{\bar{z}^p}{\sqrt{p!}} |\varphi_p\rangle$$

• The overlap function between two CS:

$$\langle z, 0 | w, 0 \rangle = (\mathcal{N}(z) \mathcal{N}(w))^{-\frac{1}{2}} e^{\langle z, w \rangle}$$

Example 1: The Euclidean complex plane $\mathbb C$

- $X \equiv \mathbb{C}$.
- The measure: $e^{-|z|^2}d\mu(z)$, $d\mu$ the Lebesgue measure on $\mathbb C$
- $\mathcal{A}^2 \equiv \mathfrak{F}(\mathbb{C})$: $e^{-|z|^2} d\mu(z)$ –square integrable analytic functions on \mathbb{C} , Segal-Bargmann-Fock space
- The coherent states:

$$|z,0\rangle = (\mathcal{N}(z))^{-\frac{1}{2}} \sum_{\rho=0}^{+\infty} \frac{\bar{z}^{\rho}}{\sqrt{\rho!}} |\varphi_{\rho}\rangle$$

• The overlap function between two CS:

$$\langle z, 0 | w, 0 \rangle = (\mathcal{N}(z) \mathcal{N}(w))^{-\frac{1}{2}} e^{\langle z, w \rangle}$$

• The CS satisfy the resolution of the identity

$$\mathbf{1}_{\mathcal{H}} = \int_{\mathbb{C}} |z,0\rangle \langle z,0| \mathcal{N}(z) d\mu(z)$$

CS QUANTIZATION

• To any $\varphi \in L^2(\mathbb{C}, d\mu)$, we associate

$$\varphi \mapsto A_{\varphi} = \int_{\mathbb{C}} |z,0\rangle \langle z,0| (z) \mathcal{N}(z) d\mu(z).$$

CS QUANTIZATION

• To any $\varphi \in L^2(\mathbb{C}, d\mu)$, we associate

$$\varphi \mapsto A_{\varphi} = \int_{\mathbb{C}} |z,0\rangle \langle z,0| (z) \mathcal{N}(z) d\mu(z).$$

• We calculate the expectation value

$$\mathbb{E}_{\{|z,0
angle\}}\left(\emph{A}_{arphi}
ight)=\left\langle z,0
ight|\emph{A}_{arphi}\left|z,0
ight
angle$$

This gives the well known Berezin transform

$$\mathcal{B}_{0}^{er}\left[arphi
ight]\left(z
ight)=\mathbb{E}_{\left\{\left|z,0
ight>
ight\}}\left(A_{arphi}
ight)=\pi^{-1}\int_{\mathbb{C}}e^{-\left|z-w
ight|^{2}}arphi\left(w
ight)d\mu\left(w
ight)$$

CS QUANTIZATION

• To any $\varphi \in L^2(\mathbb{C}, d\mu)$, we associate

$$\varphi \mapsto A_{\varphi} = \int_{\mathbb{C}} |z,0\rangle \langle z,0| (z) \mathcal{N}(z) d\mu(z).$$

• We calculate the expectation value

$$\mathbb{E}_{\{|z,0
angle\}}\left(\emph{A}_{arphi}
ight)=\left\langle z,0
ight|\emph{A}_{arphi}\left|z,0
ight
angle$$

This gives the well known Berezin transform

$$\mathcal{B}_{0}^{er}\left[\varphi\right]\left(z\right) = \mathbb{E}_{\left\{\left|z,0\right\rangle
ight\}}\left(A_{\varphi}\right) = \pi^{-1}\int_{\mathbb{C}}e^{-\left|z-w\right|^{2}}\varphi(w)d\mu\left(w\right)$$

• The Berezin transform B_0^{er} can also be expressed as convolution

$$\mathcal{B}_{0}^{er}\left[\varphi\right]\left(z\right):=\pi^{-1}\left(e^{-\left|w\right|^{2}}*\varphi\right)\left(z\right), \varphi\in L^{2}(\mathbb{C},d\mu)$$

- (ロ) (個) (注) (注) (注) かへの

$\mathcal{B}_0^{\mathsf{er}}$ as function of the Euclidean Laplacian

The Berezin transform B_0^{er} can be written as

$$\mathcal{B}_0^{ extit{er}} = ext{exp}\left(rac{1}{4}\Delta_{\mathbb{C}}
ight).$$

Ref: J. Peetre 1990, J. Operator Theory

EXAMPLE 2: THE LANDAU PROBLEM ON \mathbb{C}^n

- $X = \mathbb{R}^{2n} = \mathbb{C}^n$
- The Hamiltonian of ν magnetic field

$$H_{\nu} = -\frac{1}{4} \sum_{j=1}^{n} \left(\left(\partial_{x_{j}} + i \nu y_{j} \right)^{2} + \left(\partial_{y_{j}} - i \nu x_{j} \right)^{2} \right) - \frac{n}{2}$$

acting on $L^2(\mathbb{R}^{2n}, d\mu)$, $d\mu$ Lebesgue measure.

Intertwining relation

$$\widetilde{\Delta}_{\nu} := e^{\frac{1}{2}\nu |z|^2} \textit{H}_{\nu} \ e^{-\frac{1}{2}\nu |z|^2}$$

Ground state transformation

$$Q[\phi](z) := e^{\frac{1}{2}\nu|z|^2} \phi(z), \in L^2(\mathbb{C}^n, e^{-\nu|z|^2} d\mu); \ z \in \mathbb{C}^n.$$

EXAMPLE 2: THE LANDAU PROBLEM ON \mathbb{C}^n

- $X = \mathbb{R}^{2n} = \mathbb{C}^n$
- The Hamiltonian of ν magnetic field

$$H_{\nu} = -\frac{1}{4} \sum_{j=1}^{n} \left(\left(\partial_{x_{j}} + i \nu y_{j} \right)^{2} + \left(\partial_{y_{j}} - i \nu x_{j} \right)^{2} \right) - \frac{n}{2}$$

acting on $L^2(\mathbb{R}^{2n}, d\mu)$, $d\mu$ Lebesgue measure.

Intertwining relation

$$\widetilde{\Delta}_{\nu} := e^{\frac{1}{2}\nu |z|^2} \textit{H}_{\nu} \ e^{-\frac{1}{2}\nu |z|^2}$$

Ground state transformation

$$Q[\phi](z) := e^{\frac{1}{2}\nu|z|^2} \phi(z), \in L^2(\mathbb{C}^n, e^{-\nu|z|^2} d\mu); \ z \in \mathbb{C}^n.$$

• Explicit expression for the operator $\widetilde{\Delta}_{\nu}$:

$$\widetilde{\Delta}_{\nu} = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z}_{j}} + \nu \sum_{i=1}^{n} \overline{z}_{j} \frac{\partial}{\partial \overline{z}_{j}}.$$

L^2 -SPECTRAL TOOLS OF $\tilde{\triangle}$ N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

• We consider the case of $\nu = 1$, $\widetilde{\Delta} := \widetilde{\Delta}_1$,

$$\widetilde{\Delta} = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial z_{i} \partial \overline{z}_{j}} + \sum_{i=1}^{n} \overline{z}_{j} \frac{\partial}{\partial \overline{z}_{j}}.$$

 $C_0^{\infty}(\mathbb{C}^n)$ as its regular domain in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

L^2 -SPECTRAL TOOLS OF $\tilde{\triangle}$ N. Askour & Z. Mouayn J. Math. Phys. 2000

• We consider the case of $\nu = 1$, $\widetilde{\Delta} := \widetilde{\Delta}_1$,

$$\widetilde{\Delta} = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z}_{j}} + \sum_{j=1}^{n} \overline{z}_{j} \frac{\partial}{\partial \overline{z}_{j}}.$$

 $C_0^{\infty}(\mathbb{C}^n)$ as its regular domain in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

• $\widetilde{\Delta}$ is an unbounded symmetric operator on $C_0^{\infty}(\mathbb{C}^n)$ which is essentially self-adjoint in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$..

L^2 -SPECTRAL TOOLS OF $\tilde{\triangle}$ N. Askour & Z. Mouayn J. Math. Phys. 2000

• We consider the case of $\nu = 1$, $\widetilde{\Delta} := \widetilde{\Delta}_1$,

$$\widetilde{\Delta} = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z}_{j}} + \sum_{j=1}^{n} \overline{z}_{j} \frac{\partial}{\partial \overline{z}_{j}}.$$

 $C_0^{\infty}(\mathbb{C}^n)$ as its regular domain in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

- $\widetilde{\Delta}$ is an unbounded symmetric operator on $C_0^{\infty}(\mathbb{C}^n)$ which is essentially self-adjoint in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$..
- Its spectrum consists of eigenvalues (Landau levels) of infinite multiplicity:

$$\epsilon_m := m, \quad m = 0, 1, 2,$$

The resolvent kernel

L^2 -SPECTRAL TOOLS OF $\tilde{\triangle}$ N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

• We consider the case of $\nu = 1$, $\widetilde{\Delta} := \widetilde{\Delta}_1$,

$$\widetilde{\Delta} = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z}_{j}} + \sum_{j=1}^{n} \overline{z}_{j} \frac{\partial}{\partial \overline{z}_{j}}.$$

 $C_0^{\infty}(\mathbb{C}^n)$ as its regular domain in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

- $\widetilde{\Delta}$ is an unbounded symmetric operator on $C_0^{\infty}(\mathbb{C}^n)$ which is essentially self-adjoint in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$..
- Its spectrum consists of eigenvalues (Landau levels) of infinite multiplicity:

$$\epsilon_m := m, \quad m = 0, 1, 2,$$

- The resolvent kernel
- The heat Kernel

L^2 -SPECTRAL TOOLS OF $\tilde{\triangle}$ N. Askour & Z. Mouayn J. Math. Phys. 2000

• We consider the case of $\nu = 1$, $\widetilde{\Delta} := \widetilde{\Delta}_1$,

$$\widetilde{\Delta} = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z}_{j}} + \sum_{j=1}^{n} \overline{z}_{j} \frac{\partial}{\partial \overline{z}_{j}}.$$

 $C_0^{\infty}(\mathbb{C}^n)$ as its regular domain in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

- $\widetilde{\Delta}$ is an unbounded symmetric operator on $C_0^{\infty}(\mathbb{C}^n)$ which is essentially self-adjoint in the Hilbert space $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$..
- Its spectrum consists of eigenvalues (Landau levels) of infinite multiplicity:

$$\epsilon_m := m, \quad m = 0, 1, 2,$$

- The resolvent kernel
- The heat Kernel
- The wave kernel

SPACES $A_m^2(\mathbb{C}^n)$ N. Askour, A. Intissar & Z. Mouayn J. Math. Phys. 2000

Indexed by m = 0, 1, 2, ..., as eigenspaces of the operator $\widetilde{\Delta}$,

$$\mathcal{A}_m^2\left(\mathbb{C}^n\right):=\left\{\varphi\in L^2(\mathbb{C}^n, \mathrm{e}^{-|z|^2}d\mu),\ \widetilde{\Delta}\varphi=m\varphi\right\}.$$

