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GLAUBER (1951)

@ CS as eigenstates of the annihilation operator a

az>=2z|z>,zeC
it is defined by
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COHERENT STATES FOR THE HARMONIC OSCILLATOR: |Z>

GLAUBER (1951)

@ CS as eigenstates of the annihilation operator a

az>=2z|z>,zeC

it is defined by

a— —_(%+p)
-7 :

@ it is conjugate a*, the creation operator,
1 .~ =
a = —=(x—ip)

V2

X and p are the position and momentum operators.
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GLAUBER (1951)

@ CS as eigenstates of the annihilation operator a

az>=2z|z>,zeC

it is defined by
1 s . =
a=—=(X+ip),

V2

@ it is conjugate a*, the creation operator,

a = (% ip)
=2

X and p are the position and momentum operators.
@ The operators a and a* satisfy [a, a*] = 1.
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COHERENT STATES FOR THE HARMONIC OSCILLATOR: |Z>

GLAUBER (1951)

@ CS as eigenstates of the annihilation operator a

az>=2z|z>,zeC

it is defined by
1 s . =
a=—=(X+ip),
V2

@ it is conjugate a*, the creation operator,

a = (% ip)
=2

X and p are the position and momentum operators.
@ The operators a and a* satisfy [a, a*] = 1.

@ The Hamiltonian of the harmonic oscillator: H = a*a + %

A\
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IwATA (1951)

The number state expansion for the normalized CS:

|z >= (elzwz)‘% 3 \%m >.

k>0

Eigenstates of H are denoted |k >, k =0,1,2, ... with the condition
alo >=0.
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IwATA (1951)

The number state expansion for the normalized CS:

|z >= (elzwz)‘% > j%m >.

k>0 ;

Eigenstates of H are denoted |k >, k =0,1,2, ... with the condition
al0 >=0.

GLAUBER & FEYNMAN (1951)

CS as the states produced by the action of the displacement operator
D(z) = exp(za® — z*a)

on the vacuum |0 > as
|z >= D(2)|0 >,

ZOUHAIR MOUAYN (MOROCCO)



SCHRODINGER (1926)

o CS as minimum uncertainty states:
0 1.0 1, 1 2
(€lz)=n2exp(—5€2+V2Az— 22— S|zf°), €€R

The fluctuations are

D = ~ 2
(AP)? =< z|p?|z > — (< z|p|z >) = 1
(AX)?2 =< z|x®|z > — (< Z|X|z >)" = }

so that ’
ApPAX = —.
P >
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SCHRODINGER (1926)

o CS as minimum uncertainty states:
0 1.0 1, 1 2
(€lz)=n2exp(—5€2+V2Az— 22— S|zf°), €€R

The fluctuations are

= N =

(AP)? =< z|P?|z > — (< z|p|z >)°
(AX)? =< z|X?|z > — (< z|X|z >)2

so that ’
ApPAX = —.
P >

SUMMARY: CS OF THE HARMONIC OSCILLATOR

@ are obtained by the 4 ways.

o satisfy the resolution of the identity: 1,2y = L [d?z|z) (z].

) T 7w
o form an overcomplet set.

@ are not orthogonal: (z|w) # 0. A big advantage!

A\
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SOME GENERALIZATIONS

GENERALIZATION ”A LA GILMORE-PERELOMOV”

CS are produced by the action Ty of the group element g € G on a reference state ¢g
in a representation Hilbert space as:

by = Ty [0
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CS are produced by the action Ty of the group element g € G on a reference state ¢g
in a representation Hilbert space as:

by = Ty [0

GENERALIZATION ” A LA GLAUBER”

Look for “continuous” families of eigenstates of new operator A satisfying
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SOME GENERALIZATIONS

GENERALIZATION A LA GILMORE-PERELOMOV”

CS are produced by the action Ty of the group element g € G on a reference state ¢g
in a representation Hilbert space as:

by = Ty [0

GENERALIZATION ” A LA GLAUBER”

Look for “continuous” families of eigenstates of new operator A satisfying

Alv,)=v|V,)

o Example: Barut-Girardello CS.
A=K =Ky — iK

Ki, K> and Kj are generators of the Lie algebra su(1,1).