A function $f: \mathbb{C}^n \to \mathbb{C}$ belongs to $\mathcal{A}^2_m(\mathbb{C}^n)$ if and only if

$$f(z) = \sum_{p=0}^{+\infty} \sum_{q=0}^{m} {}_{1}F_{1}\left(-m+q, \ n+p+q, \ \rho^{2}\right) \rho^{p+q} \sum_{j=1}^{d(n,p,q)} \gamma_{p,q,j} h_{p,q}^{j}\left(\omega\right)$$

in C^{∞} (\mathbb{C}^n), $z = \rho \omega$, $\omega \in S^{2n-1}$, $\rho > 0$, ${}_1F_1$ is the confluent hypergeometric function $\gamma_{p,q} := (\gamma_{p,q,j}) \in \mathbb{C}^{d(n,p,q)}$ satisfy

$$\sum_{n=0}^{+\infty}\sum_{q=0}^{m}\left(m-q\right)!\left(p+q+n-1\right)!\Gamma\left(n+p+q\right)\ \frac{\left|\gamma_{p,q}\right|^{2}}{2\Gamma\left(n+p+m\right)}<+\infty$$

and $\left(h_{p,q}^{j}(.)\right)$, $1 \le j \le d(n,p,q)$ is an orthonormal basis of H(p,q). Here $d(n,p,q) = \dim H(p,q)$

THE SPACE $\mathcal{A}_{0}^{2}\left(\mathbb{C}^{n}\right)$

In the case m=0 the space $\mathcal{A}_0^2(\mathbb{C}^n)$ coincides with the Segal-Bargmann-Fock space $\mathfrak{F}(\mathbb{C}^n)$ of entire functions in $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

Ref. N. Askour, A. Intissar & Z. Mouayn, C. R. Acad. Sci. Paris 1997

AN ORTHONORMAL BASIS OF $\mathcal{A}_{m}^{2}(\mathbb{C}^{n})$

• An orthonormal basis of $\mathcal{A}_{m}^{2}(\mathbb{C}^{n})$ can be written in terms of the Laguerre polynomials and the spherical harmonics polynomials $h_{p,q}^{j}(z,\overline{z})$

$$\Phi_{j,p,q}^{m}(z) := \left(\frac{2(m-q)!}{\Gamma(n+m+p)}\right)^{\frac{1}{2}} L_{m-q}^{(n+p+q-1)}\left(|z|^{2}\right) h_{p,q}^{j}(z,\overline{z})$$

where p = 0, 1, 2, ...; q = 0, 1, 2, ..., m, j = 1, ..., d(n, p, q).

ZOUHAÏR MOUAYN (MOROCCO)

THE SPACE $\mathcal{A}_{0}^{2}\left(\mathbb{C}^{n}\right)$

In the case m = 0 the space $\mathcal{A}_0^2(\mathbb{C}^n)$ coincides with the Segal-Bargmann-Fock space $\mathfrak{F}(\mathbb{C}^n)$ of entire functions in $L^2(\mathbb{C}^n, e^{-|z|^2}d\mu)$.

Ref: N. Askour, A. Intissar & Z. Mouayn, C. R. Acad. Sci. Paris 1997

AN ORTHONORMAL BASIS OF $\mathcal{A}_{m}^{2}(\mathbb{C}^{n})$

• An orthonormal basis of $\mathcal{A}_{m}^{2}(\mathbb{C}^{n})$ can be written in terms of the Laguerre polynomials and the spherical harmonics polynomials $h_{p,q}^{j}(z,\overline{z})$

$$\Phi_{j,p,q}^{m}(z) := \left(\frac{2(m-q)!}{\Gamma(n+m+p)}\right)^{\frac{1}{2}} L_{m-q}^{(n+p+q-1)}\left(|z|^{2}\right) h_{p,q}^{j}(z,\overline{z})$$

where p = 0, 1, 2, ...; q = 0, 1, 2, ..., m, j = 1, ..., d(n, p, q).

• These basis elements will play the role of coefficients in the following superposition:

A set of coherent states $\{|z, m\rangle\}_{z \in \mathbb{C}^n}$

• For m = 0, 1, 2, ..., a class of generalized coherent states is defined by

$$\mid z,m>=(\mathcal{N}_{m}(z))^{-\frac{1}{2}}\sum_{\substack{1\leq j\leq d(n,p,q)\\0\leq q\leq m,0\leq p<+\infty}}^{+\infty}\overline{\Phi_{j,p,q}^{m}(z)}\mid\varphi_{j,p,q}\rangle$$

- $\Phi_{i,p,q}^m(z)$: orthonormal basis of $A_m^2(\mathbb{C}^n)$
- $|\varphi_{i,p,q}\rangle$: orthonormal basis of another (functional) Hilbert space \mathcal{H}
- dim \mathcal{H} = dim $A_m^2(\mathbb{C}^n) = +\infty$
- $\mathcal{N}_m(z)$ is a normalization factor such that $\langle z, m|z, m\rangle_{\mathcal{H}} = 1$:

$$\mathcal{N}_m(z) = \frac{\pi^{-n}\Gamma(n+m)}{\Gamma(m+1)\Gamma(n)}e^{\langle z,z\rangle}$$

• The CS satisfy the resolution of the identity

$$\mathbf{1}_{\mathcal{H}} = \int_{\mathbb{C}^n} |z, m\rangle \langle z, m| \, \mathcal{N}_m(z) \, d\mu(z)$$

The overlap integral between two CS in \mathbb{C}^n

This quantity is defined by

$$\begin{split} \langle z, m | w, m \rangle &= \left(\mathcal{N}_m(z) \mathcal{N}_m(w) \right)^{-\frac{1}{2}} \sum_{\substack{1 \leq j \leq d(n, p, q) \\ 0 \leq q \leq m, 0 \leq p < +\infty}}^{+\infty} \Phi^m_{j, p, q}(z) \, \overline{\Phi^m_{j, p, q}(w)} \\ &= \left(\mathcal{N}_m(z) \, \mathcal{N}_m(w) \right)^{-\frac{1}{2}} \pi^{-n} e^{\langle z, w \rangle} L_m^{(n-1)} \left(|z - w|^2 \right) \end{split}$$

The overlap integral between two CS in \mathbb{C}^n

This quantity is defined by

$$\langle z, m | w, m \rangle = (\mathcal{N}_m(z) \mathcal{N}_m(w))^{-\frac{1}{2}} \sum_{\substack{1 \leq j \leq d(n, p, q) \\ 0 \leq q \leq m, 0 \leq p < +\infty}}^{+\infty} \Phi_{j, p, q}^m(z) \overline{\Phi_{j, p, q}^m(w)}$$
$$= (\mathcal{N}_m(z) \mathcal{N}_m(w))^{-\frac{1}{2}} \pi^{-n} e^{\langle z, w \rangle} L_m^{(n-1)} \left(|z - w|^2 \right)$$

This can be proved by direct calculations using an addition formula due to T. Koornwinder SIAM. J. Math. Anal. 1977 and Mourad. Ismail 2012:

$$\begin{split} &\exp\left(ixy\sin\psi\right)\mathcal{L}_{s}^{(\sigma)}\left(x^{2}+y^{2}-2xy\cos\psi\right) \\ &=\sum_{k=0}^{+\infty}\sum_{l=0}^{s}\frac{\sigma}{\sigma+k+l}\left(\begin{array}{c}s\\l\end{array}\right)\frac{(\sigma+s+1)}{k!\left(\sigma+l\right)_{k}\left(\sigma+k\right)_{l}} \\ &\times x^{k+l}y^{k+l}\mathcal{L}_{s-l}^{(\sigma+k+l)}\left(x^{2}\right)\mathcal{L}_{s-l}^{(\sigma+k+l)}\left(y^{2}\right)R_{k,l}^{\sigma-1}\left(re^{i\psi}\right) \end{split}$$

where $\mathcal{L}_{s}^{(\sigma)}(.)$ are Laguerre functions and $R_{k,l}^{\sigma}(.)$ are disk polynomials.

CS QUANTIZATION AND BEREZIN TRANSFORM

• To any function $\varphi \in L^2(\mathbb{C}^n, d\mu)$ we associate the operator-valued integral

$$\varphi \mapsto A_{\varphi} = \int_{\mathbb{C}^{n}} |z, m\rangle \langle z, m| \varphi(z) \mathcal{N}_{m}(z) d\mu(z)$$

ullet Next define the Berezin transform of φ as the expectation value

$$\mathcal{B}_{m}^{er}\left[arphi
ight] \left(z
ight) :=\left\langle z,m\right| A_{arphi}\left| z,m
ight
angle$$

• After calculations using the above overlap integral $\langle z, m | w, m \rangle_{\mathcal{H}}$, we arrive at

$$\mathcal{B}_{m}^{er}\left[\varphi\right](z) = \frac{m!}{(n)_{m}\pi^{n}} \int_{\mathbb{C}^{n}} e^{-|z-w|^{2}} \left(L_{m}^{(n-1)}\left(|z-w|^{2}\right)\right)^{2} \varphi(w) d\mu(w)$$

where $\varphi \in L^{\infty}(\mathbb{C}^n)$.

• This transform can be written via a convolution product

$$\mathcal{B}_{m}^{er}\left[\varphi\right]=h_{m}*\varphi,\quad \varphi\in L^{2}\left(\mathbb{C}^{n},d\mu\right)$$

involving the function

$$h_m(z) = \frac{m!}{(n)_m \pi^n} e^{-|z|^2} \left(L_m^{(n-1)} \left(|z|^2 \right) \right)^2$$

• This transform can be written via a convolution product

$$\mathcal{B}_{m}^{er}\left[\varphi\right]=h_{m}*\varphi,\quad \varphi\in L^{2}\left(\mathbb{C}^{n},d\mu\right)$$

involving the function

$$h_m(z) = \frac{m!}{(n)_m \pi^n} e^{-|z|^2} \left(L_m^{(n-1)} \left(|z|^2 \right) \right)^2$$

• \mathcal{B}_m^{er} commute with operators of composition with unitary transformations

• This transform can be written via a convolution product

$$\mathcal{B}_{m}^{er}\left[\varphi\right]=h_{m}*\varphi,\quad \varphi\in L^{2}\left(\mathbb{C}^{n},d\mu\right)$$

involving the function

$$h_m(z) = \frac{m!}{(n)_m \pi^n} e^{-|z|^2} \left(L_m^{(n-1)} (|z|^2) \right)^2$$

- \mathcal{B}_m^{er} commute with operators of composition with unitary transformations
- \mathcal{B}_m^{er} is a function of the Euclidean Laplacian $\Delta_{\mathbb{C}^n}$:

$$\mathcal{B}_{m}^{\text{er}}=\widehat{h_{m}}\left(\frac{1}{i}\nabla\right)$$

• This transform can be written via a convolution product

$$\mathcal{B}_{m}^{er}\left[\varphi\right]=h_{m}*\varphi,\quad \varphi\in L^{2}\left(\mathbb{C}^{n},d\mu\right)$$

involving the function

$$h_m(z) = \frac{m!}{(n)_m \pi^n} e^{-|z|^2} \left(L_m^{(n-1)} \left(|z|^2 \right) \right)^2$$

- \mathcal{B}_m^{er} commute with operators of composition with unitary transformations
- \mathcal{B}_m^{er} is a function of the Euclidean Laplacian $\Delta_{\mathbb{C}^n}$:

$$\mathcal{B}_{m}^{\text{er}}=\widehat{h_{m}}\left(\frac{1}{i}\nabla\right)$$

• $h_m \mapsto \widehat{h_m}$: is the Fourier transform.

THEOREM

Z. MOUAYN, J. FOURIER ANAL & APP 2012

For m = 0, 1, 2, ..., the Berezin transform can be expressed as a function of the Laplacian $\triangle_{\mathbb{C}^n}$ as

$$\mathcal{B}_m^{er} = e^{rac{1}{4}\Delta_{\mathbb{C}^n}} \sum_{j=0}^{2m} \gamma_j^{(m,n)} \left(\Delta_{\mathbb{C}^n}
ight)^j$$

with coefficients

$$\gamma_{j}^{(m,n)} := \frac{2^{2m} (m!)^{3} (-1)^{j} {}_{3} \Gamma_{2} \left(\frac{j}{2} - m, \frac{j+1}{2} - m, j+n, j-m+1, j-m+1; 1\right)}{(n)_{m} j! 2^{3j} (2m-j)! \left(\Gamma(j-m+1)\right)^{2}}$$

given in terms of a ${}_{3}F_{2}$ -sum.

• In particular for m = 0 we recover $\mathcal{B}_0^{er} = e^{\frac{1}{4}\triangle_{\mathbb{C}}}$.

For m = 0, 1, 2, ..., the Berezin transform can be expressed as a function of the Laplacian $\triangle_{\mathbb{C}^n}$ as

$$\mathcal{B}_m^{er} = e^{rac{1}{4}\Delta_{\mathbb{C}^n}} \sum_{j=0}^{2m} \gamma_j^{(m,n)} \left(\Delta_{\mathbb{C}^n}
ight)^j$$

with coefficients

$$\gamma_{j}^{(m,n)} := \frac{2^{2m} (m!)^{3} (-1)^{j} {}_{3} \Gamma_{2} \left(\frac{j}{2} - m, \frac{j+1}{2} - m, j+n, j-m+1, j-m+1; 1\right)}{(n)_{m} j! 2^{3j} (2m-j)! \left(\Gamma(j-m+1)\right)^{2}}$$

given in terms of a $_3F_2$ -sum.

• In particular for m = 0 we recover $\mathcal{B}_0^{er} = e^{\frac{1}{4}\triangle_{\mathbb{C}}}$.

Idea on the proof. we use a linearization of the product of Laguerre polynomials and next we calculate some integral involving Bessel functions.

EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL \mathbb{B}^n

- $X = \mathbb{B}^n$
- $d\mu_n = (1 \langle z, z \rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{B}^n .

EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL \mathbb{B}^n

- $X = \mathbb{B}^n$
- $d\mu_n = (1 \langle z, z \rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{B}^n .
- The Schrödinger operator with ν -magnetic field on \mathbb{B}^n

$$H_{
u} = -4(1-|z|^2)(\sum_{i,j=1}^n \left(\delta_{ij-} z_i \overline{z_j}\right) \partial_j \overline{\partial}_j + \nu \sum_{i=1}^n (z_j \partial_j - \overline{z_j} \overline{\partial}_j) +
u^2) + 4
u^2$$

provided that $\nu > n/2$. The notations $\partial_j = \partial/\partial z_j$ and $\overline{\partial}_j = \partial/\partial \overline{z_j}$

EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL \mathbb{B}^n

- $X = \mathbb{B}^n$
- $d\mu_n = (1 \langle z, z \rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{B}^n .
- The Schrödinger operator with ν -magnetic field on \mathbb{B}^n

$$H_{\nu} = -4(1-|z|^2)(\sum_{i,j=1}^n \left(\delta_{ij-}z_i\overline{z_j}\right)\partial_j\overline{\partial}_j + \nu\sum_{j=1}^n (z_j\partial_j - \overline{z_j}\overline{\partial}_j) + \nu^2) + 4\nu^2$$

provided that $\nu > n/2$. The notations $\partial_j = \partial/\partial z_j$ and $\overline{\partial}_j = \partial/\partial \overline{z_j}$

• H_{ν} is an elliptic densely defined operator on $L^{2}(\mathbb{B}^{n}, (1 - \langle z, z \rangle)^{-(n+1)}d\mu)$ admitting a unique self-adjoint realization also denoted by H_{ν} .

EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL \mathbb{B}^n

- $X = \mathbb{B}^n$
- $d\mu_n = (1 \langle z, z \rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{B}^n .
- The Schrödinger operator with ν -magnetic field on \mathbb{B}^n

$$H_{\nu} = -4(1-|z|^2)(\sum_{i,j=1}^n \left(\delta_{ij-}z_i\overline{z_j}\right)\partial_j\overline{\partial}_j + \nu\sum_{j=1}^n (z_j\partial_j - \overline{z_j}\overline{\partial}_j) + \nu^2) + 4\nu^2$$

provided that $\nu > n/2$. The notations $\partial_j = \partial/\partial z_j$ and $\overline{\partial}_j = \partial/\partial \overline{z_j}$

- H_{ν} is an elliptic densely defined operator on $L^2(\mathbb{B}^n, (1-\langle z,z\rangle)^{-(n+1)}d\mu)$ admitting a unique self-adjoint realization also denoted by H_{ν} .
- Its spectrum: $[n^2, +\infty[$ (scattering states) and a finite number of infinitely degenerate eigenvalues (bound states):

$$\epsilon_m^{\nu,n} = 4\nu(2m+n) - 4m(m+n), \ m = 0, 1, ..., [\nu - n/2].$$

called hyperbolic Landau levels on \mathbb{B}^n .

<ロ> (回) (回) (巨) (巨) (巨) のQ(

The generalized Bergman spaces $\mathcal{A}_{m}^{2, u}(\mathbb{B}^{n})$

• Focus on the discrete part of the spectrum $\epsilon_m^{\nu,n}$, and the corresponding eigenspace

$$\mathcal{A}_{m}^{2,\nu}\left(\mathbb{B}^{n}\right)=\left\{ \varphi\in L^{2}(\mathbb{B}^{n},d\mu_{n}),H_{\nu}\varphi=\epsilon_{m}^{\nu,n}\varphi\right\}$$

where $m = 0, 1, ..., [\nu - n/2]$.

• An eigenfunction f of H_{ν} with eigenvalue $\epsilon_m^{\nu,n}$, in terms of the appropriate Fourier series in \mathbb{B}^n :

$$f(z) = \sum_{\substack{p,q=0 \\ \rho-p-q}}^{+\infty} \frac{(1-\rho^2)^{\frac{i\lambda+n}{2}}}{\rho^{-p-q}} \, {}_{2}F_{1}\left(\frac{i\lambda+n}{2} + \nu + p, \frac{i\lambda+n}{2} - \nu + q, p+q+n; \rho^2\right) \\ \times \sum_{\substack{j=1 \\ p,q,j}}^{d(n,p,q)} a_{p,q,j}^{\lambda,\nu} h_{p,q}^{j}(\theta),$$

in $C^{\infty}(\mathbb{B}^n)$, $z=\rho\theta$, $\rho\in[0,1[$ and $\theta\in\partial\mathbb{B}^n$, ${}_2F_1$: Gauss hypergeometric function and $(a^{\lambda,\nu}_{p,q,j})\in\mathbb{C}^{d(n,p,q)}$. Here $\{h^j_{p,q}\}_{1\leq j\leq d(n,p,q)}$ is an orthonormal basis of H(p,q).

THE SPACE $\mathcal{A}^{2,\nu}_0(\mathbb{B}^n)$

For m=0, the space $\mathcal{A}_0^{2,\nu}\left(\mathbb{B}^n\right)$ is isomorphic to the weighted Bergman space of holomorphic function ψ on \mathbb{B}^n satisfying

$$\int_{\mathbb{B}^n} |\psi(z)|^2 \left((1 - \langle z, z \rangle)^{2\nu - n - 1} d\mu(z) < +\infty. \right) \tag{*}$$

This fact justify why the eigenspace $\mathcal{A}_{m}^{2,\nu}(\mathbb{B}^{n})$ has been called a generalized Bergman spaces of index m.

AN ORTONORMAL BASIS OF $\mathcal{A}_{m}^{2,\nu}(\mathbb{B}^{n})$

It can be given explicitly by

$$\Phi_{p,q}^{\nu,m,j}(z) = \kappa_{p,q}^{\nu,m,n} \left(1 - |z|^2 \right)^{\nu-m} P_{m-q}^{(n+p+q-1,2[\nu-m]-n)} \left(1 - 2|z|^2 \right) h_{p,q}^{j}(z,\overline{z})$$

with

$$\kappa_{p,q}^{\nu,m,n} = \left(\frac{\pi^n \Gamma(n+m+p) \Gamma(2\nu - n - m - q + 1)}{n! 2 (2 [\nu - m] - n) (m-q)! \Gamma(2\nu - m + p)}\right)^{-\frac{1}{2}}$$

$$p = 0, 1, 2, ..., q = 0, 1,, m$$
 and $j = 1,, d(n; p, q).$

A set of coherent states $\{|z, \nu, m\rangle\}_{z \in \mathbb{B}^n}$

• $X = \mathbb{B}^n$, $X \equiv Z \in \mathbb{B}^n$. $d\mu_n$,

A set of coherent states $\{|z, \nu, m\rangle\}_{z \in \mathbb{B}^n}$

- $X = \mathbb{B}^n$, $X \equiv Z \in \mathbb{B}^n$. $d\mu_n$,
- $\bullet \ \mathcal{A}^2 := \mathcal{A}_m^{2,\nu}\left(\mathbb{B}^n\right) \subset L^2(\mathbb{B}^n,d\mu_n).$

A set of coherent states $\{|\mathbf{z}, \nu, \mathbf{m}\rangle\}_{\mathbf{z} \in \mathbb{B}^n}$

- $\bullet \ \ X=\mathbb{B}^n, \ \ x\equiv z\in \mathbb{B}^n. \ \ d\mu_n,$
- $\bullet \ \mathcal{A}^2 := \mathcal{A}_m^{2,\nu}\left(\mathbb{B}^n\right) \subset L^2(\mathbb{B}^n, d\mu_n).$
- $\{\Phi_k(x)\} \equiv \{\Phi_{p,q,j}^{\nu,m}(z)\}$ is the orthonormal basis of $\mathcal{A}_m^{2,\nu}(\mathbb{B}^n)$.