ZOUHAIR MOUAYN (MOROCCO)



GENERALIZATION ” A LA SCHRODINGER”

Try to ”minimize” the generalized Heisenberg uncertainty relation for Hermitian
operators A and B different from X and p :

sans (2]

looking for states for which this becomes an equality.
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|

GENERALIZATION ” A LA SCHRODINGER”

Try to "minimize” the generalized Heisenberg uncertainty relation for Hermitian
operators A and B different from X and p:

sans (2]

looking for states for which this becomes an equality.

|

GENERALIZATION A LA [WATA”

By choosing different set of coefficients {C, (z)} and functions {¢,} satisfying
suitable conditions as
¢z = Z Cn | <,0n

A\

Ref: V V Dodonov 2002, Nonclassical’ states in quantum optics: a ‘squeezed’

review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. (451 Refs)
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A FORMALISM

Ref: A coherent states formalism starting from a measure space “as a set of data”: J.
P. Gazeau 2009, Coherent states in quantum physics.

e Let X = {x | x € X} be a set equipped with a measure dy and L2(X, du) the
space of du—square integrable functions on X.
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A FORMALISM

Ref: A coherent states formalism starting from a measure space as a set of data”: J.
P. Gazeau 2009, Coherent states in quantum physics.

e Let X = {x | x € X} be a set equipped with a measure dy and L2(X, du) the
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o Let A% C L?(X, du) be a subspace of infinite dimension with an orthonormal
basis {®;} =,
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A FORMALISM

Ref: A coherent states formalism starting from a measure space as a set of data”: J.
P. Gazeau 2009, Coherent states in quantum physics.

e Let X = {x | x € X} be a set equipped with a measure dy and L2(X, du) the
space of du—square integrable functions on X.

o Let A% C L?(X, du) be a subspace of infinite dimension with an orthonormal
basis {®;} =,

@ Let H be another (functional) space with dim H = co and {(pj};’; is a given
orthonormal basis of H.
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A FORMALISM

Ref: A coherent states formalism starting from a measure space as a set of data”: J.
P. Gazeau 2009, Coherent states in quantum physics.

e Let X = {x | x € X} be a set equipped with a measure dy and L2(X, du) the
space of du—square integrable functions on X.

o Let A% C L?(X, du) be a subspace of infinite dimension with an orthonormal
basis {®;} =,

@ Let H be another (functional) space with dim H = co and {(pj};’; is a given
orthonormal basis of H.

o The family of states {| x >}, in H,

| X >= (N (x) 72> &(x) | ¢ >
j=0
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A FORMALISM

Ref: A coherent states formalism starting from a measure space as a set of data”: J.
P. Gazeau 2009, Coherent states in quantum physics.

e Let X = {x | x € X} be a set equipped with a measure dy and L2(X, du) the
space of du—square integrable functions on X.

o Let A% C L?(X, du) be a subspace of infinite dimension with an orthonormal
basis {®;} =,

@ Let H be another (functional) space with dim H = co and {(pj};’; is a given
orthonormal basis of H.

o The family of states {| x >}, in H,

| X >= (N (x) 72> &(x) | ¢ >
j=0

e where NV (x) = Z/J;O(f b (x) ®) (x) < .
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o These coherent states obey the normalization condition (X | x),, = 1
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o These coherent states obey the normalization condition (X | x),, = 1

@ The resolution of the identity of H
1H=/ | X >< X | N (x) du (x) (RI)
X

The Dirac’s bra-ket notation | X >< X | means the rank-one -operator

o |X) (X [ @)y -
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o These coherent states obey the normalization condition (X | x),, = 1

@ The resolution of the identity of H
o= [ |x><x| N (x)du(x) (RI)
X
The Dirac’s bra-ket notation | X >< X | means the rank-one -operator
¢ X)X @)y -
@ An isometry