A set of coherent states $\{|\mathbf{z}, \nu, \mathbf{m}\rangle\}_{\mathbf{z} \in \mathbb{B}^n}$

- $X = \mathbb{B}^n$, $X \equiv Z \in \mathbb{B}^n$. $d\mu_n$,
- $\bullet \ \mathcal{A}^2 := \mathcal{A}_m^{2,\nu}\left(\mathbb{B}^n\right) \subset L^2(\mathbb{B}^n,d\mu_n).$
- $\{\Phi_k(x)\} \equiv \left\{\Phi_{p,q,j}^{\nu,m}(z)\right\}$ is the orthonormal basis of $\mathcal{A}_m^{2,\nu}(\mathbb{B}^n)$.
- $\{\varphi_k\} \equiv \{\varphi_{p,q,j}\}$ is an orthonormal basis of another Hilbert space \mathcal{H}

A set of coherent states $\{|z, \nu, m\rangle\}_{z \in \mathbb{B}^n}$

- $X = \mathbb{B}^n$, $X \equiv Z \in \mathbb{B}^n$. $d\mu_n$,
- $\bullet \ \mathcal{A}^2 := \mathcal{A}_m^{2,\nu}\left(\mathbb{B}^n\right) \subset L^2(\mathbb{B}^n,d\mu_n).$
- $\{\Phi_k(x)\} \equiv \left\{\Phi_{p,q,j}^{\nu,m}(z)\right\}$ is the orthonormal basis of $\mathcal{A}_m^{2,\nu}(\mathbb{B}^n)$.
- $\{\varphi_k\} \equiv \{\varphi_{p,q,j}\}$ is an orthonormal basis of another Hilbert space \mathcal{H}
- Generalized CS are defined by

$$\mid z, \nu, m> := (\mathcal{N}(z))^{-\frac{1}{2}} \sum_{\substack{0 \leq q \leq m, 0 \leq p < +\infty \\ 1 \leq j \leq d(n, p, q)}} \overline{\Phi_{p, q, j}^{\nu, m}(z)} \varphi_{p, q, j}$$

• The normalization factor

$$\mathcal{N}_{m}(z) = \frac{(2(\nu - m) - n) \Gamma(2\nu - m)}{\pi^{n} \Gamma(2\nu - m - n + 1)} \frac{\Gamma(m + n)}{m! \Gamma(n)}$$

A set of coherent states $\{|\mathbf{z}, \nu, \mathbf{m}\rangle\}_{\mathbf{z} \in \mathbb{B}^n}$

- $\bullet \ \ X=\mathbb{B}^n, \ \ x\equiv z\in \mathbb{B}^n. \ \ d\mu_n,$
- $\bullet \ \mathcal{A}^2 := \mathcal{A}_m^{2,\nu}\left(\mathbb{B}^n\right) \subset L^2(\mathbb{B}^n,d\mu_n).$
- $\{\Phi_k(x)\} \equiv \left\{\Phi_{p,q,j}^{\nu,m}(z)\right\}$ is the orthonormal basis of $\mathcal{A}_m^{2,\nu}(\mathbb{B}^n)$.
- $\{\varphi_k\} \equiv \{\varphi_{p,q,j}\}$ is an orthonormal basis of another Hilbert space \mathcal{H}
- Generalized CS are defined by

$$\mid z, \nu, m> := (\mathcal{N}(z))^{-\frac{1}{2}} \sum_{\substack{0 \leq q \leq m, 0 \leq p < +\infty \\ 1 \leq j \leq d(n, p, q)}} \overline{\Phi_{p, q, j}^{\nu, m}(z)} \varphi_{p, q, j}$$

• The normalization factor

$$\mathcal{N}_{m}(z) = \frac{(2(\nu - m) - n) \Gamma(2\nu - m)}{\pi^{n} \Gamma(2\nu - m - n + 1)} \frac{\Gamma(m + n)}{m! \Gamma(n)}$$

• The CS satisfy the resolution of the identity

$$\mathbf{1}_{\mathcal{H}} = \int_{\mathbb{R}^n} |z, \nu, m\rangle \langle z, \nu, m| \, \mathcal{N}_m(z) \, d\mu_n(z)$$

THE OVERLAP INTEGRAL BETWEEN TWO CS IN \mathbb{B}^n

This quantity is defined by

$$\langle z, \nu, m | w, \nu, m \rangle = \left(\mathcal{N}(z) \mathcal{N}(w) \right)^{-\frac{1}{2}} \sum_{\substack{0 \leq q \leq m, 0 \leq p < +\infty \\ 1 \leq j \leq d(n, p, q)}} \Phi_{p, q, j}^{\nu, m}(z) \overline{\Phi_{p, q, j}^{\nu, m}(w)}$$

$$= \frac{(2 [\nu - m] - n) \Gamma(2\nu - m)}{\pi^{n} \Gamma(2\nu - m - n + 1)} (\mathcal{N}(z) \mathcal{N}(w))^{-\frac{1}{2}} \left(\frac{1 - \overline{\langle z, w \rangle}}{1 - \langle z, w \rangle}\right)^{\nu} \times (\cosh(d(z, w)))^{-2(\nu - m)} P_{m}^{(n - 1, 2[\nu - m] - n)} \left(1 - 2 \tanh^{2}(d(z, w))\right)$$

 $P_m^{(\alpha,\beta)}(.)$ denotes Jacobi polynomial.

CS QUANTIZATION AND BEREZIN TRANSFORM

• For any $\varphi \in L^2(\mathbb{B}^n, d\mu_n)$, the operator-valued integral

$$\varphi \mapsto A_{\varphi} := \int_{\mathbb{B}^n} \ket{z, \nu, m} \langle z, \nu, m | \varphi(z) \mathcal{N}(z) d\mu_n(z)$$

The function $\varphi(z)$ is a upper symbol of the operator A_{φ} .

CS QUANTIZATION AND BEREZIN TRANSFORM

• For any $\varphi \in L^2(\mathbb{B}^n, d\mu_n)$, the operator-valued integral

$$\varphi\mapsto A_{\varphi}:=\int_{\mathbb{B}^{n}}\left|z,
u,m\right\rangle\left\langle z,
u,m\right|arphi\left(z
ight)\mathcal{N}\left(z
ight)d\mu_{n}(z)$$

The function $\varphi(z)$ is a upper symbol of the operator A_{φ} .

• The Berezin transform is defined as the expectation value

• Using the overlap integral between two CS, we obtain:

$$\mathcal{B}_{m}^{er} [\varphi] (z) = \tau_{\nu,m,n} \int_{\mathbb{B}^{n}} \left(\frac{(1 - |z|^{2} (1 - |\xi|^{2})}{|1 - \langle z, \xi \rangle|^{2}} \right)^{2(\nu - m)} \times \left(P_{m}^{(n-1,2(\nu - m) - n)} \left(1 - 2|\xi|^{2} \right) \right)^{2} \varphi (\xi) d\mu_{n} (\xi).$$

$$\tau_{\nu,m,n} = \frac{\Gamma (n) m! (2 (\nu - m) - n) \Gamma (2\nu - m)}{\pi^{n} \Gamma (n + m) \Gamma (2\nu - m - n + 1)}$$

The Berezin transform \mathcal{B}_0^{er}

• For m=0, this transfrom is the well known Berezin transfom attached to the weighted Bergman space $\mathcal{A}_0^{2,\nu}\left(\mathbb{B}^n\right)$ of holomorphic function ψ on \mathbb{B}^n satisfying the growth condition (*) and given by

$$\mathcal{B}_{0}^{er}\left[\varphi\right]\left(z\right) = \frac{\left(2\nu - n\right)\Gamma\left(2\nu\right)}{\pi^{n}\Gamma\left(2\nu - n + 1\right)} \int_{\mathbb{B}} \left(\cosh d\left(z, \xi\right)\right)^{-4\nu} \frac{\varphi\left(\xi\right)}{\left(1 - \left|\xi\right|^{2}\right)^{n+1}} d\mu\left(\xi\right)$$

The Berezin transform \mathcal{B}_0^{er}

• For m=0, this transfrom is the well known Berezin transfom attached to the weighted Bergman space $\mathcal{A}_0^{2,\nu}\left(\mathbb{B}^n\right)$ of holomorphic function ψ on \mathbb{B}^n satisfying the growth condition (*) and given by

$$\mathcal{B}_{0}^{er}\left[\varphi\right]\left(z\right) = \frac{\left(2\nu - n\right)\Gamma\left(2\nu\right)}{\pi^{n}\Gamma\left(2\nu - n + 1\right)} \int_{\mathbb{B}} \left(\cosh d\left(z, \xi\right)\right)^{-4\nu} \frac{\varphi\left(\xi\right)}{\left(1 - \left|\xi\right|^{2}\right)^{n + 1}} d\mu\left(\xi\right)$$

• This have been written as a function of the Bergman Laplacian $\Delta_{\mathbb{B}^n}$ as

$$\mathcal{B}_0^{\text{er}} = \frac{1}{\Gamma(\alpha+1)\Gamma(\alpha+n+1)} \left| \Gamma\left(\alpha+1+\frac{n}{2}+\frac{i}{2}\sqrt{-\Delta_{\mathbb{B}^n}-n^2}\right) \right|^2$$

firstly by Berezin.

The Berezin transform \mathcal{B}_0^{er}

• For m=0, this transfrom is the well known Berezin transfom attached to the weighted Bergman space $\mathcal{A}_0^{2,\nu}\left(\mathbb{B}^n\right)$ of holomorphic function ψ on \mathbb{B}^n satisfying the growth condition (*) and given by

$$\mathcal{B}_{0}^{er}\left[\varphi\right]\left(z\right) = \frac{\left(2\nu - n\right)\Gamma\left(2\nu\right)}{\pi^{n}\Gamma\left(2\nu - n + 1\right)} \int_{\mathbb{B}} \left(\cosh d\left(z, \xi\right)\right)^{-4\nu} \frac{\varphi\left(\xi\right)}{\left(1 - \left|\xi\right|^{2}\right)^{n + 1}} d\mu\left(\xi\right)$$

• This have been written as a function of the Bergman Laplacian $\Delta_{\mathbb{B}^n}$ as

$$\mathcal{B}_0^{er} = \frac{1}{\Gamma(\alpha+1)\Gamma(\alpha+n+1)} \left| \Gamma\left(\alpha+1+\frac{n}{2}+\frac{i}{2}\sqrt{-\Delta_{\mathbb{B}^n}-n^2}\right) \right|^2$$

firstly by Berezin.

• The above form, involving gamma factors, was derived by Peetre so that α there occurring in the weight of the Bergman space, corresponds to $2\nu - n - 1$.

THE BEREZIN TRANSFORMS AS FUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR

THEOREM

A. GHANMI & Z. MOUAYN HOUSTON. J. MATH 2014

The transform \mathcal{B}_{m}^{er} can be expressed as a function of the Laplace-Beltrami operator $\Delta_{\mathbb{B}^n}$ in terms of a $_3F_2$ -sum as

$$\mathcal{B}_{m}^{\text{er}} = \sum_{j=0}^{2m} C_{j}^{\nu,n,m} \frac{\Gamma\left(2\left(\nu - m\right) - \frac{1}{2}\left(n - i\sqrt{-\Delta_{\mathbb{B}^{n}} - n^{2}}\right)\right)}{\Gamma\left(2\left(\nu - m\right) + j + \frac{1}{2}\left(n + i\sqrt{-\Delta_{\mathbb{B}^{n}} - n^{2}}\right)\right)}$$

$$\times_{3}F_{2} \begin{bmatrix} \frac{1}{2}\left(n + i\sqrt{-\Delta_{\mathbb{B}^{n}} - n^{2}}\right), n + j, \frac{1}{2}\left(n + i\sqrt{-\Delta_{\mathbb{B}^{n}} - n^{2}}\right), n \\ (\nu - m) + j + \frac{1}{2}\left(n + i\sqrt{-\Delta_{\mathbb{B}^{n}} - n^{2}}\right), n \end{bmatrix} \mid 1 \end{bmatrix}$$

where

$$C_{j}^{\nu,n,m} = \frac{(2(\nu - m) - n)\Gamma(n + m)(-1)^{j}\Gamma(n + j)}{m!\Gamma(2\nu - n - m + 1)\Gamma(2\nu - n)} \times \sum_{p=\max(0,j-m)}^{\min(m,j)} \frac{(m!)^{2}\Gamma(2\nu - m)\Gamma(2\nu - m + j - p)}{(j-p)!(m+p-j)!p!(m-p)!\Gamma(n+j-p)\Gamma(n+p)}$$

• Consider the non-negative elliptic self-adjoint operator $-L_n := -\Delta_{\mathbb{B}^n} - n^2$. Then, for given suitable function $f : \mathbb{R} \longrightarrow \mathbb{R}$, the operator $f(-L_n)$ is defined by

$$f(-\Delta_{\mathbb{B}^n}-n^2)[\varphi](z)=\int_{\mathbb{B}^n}\left(\int_0^{+\infty}\Psi(z,w;\lambda)f(\lambda)d\lambda\right)\frac{\varphi(w)}{(1-|w|^2)^{n+1}}d\mu(w),$$

where the spectral kernel is given by

$$\Psi(z,w;\lambda) = \frac{|\Gamma(\frac{n+i\lambda}{2})|^4}{4\pi^{n+1}\Gamma(n)|\Gamma(i\lambda)|^2} \, {}_2F_1 \left[\begin{array}{c} \frac{n+i\lambda}{2}, \frac{n-i\lambda}{2} \\ n \end{array} \right| - \sinh^2(d(z,w)) \right]$$

• Consider the non-negative elliptic self-adjoint operator $-L_n := -\Delta_{\mathbb{B}^n} - n^2$. Then, for given suitable function $f : \mathbb{R} \longrightarrow \mathbb{R}$, the operator $f(-L_n)$ is defined by

$$f(-\Delta_{\mathbb{B}^n}-n^2)[\varphi](z)=\int_{\mathbb{B}^n}\left(\int_0^{+\infty}\Psi(z,w;\lambda)f(\lambda)d\lambda\right)\frac{\varphi(w)}{(1-|w|^2)^{n+1}}d\mu(w),$$

where the spectral kernel is given by

$$\Psi(z,w;\lambda) = \frac{|\Gamma(\frac{n+i\lambda}{2})|^4}{4\pi^{n+1}\Gamma(n)|\Gamma(i\lambda)|^2} \, {}_2F_1\left[\begin{array}{c} \frac{n+i\lambda}{2}, \frac{n-i\lambda}{2} \\ n \end{array} \right| - \sinh^2(d(z,w))\right]$$

• By equating the previous integral representation to

$$\mathcal{B}_{m}[\varphi](z) = \int_{\mathbb{B}^{n}} B_{m}(z, w) \frac{\varphi(w)}{(1 - |w|^{2})^{n+1}} d\mu(w)$$

we get

$$\int_0^{+\infty} \Psi(z, w; \lambda) f(\lambda) d\lambda = B_m(z, w).$$

• To determine the function f we use the Fourier-Jacobi transform

$$h \in L^2\left(\mathbb{R}_+, \Delta_{lpha, eta}(t) dt
ight) \longmapsto g \in L^2\left(\mathbb{R}_+, (2\pi)^{-1} \left| c_{lpha, eta}(\lambda)
ight|^{-2} d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(\alpha,\beta)}(t) \Delta_{\alpha.\beta}(t) dt.$$

• To determine the function f we use the Fourier-Jacobi transform

$$h \in L^2\left(\mathbb{R}_+, \Delta_{lpha,eta}(t)dt
ight) \longmapsto g \in L^2\left(\mathbb{R}_+, (2\pi)^{-1} \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(\alpha,\beta)}(t) \Delta_{\alpha,\beta}(t) dt.$$

$$h(t) = rac{1}{2\pi} \int_0^{+\infty} g(\lambda) \phi_{\lambda}^{(lpha,eta)}(t) \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda.$$

• To determine the function f we use the Fourier-Jacobi transform

$$h \in L^2\left(\mathbb{R}_+, \Delta_{lpha, eta}(t) dt
ight) \longmapsto g \in L^2\left(\mathbb{R}_+, (2\pi)^{-1} \left| c_{lpha, eta}(\lambda)
ight|^{-2} d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(\alpha,\beta)}(t) \Delta_{\alpha,\beta}(t) dt.$$

• Its inverse is given by

$$h(t) = rac{1}{2\pi} \int_0^{+\infty} g(\lambda) \phi_{\lambda}^{(\alpha,\beta)}(t) \left| c_{\alpha,\beta}(\lambda)
ight|^{-2} d\lambda.$$

• Upon the use of

• To determine the function f we use the Fourier-Jacobi transform

$$h \in L^2\left(\mathbb{R}_+, \Delta_{lpha, eta}(t) dt
ight) \longmapsto g \in L^2\left(\mathbb{R}_+, (2\pi)^{-1} \left| c_{lpha, eta}(\lambda)
ight|^{-2} d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(\alpha,\beta)}(t) \Delta_{\alpha.\beta}(t) dt.$$

$$h(t) = rac{1}{2\pi} \int_0^{+\infty} g(\lambda) \phi_{\lambda}^{(lpha,eta)}(t) \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda.$$

- Upon the use of
 - Explicit expressions of the different quantities

• To determine the function f we use the Fourier-Jacobi transform

$$h\in L^{2}\left(\mathbb{R}_{+},\Delta_{lpha,eta}(t)dt
ight)\longmapsto g\in L^{2}\left(\mathbb{R}_{+},(2\pi)^{-1}\left|c_{lpha,eta}(\lambda)
ight|^{-2}d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(\alpha,\beta)}(t) \Delta_{\alpha.\beta}(t) dt.$$

$$h(t) = rac{1}{2\pi} \int_0^{+\infty} g(\lambda) \phi_{\lambda}^{(lpha,eta)}(t) \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda.$$

- Upon the use of
 - Explicit expressions of the different quantities
 - Appropriate change of variables

• To determine the function f we use the Fourier-Jacobi transform

$$h \in L^2\left(\mathbb{R}_+, \Delta_{lpha,eta}(t)dt
ight) \longmapsto g \in L^2\left(\mathbb{R}_+, (2\pi)^{-1} \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(\alpha,\beta)}(t) \Delta_{\alpha.\beta}(t) dt.$$

$$h(t) = rac{1}{2\pi} \int_0^{+\infty} g(\lambda) \phi_{\lambda}^{(lpha,eta)}(t) \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda.$$

- Upon the use of
 - Explicit expressions of the different quantities
 - Appropriate change of variables
 - A special formula of the product of two Jacobi polynomials

• To determine the function f we use the Fourier-Jacobi transform

$$h \in L^2\left(\mathbb{R}_+, \Delta_{lpha,eta}(t)dt
ight) \longmapsto g \in L^2\left(\mathbb{R}_+, (2\pi)^{-1} \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda
ight)$$

defined by

$$g(\lambda) = \int_0^{+\infty} h(t) \phi_{\lambda}^{(lpha,eta)}(t) \Delta_{lpha,eta}(t) dt.$$

$$h(t) = rac{1}{2\pi} \int_0^{+\infty} g(\lambda) \phi_{\lambda}^{(lpha,eta)}(t) \left| c_{lpha,eta}(\lambda)
ight|^{-2} d\lambda.$$

- Upon the use of
 - Explicit expressions of the different quantities
 - Appropriate change of variables
 - A special formula of the product of two Jacobi polynomials
 - \bullet A special integral representation for the ${}_{2}F_{1}$ -sum,

• we arrive at

$$f(\lambda) = \frac{(2(\nu - m) - n)\Gamma(n + m)}{m!\Gamma(2\nu - (n + m) + 1)\Gamma(2\nu - m)} \sum_{j=0}^{2m} (-2)^{j} A_{j} \times \mathcal{B}\left(n + j, \frac{i\lambda - n}{2} + 2(\nu - m)\right) {}_{3}F_{2}\left[\begin{array}{c} \frac{n + i\lambda}{2}, n + j, \frac{n + i\lambda}{2} \\ \frac{n + i\lambda}{2} + 2(\nu - m) + j, n \end{array} \middle| 1 \right].$$

we arrive at

$$f(\lambda) = \frac{(2(\nu - m) - n)\Gamma(n + m)}{m!\Gamma(2\nu - (n + m) + 1)\Gamma(2\nu - m)} \sum_{j=0}^{2m} (-2)^{j} A_{j} \times \mathcal{B}\left(n + j, \frac{i\lambda - n}{2} + 2(\nu - m)\right) {}_{3}F_{2}\left[\begin{array}{c} \frac{n + i\lambda}{2}, n + j, \frac{n + i\lambda}{2} \\ \frac{n + i\lambda}{2} + 2(\nu - m) + j, n \end{array} \middle| 1 \right].$$

• Replacing λ by $\sqrt{-\Delta_{\mathbb{B}^n} - n^2}$ and expressing the Beta function in terms of Gamma functions we obtain the announced formula.

THEOREM A. BOUSSEJRA AND Z. MOUAYN (TO APPEAR IN MOSCOW J. MATH)

The Berezin transform \mathcal{B}_m^{er} can be expressed as a function of the Laplace-Beltrami operator $\Delta_{\mathbb{B}^n}$ as

$$\mathcal{B}_{m}^{er} = \left| \Gamma \left(2 \left(\nu - m \right) - \frac{n}{2} + \frac{i}{2} \sqrt{-\Delta_{\mathbb{B}^{n}} - n^{2}} \right) \right|^{2}$$

$$\times \sum_{k=0}^{2m} \gamma_{k}^{\nu, n, m} W_{k} \left(\frac{-1}{4} \Delta_{\mathbb{B}^{n}} - \frac{n^{2}}{4}; 2 \left(\nu - m \right) - \frac{n}{2}, 1 + \frac{n}{2}, \frac{n}{2}, \frac{n}{2} \right)$$

where W_k (.) are Wilson polynomials,

$$\gamma_{k}^{\nu,n,m} = \frac{2n! \, m! \, \Gamma\left(n\right) \left(2 \left(\nu - m\right) - n\right) \, \Gamma\left(2\nu - m\right) \left(-1\right)^{k} \times A_{k}^{\nu,n,m}}{\pi^{n} \Gamma\left(n + m\right) \, \Gamma\left(2\nu - m - n + 1\right) \, k! \, \Gamma^{2}\left(2 \left(\nu - m\right) + k\right)}$$

and $A_k^{\nu,n,m}$ are some coefficients.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の Q (~)