W: H— A2 C L3(X,p)
@ — W[gl(x) = (N(x))"2 (¢]x)

called a coherent states transform (CST).
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EXAMPLE I: THE LANDAU PROBLEM ON THE EUCLIDEAN PLANE C

@ X=C,
@ The measure: |2 ‘de (2), dp the Lebesgue measure on C

° A2 = A2 (C):= {Lp € [2(C, e~ 7P dp), Ap = mgo} , meN.
The Landau Hamiltonian

~ 92 _0
A = p— + A==
020z 0z
@ |pp) : eingenstates of the harmonic oscillator.
1 1.2
(€lpp) == (V72Ppl) "2 €72  Hp(€), p=0,1,2,... E€R
Hp(&): Hermite polynomial.

@ The coefficients

O (2) = (=1)™ (m A p)! (xmipt) ~% |z| /M=l g=(m-P)aaz (7PD (77)

Adp(z) = mdp(2)
@ The coherent states:

12, m) = (M(2)) ‘/ZZ J”(mi,p, lop)

@ The overlap function between two CS:

(2, mlw, m) = (N (2) N (w))~2 e L(1z — wi?)
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THEOREM 7. MOUAYN, MATH. NACHR 2011

@ A closed form for these CS is
_%szm (5— z+z>

V2

(MBS
NI
o=
N
N

e 32 +V26Z—

$zm(€) = (=1)" (2"miy/7) -
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THEOREM 7. MOUAYN, MATH. NACHR 2011

@ A closed form for these CS is
1§§2Hm (E— Z+Z>

V2

o=
NI
o=
N
N
|

e 32 +V26Z—

$z,m (€) = (=1)" (2"m!V/7) "
o The coherent state transform: B° : L2(R, d¢) — A2, (C)

B3 [1](2) = (N (2))? (f, Szum) 2y

Explicitly,

BRlfl(2)=cm [ f ;zz+ﬂez;ssz(z+z>
(@) =en [ F(E)e e-217) ae

is a generalized Bargmann transform of index m=0,1,2, ....

@ Case m = 0: The Bargmann transform Bgrg (V. Bargmann, 1961) corresponds to
the lowest Landau level LLL.

.
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EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARE DISK DD

e X=D, (1-]z?)~2du, du the Lebesgue measure on D.
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EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARE DISK DD

e X=D, (1-]z?)~2du, du the Lebesgue measure on D.
° A% = .A,zn"’ (D) : eigenspace associated with mth hyperbolic Landau level.
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EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARE DISK DD

e X=D, (1-z?)~2du, du the Lebesgue measure on D.
o A? = .Afn’” (D) : eigenspace associated with mth hyperbolic Landau level.
@ The coefficients

2(u—m)—1)5 (k!r(z(u—m)_m))%

q’z’m(z):(_”k( ™ mir 2 —m) 1 k)

« (1 _ |Z|2>7m2m—kPI((mfk,2(ufm)f1) (1 _ 5 |z|2)

P,((o"ﬁ )(.) Jacobi polynomial.
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EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARE DISK DD

e X=D, (1-z?)~2du, du the Lebesgue measure on D.
o A? = .Afn’” (D) : eigenspace associated with mth hyperbolic Landau level.
@ The coefficients

ot = oy (B=p=l) (L= mon)

« (1 _ |Z|2>7m2m—kPI((mfk,2(ufm)f1) (1 _ 5 |z|2)

P,((o"ﬁ )(.) Jacobi polynomial.

°oH= L2(]Rj_, 3 - d¢) : states Hilbert space of the pseudoharmonic oscillator
(PHO) H’Y = —8)% + X2 + ,yl/,mX—Z
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EXAMPLE 2: THE LANDAU PROBLEM ON THE POINCARE DISK DD

e X=D, (1-z?)~2du, du the Lebesgue measure on D.
o A? = Afn’” (D) : eigenspace associated with mth hyperbolic Landau level.
@ The coefficients

2(u—m)—1)5 (k!r(z(u—m)_m))%

q’z’m(z):(_”k( ™ mir 2 —m) 1 k)

« (1 _ |Z|2>7m2m—kPI((mfk,2(ufm)f1) (1 _ 5 |z|2)

P,((o"ﬁ )(.) Jacobi polynomial.

o H= L2(]Rj_, ¢71d¢) : states Hilbert space of the pseudoharmonic oscillator
(PHO) H, = —92 + x2 + y"™Mx—2

@ The vectors |pk) € H: eigenstates of the PHO

1

viMee) . — # ? vem —1¢(2(v—m)—1)
i (8) = (r(21/—2m+k)) &rem Ly ),
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THE LANDAU PROBLEM ON THE POINCARE DISK D

@ The coherent states:

1
-1 400

|z,y,m>;:<7r1(2y-2m-1)(1—|z|2)_2”) Y 0 (2) | o™ >

k=0
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THE LANDAU PROBLEM ON THE POINCARE DISK D

@ The coherent states:

|2, v, m) = <7r1 (v —2m—1) (1 . |z|2)_2V)_12+f¢”m( 2) | gb™ >

k=0

@ A closed form for these CS is

) = (0" (g ))éH_Z')zzm,, (1-127)" e

r( 1-z
X exp (—g

= 1-2zz
L2(u m)—1
) " €|1 —zP
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THEOREM ELWASSOULI, GHANMI, INTISSAR & MOUAYN, Ann. Henri Poincaré 2012

o The coherent state transform: By° : L2(R%, £ 'd¢) — A% (D) defined by

BE9[1](2) := (Nim (2))? (£, 8. m)

Explicitly

B [(2) = e (1 -2 < 1 ”>_

11— z?

TR il _é <1+2)> 2(v—m)—1 1—-zz ﬁ
x/o ¢ exp( - (2] i o) 1OF

e Form=0, Bgrg is the second Bargmann transform (V. Bargmann 1961)
corresponds to the lowest hyperbolic Landau level LHLL.
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COMPLETNESS THEOREM ABREU, BALAZS, DE GOSSON & MOUAYN, Ann. Phys 2015

The Euclidean setting

Theorem 1. Let (|(x,y), 7, M), cpe be a system of coherent states attached to the mth
Landau level. Then the following holds

e ifu? < #M the system (|(X, y), ™, M), e  is complete

@ if w? > 1 then the system (|(x, ¥), , M))(x,yyep,, 18 nOt complete

where A\, = w(Z + iZ) is a square lattice of area w®.
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COMPLETNESS THEOREM ABREU, BALAZS, DE GOSSON & MOUAYN, Ann. Phys 2015

The Euclidean setting

Theorem 1. Let (|(X, y), ™, M), ,cre be a system of coherent states attached to the mth
Landau level. Then the following holds

e ifu? < #ﬂ the system (|(x, y), 7, m>)(X,y)€/\w is complete

@ if w? > 1 then the system (|(x, ¥), T, m)) is not complete

()€

where A\, = w(Z + iZ) is a square lattice of area w®.

The Hyperbolic setting

Theorem 2. Let {|z,B, m)}, .. be a system of coherent states attached to the mth hyperbolic
level. If the subsystem {|g, o, B, M) }gc indexed by the Fuchsian group G associated with the
automorphic form Fy of weight Mo, vanishing at one point & € C* is complete, then
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X =$? = CU{o}
du(z)=(1+ Zf)f2 dn(z), dn(z) Lebesgue measure on C.
A? : a generalized Bergman space on the Riemann sphere

AL (82) — {CD el? (SZ, du (z)) Hoy ® = A\ cb} :

@ The Hamiltonian of v magnetic field
Hoy = — (14 22)? 82, —vz(1 +zz)ﬂ +vZ(1+22) 9 +5 (14 22) =P
020z 0z 0z

Spherical Landau levels: A\p,, := 2m+1)v+m(m+1),m=0,1,2,--.