• Making appeal to an automorphism $g_z \in Aut(\mathbb{B}^n)$ such that $g_z.0 = z \in \mathbb{B}^n$ and expressing the distances occurring in the formula

$$\cosh^{-2} d(z,\xi) = 1 - |g_z^{-1}.\xi|^2, \tanh^2 d(z,\xi) = |g_z^{-1}.\xi|^2.$$

we get the integral transform

$$\mathcal{B}_{m}^{er}\left[\varphi\right]\left(z\right)=c_{m}^{\nu,n}\int_{\mathbb{B}^{n}}\frac{\left(P_{m}^{\left(n-1,2\left(\nu-m\right)-n\right)}\left(1-2\left|g_{z}^{-1}.\xi\right|^{2}\right)\right)^{2}}{\left(1-\left|g_{z}^{-1}.\xi\right|^{2}\right)^{-2\left(\nu-m\right)}}\varphi\left(\xi\right)\frac{d\mu\left(\xi\right)}{\left(1-\left|\xi\right|^{2}\right)^{n+1}}$$

which can be viewed as "convolution product" of the φ with the radial function

$$h_m^{\nu,n}(\xi):=\left(1-\left|\xi\right|^2\right)^{2(\nu-m)}\left(P_m^{(n-1,2(\nu-m)-n)}\left(1-2\left|\xi\right|^2\right)\right)^2,\xi\in\mathbb{B}^n.$$

• We have to calculate the Fourier-Helgason transform of $h_m^{\nu,n}(\xi)$, which reads

$$\mathfrak{F}^{H}\left[h_{m}^{\nu,n}\right](\lambda,\omega):=\int_{\mathbb{B}^{n}}h_{m}^{\nu,n}\left(\xi\right)\overline{P_{\lambda}\left(\xi,\omega\right)}\frac{d\mu\left(\xi\right)}{\left(1-\left|\xi\right|^{2}\right)^{n+1}},\quad\left(\lambda,\omega\right)\in\mathbb{R}\times\partial\mathbb{B}^{n},$$

where $P_{\lambda}(.,.)$ is the Poisson kernel

$$P_{\lambda}\left(\xi,\omega\right) = \left(\frac{1-\left|\xi\right|^{2}}{\left|1-\left\langle\xi,\omega\right\rangle\right|^{2}}\right)^{(n+i\lambda)/2}, \left(\xi,\omega\right) \in \mathbb{B}^{n} \times \partial \mathbb{B}^{n}$$

• We have to calculate the Fourier-Helgason transform of $h_m^{\nu,n}(\xi)$, which reads

$$\mathfrak{F}^{H}\left[h_{m}^{\nu,n}\right](\lambda,\omega):=\int_{\mathbb{B}^{n}}h_{m}^{\nu,n}\left(\xi\right)\overline{P_{\lambda}\left(\xi,\omega\right)}\frac{d\mu\left(\xi\right)}{\left(1-\left|\xi\right|^{2}\right)^{n+1}},\quad\left(\lambda,\omega\right)\in\mathbb{R}\times\partial\mathbb{B}^{n},$$

where $P_{\lambda}(.,.)$ is the Poisson kernel

$$P_{\lambda}\left(\xi,\omega\right) = \left(\frac{1-\left|\xi\right|^{2}}{\left|1-\left\langle\xi,\omega\right\rangle\right|^{2}}\right)^{(n+i\lambda)/2}, (\xi,\omega) \in \mathbb{B}^{n} \times \partial \mathbb{B}^{n}$$

• Denote by $d\sigma$ the Lebesgue (surface) measure on $\partial \mathbb{B}^n$ and set $\xi = \rho \theta$ with $0 < \rho < 1$, $\theta \in \partial \mathbb{B}^n$, and use polar coordinates

$$\int_{\mathbb{B}^{n}}\Phi\left(\xi\right)d\mu\left(\xi\right)=2n\int_{0}^{1}\rho^{2n-1}d\rho\int_{\partial\mathbb{B}^{n}}\Phi\left(\rho\theta\right)d\sigma\left(\theta\right).$$

• Then, the integral $\mathfrak{F}^H \left[h_m^{\nu,n} \right] (\lambda)$ takes the form

$$\mathfrak{F}^{H}\left[h_{m}^{\nu,n}\right]\left(\lambda\right)=2n\int_{0}^{1}\frac{\rho^{2n-1}\overline{\mathcal{S}_{\lambda,\omega}^{n}\left(\rho\right)}}{\left(1-\rho^{2}\right)^{n+1-2\left(\nu-m\right)}}\left(P_{m}^{(n-1,2\left(\nu-m\right)-n\right)}\left(1-2\rho^{2}\right)\right)^{2}d\rho$$

• Then, the integral $\mathfrak{F}^H [h_m^{\nu,n}](\lambda)$ takes the form

$$\mathfrak{F}^{H}\left[h_{m}^{\nu,n}\right](\lambda)=2n\int_{0}^{1}\frac{\rho^{2n-1}\overline{\mathcal{S}_{\lambda,\omega}^{n}\left(\rho\right)}}{\left(1-\rho^{2}\right)^{n+1-2\left(\nu-m\right)}}\left(P_{m}^{(n-1,2\left(\nu-m\right)-n\right)}\left(1-2\rho^{2}\right)\right)^{2}d\rho$$

• After calculations using many transformations, we get

$$\mathfrak{F}^{H} \left[h_{m}^{\nu,n} \right] (\lambda, \omega) = 2n \int_{0}^{1} \frac{\rho^{2n-1}}{\left(1 - \rho^{2} \right)^{n+1-2(\nu-m)}} \left(P_{m}^{(n-1,2(\nu-m)-n)} \left(1 - 2\rho^{2} \right) \right)^{2} \times_{2} F_{1} \left(\frac{n+i\lambda}{2}, \frac{n-i\lambda}{2}, n; \frac{\rho^{2}}{\rho^{2}-1} \right) d\rho$$

Linearization of the square of Jacobi polynomial as a Clebsh-Gordon type formula (Chaggara, H. and Koepf, W, *App. Math. Lett.* 2010):

$$P_s^{(\kappa,\epsilon)}(u) P_l^{(\tau,\eta)}(u) = \sum_{k=0}^{s+l} A_{s,l}(k) P_k^{(\alpha,\delta)}(u)$$

In our setting, the linearization coefficients $A_{s,l}(k)$ are of the form

$$A_{k}^{\nu,n,m} = \frac{(2(\nu-m)+n)_{k}(n)_{2m}(2k+2(\nu-m)+n)(-1)^{k}(2m)!((2(\nu-m))_{2m})^{2}}{(n)_{k}(2(\nu-m)+n)_{2m+k+1}(m!)^{2}(2m-k)!((2(\nu-m))_{m})^{2}} \times F_{2:1}^{2:2} \begin{pmatrix} -2m+k, -2\nu-k-n: -m, -n-m+1; -m, -m-n+1\\ -2m, -2m-n+1: 1-2\nu, 1-2\nu \end{pmatrix} \begin{vmatrix} 1,1 \end{vmatrix}$$

Here $F_{l:l'}^{p:p'}$ (.) denotes the Kampé de Fériet double hypergeometric function :

$$F_{l:l'}^{p:p'}\left(\begin{array}{c} (a_p):(b_{p'}),(c_{p'})\\ (d_l):(\kappa_{l'}),(\varrho_{l'}) \end{array} \middle| x,y \right) = \sum_{q,s=0}^{+\infty} \frac{[a_p]_{q+s} [b_{p'}]_q [c_{p'}]_s}{[d_l]_{q+s} [\kappa_{l'}]_q [\varrho_{l'}]_s} \frac{\chi^q}{q!} \frac{y^s}{s!}$$

where $[a_p]_s = \prod_{j=1}^p (a_j)_s$ in which $(x)_s = x(x+1)...(x+s-1)$ is the Pochhammer symbol.

4 = 3 + 4 = 3 + 4 = 3 +

Inserting

$$\left(P_m^{(n-1,2(\nu-m)-n)}\left(1-2\rho^2\right)\right)^2 = \sum_{k=0}^{2m} A_k^{\nu,n,m} P_k^{(n-1,2(\nu-m))}\left(1-2\rho^2\right)$$

into

$$\mathfrak{F}^{H}\left[h_{m}^{\nu,n}\right](\lambda) = \sum_{k=0}^{2m} A_{k}^{\nu,n,m} \mathfrak{I}_{k}^{\nu,n,m}(\lambda)$$

where the last term in this sum is

$$\mathfrak{I}_{k}^{\nu,m}(\lambda) = \int_{0}^{1} \frac{2n\rho^{2n-1}}{(1-\rho^{2})^{n+1-2(\nu-m)}} P_{k}^{(n-1,2(\nu-m))} (1-2\rho^{2})$$
$$\times_{2} F_{1}\left(\frac{1}{2}(n+i\lambda), \frac{1}{2}(n-i\lambda), n; \frac{\rho^{2}}{\rho^{2}-1}\right) d\rho.$$

By the change of variable $\rho = \tanh t$,

$$\mathfrak{I}_{k}^{\nu,m}(\lambda) = \int_{0}^{+\infty} 2n(\sinh t)^{2n-1} P_{k}^{(n-1,2(\nu-m))} \left(1 - 2\tanh^{2} t\right) \\ \times (\cosh t)^{-4(\nu-m)+1} ._{2}F_{1}\left(\frac{n+i\lambda}{2}, \frac{n-i\lambda}{2}, n; -\sinh^{2} t\right) dt.$$

Using the result established (Koorwinder, Lecture Notes in Math. 1985):

$$\int_{0}^{+\infty} (\cosh t)^{-\alpha+\beta-\delta-\mu'-1} (\sinh t)^{2\alpha+1} P_{k}^{(\alpha,\delta)} \left(1 - 2 \tanh^{2} t\right)$$

$$\times_{2} F_{1} \left(\frac{\alpha+\beta+1+i\lambda}{2}, \frac{\alpha+\beta+1-i\lambda}{2}, \alpha+1; -\sinh^{2} t\right) dt$$

$$= \frac{\Gamma(\alpha+1)(-1)^{k} \Gamma\left(\frac{1}{2}(\delta+\mu'+1+i\lambda)\right) \Gamma\left(\frac{1}{2}(\delta+\mu'+1-i\lambda)\right)}{k! \Gamma\left(\frac{1}{2}(\alpha+\beta+\delta+\mu'+2)+k\right) \Gamma\left(\frac{1}{2}(\alpha-\beta+\delta+\mu'+2)+k\right)}$$

$$\times W_{k} \left(\frac{1}{4}\lambda^{2}; \frac{1}{2}(\delta+\mu'+1), \frac{1}{2}(\delta-\mu'+1), \frac{1}{2}(\alpha+\beta+1), \frac{1}{2}(\alpha-\beta+1)\right)$$

where $\beta, \delta, \lambda \in \mathbb{R}$, $\alpha, \delta > -1$, $\delta + \Re(\mu)' > -1$ and W_k (.) is the Wilson polynomial given in terms of the ${}_4F_3$ -sum as:

$$W_k(x^2, a, b, c, d) := (a+b)_k (a+c)_k (a+d)_k$$
 $\times_4 F_3\begin{pmatrix} -k, k+a+b+c+d-1, a+ix, a-ix \\ a+b, a+c, a+d \end{pmatrix} 1$

↓□▶ ←□▶ ← □▶ ← □▶ → □ ♥ へ○

For the special values $\alpha = n - 1$, $\delta = 2(\nu - m) - n$, $\beta = 0$ and $\mu' = 2(\nu - m) - n - 1$, we find that

$$\mathfrak{I}_{k}^{\nu,m}(\lambda) = \frac{2n\Gamma(n)(-1)^{k}}{k!\Gamma^{2}(2(\nu-m)+k)} \left| \Gamma\left(2(\nu-m)-\frac{n}{2}+i\frac{\lambda}{2}\right) \right|^{2} \times W_{k}\left(\frac{1}{4}\lambda^{2}; 2(\nu-m)-\frac{n}{2}, 1+\frac{n}{2}, \frac{n}{2}, \frac{n}{2}\right)$$

Finally, replacing λ by $\sqrt{-\Delta_{\mathbb{B}^n} - n^2}$, we arrive at the announced result.