H =17 (Qny1) the Hibert space of square summable functions on the finite discrete set
QN+1:{XI :fprn/: 071727”’ 7N}
The Kravchuk oscillator:

LY =2p(1-p)N+ 5 +(1 - 2p) = = VP ) (a(€) €% +a(e — me ™).

h=/2No(1 —p), a (&) = V(T -P)N—h 1&) (PN + 1+ A 1)
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THEOREM Z. MOUAYN Ann. Henri Poincaré 2015

@ We define a discrete Bargmann transform

Bum: P(QRI,) — Ar (S?) .

(N+ 1IN [ VG- 2P N(z\/GJr\fp)m
Vmi(N—m)! \ /q(1 + z2) Z\/P—+/4q

J
N Ny [1+Z,/9 , >
X E f(j — Np) .Ipllg /.I \ﬂ 2F 1 < _T}V_j 1+7522

= JUN =) 1fz\/§ N/ BN

where of 1 (—m, —j, —N | -) : Gauss hypergeometric function ( Kravchuk
polynomial). Here, 0 < p<1,g=1—-p,N=2(v+ m), me Z, and
2v=1,2,---

e Case m=0: B, is the analytic representation (A. Chenaghlou and O. Faizy,
J. Math, Phys. 2007) corresponds to the lowest spherical Landau level LSLL.

B,.mlf](2) =

ZOUHAIR MOUAYN (MOROCCO)



COHERENT STATES QUANTIZATION

@ The choice of # defines a quantization of the space X by the CS, via the
inclusion map X 5 x —| x >€ H
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COHERENT STATES QUANTIZATION

@ The choice of # defines a quantization of the space X by the CS, via the
inclusion map X 5 x —| x >€ H

o The (RI) is bridge between the classical and the quantum mechanics.

1»—>1H:/ | x >< x | TN (x) dp(x)
X
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COHERENT STATES QUANTIZATION

@ The choice of # defines a quantization of the space X by the CS, via the
inclusion map X 5 x —| x >€ H

o The (RI) is bridge between the classical and the quantum mechanics.

1»—>1H:/ | x >< x | TN (x) dp(x)
X

o The Klauder-Berezin coherent states quantization consists in associating to a
classical observable, that is a function f (x) on X having specific properties, the
operator-valued integral

fs A ;:/ X >< x| FON (x) du (x)
X
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COHERENT STATES QUANTIZATION

@ The choice of # defines a quantization of the space X by the CS, via the
inclusion map X 5 x —| x >€ H

o The (RI) is bridge between the classical and the quantum mechanics.

1»—>1H:/ | x >< x | TN (x) dp(x)
X

o The Klauder-Berezin coherent states quantization consists in associating to a
classical observable, that is a function f (x) on X having specific properties, the
operator-valued integral

fs A ;:/ X >< x| FON (x) du (x)
X

The function f (x) is called upper (or contravariant) symbol of the operator A¢
and is nonunique in general.
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BEREZIN TRANSFORM

fs A ;:/ | X >< x | F)N (x) i ()
X

o The expectation value (x | Af | X) of Ar with respect to the set of coherent states
{| X >} ,cx is called lower (or covariant) symbol of Ay.

@ Associating to the classical observable f (x) the obtained mean value
(x| Af | x), we get the Berezin transform of this observable. That is,

B[f](x) == (x| Ar | x), x € X.
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BEREZIN TRANSFORM

fs A ;:/ | X >< x | F(X)N (x) dp (x)
X

@ The expectation value (X | As | X) of As with respect to the set of coherent states
{| X >} ,cx is called lower (or covariant) symbol of Ay.

@ Associating to the classical observable f (x) the obtained mean value
(x| Af | x), we get the Berezin transform of this observable. That is,

B[f](x) == (x| Ar | x), x € X.

Some references:
e F. A. Berezin 1972, Covariant and contravariant symbols of operators, Izv.
Akad. SSSR Ser. Mat.
e F.A. Berezin 1975, General concept of quantization, Comm. Math. Phys.
@ A. Unterberger & H. Upmeir 1994: The Berezin transform and invariant
differential operators. Comm. Math. Phys.
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EXAMPLE 1: THE EUCLIDEAN COMPLEX PLANE C

e X=C,
o The measure: e~ 1? |2du (2), du the Lebesgue measure on C

o 2=F(C):e 12 *du (z) —square integrable analytic functions on C,
Segal-Bargmann-Fock space
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EXAMPLE 1: THE EUCLIDEAN COMPLEX PLANE C

X =C,
@ The measure: e"z|2d/¢ (2), du the Lebesgue measure on C

A2 =F(C): e 17 *du (2) —square integrable analytic functions on C,
Segal-Bargmann-Fock space

The coherent states:

oo 5p

12,0) = ”Z fnop

The overlap function between two CS:

(2,0|w,0) = (N (2) N (w)) "2 e&W)
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EXAMPLE 1: THE EUCLIDEAN COMPLEX PLANE C

X =C,
@ The measure: e"z|2d/¢ (2), du the Lebesgue measure on C

A2 =F(C): e 17 *du (2) —square integrable analytic functions on C,
Segal-Bargmann-Fock space

The coherent states:

oo 5p

12,0) = ”Z fnop

The overlap function between two CS:

(2,0|w,0) = (N (2) N (w)) "2 e&W)

The CS satisfy the resolution of the identity

1H=/C|z70> (2,0| N (2) du (2)
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CS QUANTIZATION

e Toany ¢ € L2(C, du), we associate

o= A= [[12,0)(2.01(2) N (2) du ().
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CS QUANTIZATION
e Toany ¢ € L2(C, du), we associate

o A= [ 12,0) (2,02 N (2)du(2).

@ We calculate the expectation value
E{z,003 (Ay) = (2,0 A, |2,0)

This gives the well known Berezin transform

B [0](2) = Eqjz0) (Ag) = 71 /C e o (w)dlu (w)
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CS QUANTIZATION
e Toany ¢ € L2(C, du), we associate

o A= [ 12,0) (2,02 N (2)du(2).

@ We calculate the expectation value
E{z,003 (Ay) = (2,0 A, |2,0)

This gives the well known Berezin transform

_ P2
B 141(2) = Eqzon (Ap) = 7" | e ool (w)
@ The Berezin transform B§" can also be expressed as convolution

B[] (2) = 7 1(e7" x ) (2), ¢ € L3(C, dp)
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Bg" AS FUNCTION OF THE EUCLIDEAN LAPLACIAN

The Berezin transform B§" can be written as

1
er __ -
B; = exp <4AC).

Ref: J. Peetre 1990, J. Operator Theory
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EXAMPLE 2: THE LANDAU PROBLEM ON C”
o X=R?"=C"
@ The Hamiltonian of v magnetic field
1 o . \2 . \2 n
H,=-7 <(‘9)9+’Vyi) +(9y, — ivx;) ) -5
j=1

acting on L?( R?", dyu), du Lebesgue measure.

4] Intertwining relation
N 1 2 _1 2
AU = eZV‘z| l’,, e 2V‘Z|

@ Ground state transformation

Q[¢](2) := e ¢ (z), € LA(C", e~ dp); zeCm.
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e X=R>"=C"
@ The Hamiltonian of v magnetic field
10

_Z ‘
j=1

H, = (@ +ivy)® + (0 — ivx)®) - 2

acting on L?( R?", dyu), du Lebesgue measure.

4] Intertwining relation
N 1 2 _1 2
AU = eZV‘z| l’,, e 2V\Z|

@ Ground state transformation

Q[¢](2) := e ¢ (z), € LA(C", e~ dp); zeCm.

o Explicit expression for the operator &,:

~ 8 _ 9
Bo==2 gz55 t7 2 %5
Jj=1 Jj=1
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LZ—SPECTRAL TOOLS OF /A N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

@ We consider the case of v = 1, A= 51,

>
[
|
3
Q
N
+
=
NI

Cg° (C") as its regular domain in the Hilbert space L2(C", e~ 2 |2du).
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LZ—SPECTRAL TOOLS OF /A N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