- $X = \mathbb{CP}^n$
- $d\mu_n = (1+\langle z,z\rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{C}^n .

- $X = \mathbb{CP}^n$
- $d\mu_n = (1+\langle z,z\rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{C}^n .
- The Schrödinger operator with ν -magnetic field on \mathbb{CP}^n

$$H_{\nu} = 4(1+|z|^2)(\sum_{i,j=1}^{n} (\delta_{ij} + z_i \overline{z_j}) \partial_j \overline{\partial}_j + \nu \sum_{j=1}^{n} (z_j \partial_j - \overline{z_j} \overline{\partial}_j) - \nu^2) + 4\nu^2$$

provided that $2\nu \in \mathbb{Z}^+$. The notations $\partial_j = \partial/\partial z_j$ and $\overline{\partial}_j = \partial/\partial \overline{z_j}$.

- $X = \mathbb{CP}^n$
- $d\mu_n = (1+\langle z,z\rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{C}^n .
- The Schrödinger operator with ν -magnetic field on \mathbb{CP}^n

$$H_{
u} = 4(1+\left|z\right|^2)(\sum_{i,j=1}^n\left(\delta_{ij}+z_i\overline{z_j}\right)\partial_j\overline{\partial}_j +
u\sum_{j=1}^n(z_j\partial_j-\overline{z_j}\overline{\partial}_j) -
u^2) + 4
u^2$$

provided that $2\nu \in \mathbb{Z}^+$. The notations $\partial_j = \partial/\partial z_j$ and $\overline{\partial}_j = \partial/\partial \overline{z_j}$.

• H_{ν} is an elliptic densely defined operator on $L^2(\mathbb{C}^n, d\mu_n)$ admitting a unique self-adjoint realization also denoted by H_{ν} .

- $X = \mathbb{CP}^n$
- $d\mu_n = (1+\langle z,z\rangle)^{-n-1} d\mu$, $d\mu$: Lebesgue measure on \mathbb{C}^n .
- The Schrödinger operator with ν -magnetic field on \mathbb{CP}^n

$$H_{
u} = 4(1+\left|z
ight|^2)(\sum_{i,j=1}^n\left(\delta_{ij}+z_i\overline{z_j}
ight)\partial_j\overline{\partial}_j +
u\sum_{j=1}^n(z_j\partial_j-\overline{z_j}\overline{\partial}_j) -
u^2) + 4
u^2$$

provided that $2\nu \in \mathbb{Z}^+$. The notations $\partial_j = \partial/\partial z_j$ and $\overline{\partial}_j = \partial/\partial \overline{z_j}$.

- H_{ν} is an elliptic densely defined operator on $L^2(\mathbb{C}^n, d\mu_n)$ admitting a unique self-adjoint realization also denoted by H_{ν} .
- The associated discrete spectrum

$$\epsilon_m^{\nu,n} = -4\nu(m+\nu)(m+\nu+n) + 4\nu^2, \ m=0,1,2,...,\infty$$

called spherical Landau levels on \mathbb{CP}^n .

THE EIGENSPACES $\mathcal{A}_{m}^{\nu}\left(\mathbb{CP}^{n}\right)$

• The corresponding eigenspaces

$$A^{\nu}_m(\mathbb{CP}^n)=\{F:\mathbb{C}^n\to\mathbb{C},\ \Delta_{\nu}F=\epsilon^{\nu,n}_mF\ \text{and}\ \sup_{\rho>0}\int\limits_{\mathbb{S}^{2n}-1}|F(\rho z)|^2d\mu<+\infty\}$$

• Any function F(z) in $\mathcal{A}_{m}^{\nu}(\mathbb{CP}^{n})$ can be written in the form

$$F(z) = \left(1 + |z|^2\right)^{-(m+\nu)} \sum_{0 \le p \le m; 0 \le q \le m+2\nu} {}_{2}F_{1}\left(p - m, q - m - 2\nu, n + p + q; -|z|^2\right) h_{p,q}(z)$$

 $_2F_1$ is the Gauss hypergeometric function and

$$\lim_{r\to\infty} F(r\omega) = \sum_{0\le p\le m} (-1)^{m-p} \frac{\Gamma(m-p+1)\Gamma(n+2p+2\nu)}{\Gamma(m+n+p+2\nu)} h_{p,p+2\nu}(\omega,\overline{\omega})$$

for $z = z\omega, \ r > 0, \omega \in \mathbb{S}^{2n-1}$ and $h_{p,q}(z,\bar{z}) \in \mathcal{H}(p,q)$.

• The dimension of $\mathcal{A}_m^{\nu}(\mathbb{CP}^n)$ is

$$\textit{dim}(\mathcal{A}^{\nu}_{m}(\mathbb{CP}^{n})):=(2m+n+2\nu)\frac{\Gamma(m+n)\Gamma(m+n+2\nu)}{n\Gamma^{2}(n)\Gamma(m+1)\Gamma(m+2\nu+1)}$$

A set of coherent states $\{|z, m angle\}_{z\in\mathbb{C}^n}$

$$\mid z,m> = (\mathcal{N}_{m}(z))^{-\frac{1}{2}} \sum_{\substack{1 \leq j \leq d(n,p,q) \\ 0 \leq q \leq m+2\nu, 0 \leq p < m}} \overline{\Phi_{j,p,q}^{m}(z)} \mid \varphi_{j,p,q} \rangle$$

A set of coherent states $\{|z, m\rangle\}_{z\in\mathbb{C}^n}$

• For m = 0, 1, 2, ..., a class of generalized coherent states is defined by

$$\mid z,m>=(\mathcal{N}_{m}(z))^{-\frac{1}{2}}\sum_{\substack{1\leq j\leq d(n,p,q)\\0\leq q\leq m+2\nu,0\leq p< m}}\overline{\Phi_{j,p,q}^{m}(z)}\mid\varphi_{j,p,q}\rangle$$

• $\Phi^m_{j,p,q}(z)$: orthonormal basis of $\mathcal{A}^{\nu}_m(\mathbb{CP}^n)$

A set of coherent states $\{|z, m\rangle\}_{z\in\mathbb{C}^n}$

$$\mid z,m>=(\mathcal{N}_{m}(z))^{-\frac{1}{2}}\sum_{\substack{1\leq j\leq d(n,p,q)\\0\leq q\leq m+2\nu,0\leq p< m}}\overline{\Phi_{j,p,q}^{m}(z)}\mid\varphi_{j,p,q}\rangle$$

- $\Phi_{i,p,q}^m(z)$: orthonormal basis of $\mathcal{A}_m^{\nu}(\mathbb{CP}^n)$
- $|\varphi_{i,p,q}\rangle$: orthonormal basis of another (functional) Hilbert space \mathcal{H}

A set of coherent states $\{|z, m\rangle\}_{z\in\mathbb{C}^n}$

$$\mid z,m>=(\mathcal{N}_{m}(z))^{-\frac{1}{2}}\sum_{\substack{1\leq j\leq d(n,p,q)\\0\leq q\leq m+2\nu,0\leq p< m}}\overline{\Phi_{j,p,q}^{m}(z)}\mid\varphi_{j,p,q}\rangle$$

- $\Phi_{i,p,q}^m(z)$: orthonormal basis of $\mathcal{A}_m^{\nu}(\mathbb{CP}^n)$
- $|\varphi_{i,p,q}\rangle$: orthonormal basis of another (functional) Hilbert space \mathcal{H}
- dim $\mathcal{H} = \dim A_m^2(\mathbb{C}^n)$

A set of coherent states $\{|z,m\rangle\}_{z\in\mathbb{C}^n}$

$$\mid z,m> = (\mathcal{N}_m(z))^{-\frac{1}{2}} \sum_{\substack{1 \leq j \leq d(n,p,q) \\ 0 \leq q \leq m+2\nu, 0 \leq p < m}} \overline{\Phi_{j,p,q}^m(z)} \mid \varphi_{j,p,q} \rangle$$

- $\Phi_{i,p,q}^m(z)$: orthonormal basis of $\mathcal{A}_m^{\nu}(\mathbb{CP}^n)$
- $|\varphi_{j,p,q}\rangle$: orthonormal basis of another (functional) Hilbert space \mathcal{H}
- dim $\mathcal{H} = \dim A_m^2(\mathbb{C}^n)$
- $\mathcal{N}_m(z)$ is a normalization factor such that $\langle z, m|z, m\rangle_{\mathcal{H}} = 1$:

$$\mathcal{N}_m(z) = \frac{2(2m+2\nu+n)\Gamma(m+n+2\nu)}{Vol(\mathbb{S}^{2n-1})\Gamma(m+2\nu+1)} \frac{\Gamma(m+n)}{\Gamma(m+1)(\Gamma(n))^2}$$

A set of coherent states $\{|z,m\rangle\}_{z\in\mathbb{C}^n}$

• For m = 0, 1, 2, ..., a class of generalized coherent states is defined by

$$\mid z,m> = (\mathcal{N}_m(z))^{-\frac{1}{2}} \sum_{\substack{1 \leq j \leq d(n,p,q) \\ 0 \leq q \leq m+2\nu, 0 \leq p < m}} \overline{\Phi^m_{j,p,q}(z)} \mid \varphi_{j,p,q} \rangle$$

- $\Phi_{i,p,q}^m(z)$: orthonormal basis of $\mathcal{A}_m^{\nu}(\mathbb{CP}^n)$
- $|\varphi_{j,p,q}\rangle$: orthonormal basis of another (functional) Hilbert space \mathcal{H}
- dim $\mathcal{H} = \dim A_m^2(\mathbb{C}^n)$
- $\mathcal{N}_m(z)$ is a normalization factor such that $\langle z, m|z, m\rangle_{\mathcal{H}} = 1$:

$$\mathcal{N}_m(z) = \frac{2(2m+2\nu+n)\Gamma(m+n+2\nu)}{Vol(\mathbb{S}^{2n-1})\Gamma(m+2\nu+1)} \frac{\Gamma(m+n)}{\Gamma(m+1)(\Gamma(n))^2}$$

• The CS satisfy the resolution of the identity

$$\mathbf{1}_{\mathcal{H}} = \int_{\mathbb{C}^n} |z, m\rangle \langle z, m| \mathcal{N}_m(z) d\mu_n(z)$$

The overlap integral between two CS in \mathbb{C}^n

This quantity is defined by

$$\langle z, m | w, m \rangle = \left(\mathcal{N}_m(z) \mathcal{N}_m(w) \right)^{-\frac{1}{2}} \sum_{\substack{1 \leq j \leq d(n, p, q) \\ 0 \leq q \leq m + 2\nu, 0 \leq p < m}} \Phi_{j, p, q}^m(z) \overline{\Phi_{j, p, q}^m(w)}$$

$$=\frac{2(2m+2\nu+n)\Gamma(m+n+2\nu)}{Vol(\mathbb{S}^{2n-1})\Gamma(n)\Gamma(m+2\nu+1)}\left[\frac{|1+\langle z|w\rangle|^2}{(1+|z|^2)(1+|w|^2)}\right]^{\nu}P_n^{(n-1,2\nu)}(\cos 2d(z,w)),$$

where $d(z,\omega)$ is the Fubini-Study distance given by

$$\cos^2 d(z, w) = \frac{|1 + \langle z, w \rangle|^2}{(1 + |z|^2)(1 + |w|^2)}$$

CS QUANTIZATION AND BEREZIN TRANSFORM

• For any $\varphi \in L^2(\mathbb{C}^n, d\mu_n)$, the operator-valued integral

$$\varphi \mapsto A_{\varphi} := \int_{\mathbb{C}^n} |z, \nu, m\rangle \langle z, \nu, m| \, \varphi(z) \, \mathcal{N}_m(z) \, d\mu_n(z)$$

The function $\varphi(z)$ is a upper symbol of the operator A_{φ} .