@ We consider the case of v = 1, A= 51,

3

Cg° (C") as its regular domain in the Hilbert space L2(C", e~ 2 |2du).

e A is an unbounded symmetric operator on Cg°(C") which is essentially
self-adjoint in the Hilbert space L2(C", e~ 1? i du)..
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LZ—SPECTRAL TOOLS OF A N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

@ We consider the case of v = 1, A= 51,

>
Il
|
3>
Q
N
+
(N
NI
||

Cg° (C") as its regular domain in the Hilbert space L2(C", e~ 2 |2du).

e A is an unbounded symmetric operator on C3°(C") which is essentially
self-adjoint in the Hilbert space L2(C", e~ 1? i du)..

@ Its spectrum consists of eigenvalues (Landau levels) of infinite multiplicity:

em:=m, m=0,1,2, ...

@ The resolvent kernel
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LZ—SPECTRAL TOOLS OF A N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

@ We consider the case of v = 1, A= 51,

>
Il
|
3>
Q
N
+
(N
NI
||

Cg° (C") as its regular domain in the Hilbert space L2(C", e~ 2 |2du).

e A is an unbounded symmetric operator on C3°(C") which is essentially
self-adjoint in the Hilbert space L2(C", e~ 1? i du)..

@ Its spectrum consists of eigenvalues (Landau levels) of infinite multiplicity:

em:=m, m=0,1,2, ...

@ The resolvent kernel
@ The heat Kernel
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LZ—SPECTRAL TOOLS OF A N. ASKOUR & Z. MOUAYN J. MATH. PHYS. 2000

@ We consider the case of v = 1, A= 51,

>
Il
|
3>
Q
N
+
(N
NI
||

Cg° (C") as its regular domain in the Hilbert space L2(C", e~ 2 |2du).
e A is an unbounded symmetric operator on C3°(C") which is essentially
self-adjoint in the Hilbert space L2(C", e~ 1? i du)..
Its spectrum consists of eigenvalues (Landau levels) of infinite multiplicity:

em:=m, m=0,1,2, ...

The resolvent kernel
The heat Kernel
@ The wave kernel
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SPACES A?n(C”) N. ASKOUR, A. INTISSAR & Z. MOUAYN J. MATH. PHYS. 2000

Indexed by m = 0, 1,2, ..., as eigenspaces of the operator A,
42, = {p € 2(C", o dp), R = my}.

A function f : C" — C belongs to A2, (C") if and only if

(2)=> > 1F(-m+aq ntp+a *) P Y vpaithew)
p=0 q=0 =1

in C*> (C"), z = pw, we S~ p>0,F; is the confluent hypergeometric
function vp g := (Yp,qj) € CY"P9 satisfy

+oo m 2
1Vp,ql
= | — | — UU=AL
§ E (m-—q)(p+qg+n—1)IF'(n+p+q) 2r(n+p+m)<+oo
p=0g=0

and (h,{xq ()) , 1<j<d(n,p,q) is an orthonormal basis of H (p, q) . Here
d(n,p,q) =dimH (p, q)

ZOUHAIR MOUAYN (MOROCCO)



THE SPACE A3 (C")

In the case m = O the space A2 (C") coincides with the Segal-Bargmann-Fock space
T (C") of entire functions in L?(C", e~12° du).
Ref: N. Askour, A. Intissar & Z. Mouayn, C. R. Acad. Sci. Paris 1997

AN ORTHONORMAL BASIS OF A2 (C")

@ An orthonormal basis of A2, (C") can be written in terms of the Laguerre
polynomials and the spherical harmonics polynomials hjg’q (z,2)

m . 2(m—q)! 2 n - ] =
Moo= (o tmr) B8 () thoe

where p=0,1,2,...;9=0,1,2,...m,j=1,....d(n,p, q).
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THE SPACE A3 (C")

In the case m = O the space A2 (C") coincides with the Segal-Bargmann-Fock space
T (C") of entire functions in L?(C", e~12° du).
Ref: N. Askour, A. Intissar & Z. Mouayn, C. R. Acad. Sci. Paris 1997

AN ORTHONORMAL BASIS OF A2 (C")

@ An orthonormal basis of A2, (C") can be written in terms of the Laguerre
polynomials and the spherical harmonics polynomials hfg’q (z,2)

m . 2(m—q)! 2 n - ] =
Moo= (o tmr) B8 () thoe

where p=0,1,2,...;9=0,1,2,...m,j=1,....d(n,p, q).