CS QUANTIZATION AND BEREZIN TRANSFORM

• For any $\varphi \in L^2(\mathbb{C}^n, d\mu_n)$, the operator-valued integral

$$\varphi \mapsto A_{\varphi} := \int_{\mathbb{C}^n} |z, \nu, m\rangle \langle z, \nu, m| \, \varphi(z) \, \mathcal{N}_m(z) \, d\mu_n(z)$$

The function $\varphi(z)$ is a upper symbol of the operator A_{φ} .

• The Berezin transform is defined as the expectation value

$$\mathcal{B}_{m}^{\text{er}}\left[\varphi\right]\left(z\right)\equiv\mathbb{E}_{\left\{\left|z,\nu,m\right\rangle\right\}}\left(A_{\varphi}\right)=\left\langle z,\nu,m\right|A_{\varphi}\left|z,\nu,m\right\rangle \quad (\textit{lower symbol of }A_{\varphi}).$$

• Using the overlap integral between two CS, we obtain:

$$\mathcal{B}_{m}[\varphi](z) = c_{m}^{\nu,n} \int_{\mathbb{C}^{n}} \left(\frac{|1+\langle z,w \rangle|^{2}}{(1+|z|^{2})(1+|w|^{2})} \right)^{2\nu} \left(P_{m}^{(n-1,2\nu)}(\cos 2d(z,w)) \right)^{2} \varphi(w) d\mu_{n}(w)$$

with

$$c_m^{\nu,n} = \frac{2(m+2\nu+n)(m+2\nu+n-1)}{\pi^n(m+2\nu)!}$$

THE BEREZIN TRANSFORMS AS FUNCTIONS OF \triangle_{FS}

THEOREM

Preprint, N.Demni, Z.Mouayn and H.Yaqine, 2016

$$f(\lambda_k) = 4\pi(n)_{2B} \frac{(2B+m)!}{(m!(2B)!)^2} (m+2B+n)(m+2B+n-1)$$

$$\frac{(-2B)_k k!}{(n)_k (n+k)_{2B} (n+k-1)!} \sum_{j=0}^m \frac{(-m)_j (2B+m+n)_j (n)_j}{j! (2B-k+1)_j (2B+k+1+n)_j}$$

$${}_4F_3 \left(\begin{array}{c} -m, \ 2B+m+n, \ 2B+1+j, \ n+j \\ 2B-k+1+j, 2B+k+1+n+j, 2B+1 \end{array} \right) 1$$

ZOUHAÏR MOUAYN (MOROCCO)

ON THE PROOF

• The Berezin kernel

$$B_m(z, w) = c_m^{\nu, n} \left(\cos^2 d(z, w)\right)^{2\nu} \left(P_m^{(n-1, 2\nu)}(\cos^2 d(z, w))\right)^2$$

• The kernel of $f(-\triangle_{FS})$:

$$K(z, w) = \sum_{k=0}^{+\infty} f(\lambda_k) \psi_n(k; z, w), \ \lambda_k = k(k+n)$$
 eigenvalues of $-\triangle_{FS}$

• The spectral function

$$\psi_n(k;z,w) = \frac{d(k,n+1)}{Vol(\mathbb{S}^{2n+1})} \frac{P_k^{(n-1,0)}(2|\langle z,w\rangle|^2-1)}{P_k^{(n-1,0)}(1)}$$

- *f* : the unknown function?
- By equating $B_m(z, w) = K(z, w)$

←□→ ←□→ ← □→ □ ● ♥ へ ○

• Next, we identify with the formula

$$\begin{split} t^{\mu}P_{m_{1}}^{(\alpha_{1},\beta_{1})}(1-2x_{1}t)P_{m_{2}}^{(\alpha_{2},\beta_{2})}(1-2x_{2}t) \\ &= (\alpha+1)_{\mu}\binom{\alpha_{1}+m_{1}}{m_{1}}\binom{\alpha_{2}+m_{2}}{m_{2}}\sum_{k=0}^{+\infty}\frac{(\alpha+\beta+2k+1)(-\mu)_{k}}{(\alpha+1)_{k}(\alpha+\beta+k+1)_{\mu+1}}P_{k}^{(\alpha,\beta)}(1-2t) \\ &F_{2:1,1}^{2:2,2}\begin{bmatrix} \mu+1,\ \alpha+1:-m_{1},\alpha_{1}+\beta_{1}+m_{1}+1,-m_{2},\alpha_{2}+\beta_{2}+m_{2}+1\\ \mu-k+1,&\alpha+\beta+\mu+2+k:&\alpha_{1}+1,&\alpha_{2}+1 \end{bmatrix}x_{1},x_{2} \end{split}$$

References:

- Srivastava, H. M. (Oct. 1987). Some Clebsch-Gordan type linearization relations and other polynomial expansions associated with a class of generalized multiple hypergeometric series arising in physical and quantum chemical applications.
- After isolating the $\psi_n(k, z, w)$ part in this formla and calculations, we arrive at $f(\lambda_k)$

The Berezin transform \mathcal{B}_0^{er} on \mathbb{CP}^1

A set of coherent states

$$\phi_{Z,\nu,m}(\xi) = \sqrt{\frac{(2\nu + 2m)!}{(2\nu + m)!m!}} \left(\frac{(\xi - \overline{z})(1 + z\xi)}{1 + z\overline{z}}\right)^m \left(\frac{(1 + z\xi)^2}{1 + z\overline{z}}\right)^{\nu}$$

• For lowest Landau level m = 0

$$\phi_{z,\nu,0}\left(\xi\right) = \left(\frac{(1+z\xi)^2}{1+z\overline{z}}\right)^{\nu} \text{ in } L^2(\mathbb{C},(1+z\overline{z})^{-2\nu}d\mu_1(z))$$

- Use $\phi \mapsto (1+z\overline{e})^{-\nu}\phi$ then $\tilde{\phi}_{z,\nu,0}(\xi) = (1+z\zeta)^{2\nu}$ in $L^2(\mathbb{C},d\mu_1(z))$
- The Laplace-Beltrami operator $\Delta:=-\left(1+z\overline{z}\right)^2 rac{\partial^2}{\partial z\partial\overline{z}}$

$$\mathfrak{B}_{0}^{1/\hbar} = \prod_{n=1}^{+\infty} \left(1 + \nu^{-2} \frac{\Delta}{\left(1 + n\nu^{-1} \right) \left(1 + (n+1)\nu^{-1} \right)} \right)$$

here $1/\hbar = 2\nu$.

Some references:

- Z. Mouayn 2009, Coherent states attached to the spectrum of the Bochner Laplacian for the Hopf fibration, Journal of Geometry and Physics.
- F. A. Berezin 1975, General concept of quantization, Comm. Math. Phys.

SOME REFERENCES

- Abreu L. D., Bolazs P., de Gosson M., Mouayn Z.: Discrete coherent states for higher Landau levels, Annal of Physics (2015)
- Mouayn Z.: Polyanalytic relativistic second Bargmann transformation, Journal of Mathematical Physics (2015)
- Mouayn Z.: Discrete Bargmann transforms attached to Landau levels on the Riemann sphere, Annals Henri Poincaré (2015)
- Mouayn Z.: Husimi's Q-function for the isotonic oscillator in a generalized negative binomial states representation, Mathematical Physics, Analysis & Geometry (2014)
- Mouayn Z.: Une famille de transformation de Bargmann circulaires, C. R. Acad. Sci. Paris, Série I. 350, 1017-1022 (2012).
- Mouayn Z.: Resolution of the identity of the classical Hardy space by means of Barut-Girardello coherent states, ISRN Mathematical Physics, Article ID 530473 (2012).
- Mouayn Z.: Phase coherent states with circular Jacobi polynomials for the pseudoharmonic oscillator, Journal of Mathematical Physics 53 (2012).
- Mouayn Z.: A new class of coherent states with Meixner-Pollaczek polynomials for the Gol'dman-Krivchenkov Hamiltonian, Journal of Physics. A: Mathematical & Theoretical 43 (29) 295201 (2010).
- Mouayn Z.: A Generating function for Hermite polynomials associated with Euclidean Landau levels, Theoretical and Mathematical Physics 165 (2) (2010).

- Mouayn Z.: Coherent states attached to the spectrum of the Bochner Laplacian for the Hopf fibration, Journal of Geometry and Physics 59, Issue 2,(2009).
- Mouayn Z.: An integral transform connecting spaces of hyperbolic Landau states with a class of weighted Bergman spaces, Complex Variables and Elliptic Equations 53, Issue 12 (2008).
- Mouayn Z.: Decomposition of magnetic Berezin transforms on the Euclidean complex space Cn, Integral Transforms and Special Functions 19 Issue 12 (2008).
- Mouayn Z.: Flensted-Jensen's functions attached to the Landau problem on the hyperbolic disc, Applications of Mathematics 52 (2) (2007).
- Mouayn Z.: Coherent states attached to Landau levels on the Poincaré disc, Journal of Physics A: Mathematical and General 38 (2005).
- Mouayn Z.: Poisson integral representation of some eigenfunctions of Landau Hamiltonian on the hyperbolic disc, Bulletin of the Belgian Mathematical Society -Simon Stevin 12, pp. 249-257 (2005).
- Mouayn Z.: Coherent states attached to Landau levels on the Riemann sphere, Reports on Mathematical Physics 55 (2) pp. 269-276 (2005)
- Mouayn Z., Characterization of two-dimensional Euclidean Landau states by coherent state transforms, Journal of Physics A: Mathematical and General 37 (2004)
- Mouayn Z., Characterization of hyperbolic Landau states by coherent state transforms, Journal of Physics A: Mathematical and General 36 (2003)

SPECIAL THANKS