@ These basis elements will play the role of coefficients in the following
superposition:

A\
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A SET OF COHERENT STATES {|Z, M)}, _c»

e Form=0,1,2,..., aclass of generalized coherent states is defined by

—+o00

_1 m o\
| z,m >= (N (2))" 2 > 7, 4 (2) 9ip.q)
1<j<d(n,p,q)
0<q<m,0<p<+oo

o &7, ,(2) : orthonormal basis of A2 (C™)
@ |)p.q) : orthonormal basis of another (functional) Hilbert space
o dim# = dim A2 (C") = +oc

® Np(2) is a normalization factor such that (z, m|z, m),, = 1:

7 T (n+m)
- T(m+1)F(n)

(z,2)

Nm (2)
@ The CS satisfy the resolution of the identity

o= [ 12.m) (2. Nin (2) s (2)
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THE OVERLAP INTEGRAL BETWEEN TWO CS IN C”

This quantity is defined by

—+o0

_1 —
(z,mlw, m) = (Nm(2) Nm (w)) "2 > b (2) O, 4 (W)
1<j<d(n,p,q)
0<g<m,0<p<+00

= (N (2) Nim (W) "2 m=ne(@w) 1 (1=1) (|z — w|2)
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THE OVERLAP INTEGRAL BETWEEN TWO CS IN C”

This quantity is defined by

—+o0

Z &g (2) P g (W)

1<j<d(n,p,q)
0<q<m,0<p<+oo

[SE

(2, mlw, m) = (Nin (2) Nim (W)~

= (N (2) Nim (W) "2 m=ne(@w) 1 (1=1) (|z — w|2)

This can be proved by direct calculations using an addition formula due to T.
Koornwinder SIAM. J. Math. Anal. 1977 and Mourad. Ismail 2012 :

exp (ixy sint) £ (X% + y? — 2xy cos 1))

_+°° ° (c+s+1)
Zzo+k+/< )k!(o+/)k(0+k)l

k=0 /=0

XYL (:2) L7340 (12) Y ()

s—I

where L(SU) (.) are Laguerre functions and Ay, (.) are disk polynomials.
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CS QUANTIZATION AND BEREZIN TRANSFORM

@ To any function ¢ € L2 (C", du) we associate the operator-valued integral

oo A= [ 12.m) (2. ml 0 (2) N (2) s (2)
@ Next define the Berezin transform of ¢ as the expectation value
By [#](2) := (z,m| A, |z, m)
o After calculations using the above overlap integral (z, m|w, m),, , we arrive at

m!
(n)mm"

B[4 (2) = [ e (L7 (12— w)) e(w)du(w)

where ¢ € L>(C").
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BEREZIN TRANSFORM AND THE EUCLIDEAN LAPLACIAN

o This transform can be written via a convolution product
By lel = hmx o, @€ L?(C",dp)

involving the function

o(2) = rorzeF (1) (12%))

m!
(N)mm"

ZOUHAIR MOUAYN (MOROCCO)



BEREZIN TRANSFORM AND THE EUCLIDEAN LAPLACIAN

o This transform can be written via a convolution product
By lel = hmx o, @€ L?(C",dp)

involving the function

n(2) = et (L) ((212))°

m!
(N)mm"

o BE commute with operators of composition with unitary transformations
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BEREZIN TRANSFORM AND THE EUCLIDEAN LAPLACIAN

o This transform can be written via a convolution product
By ¢l = hmx o, ¢ €L?(C",du)

involving the function

() = gz (L5 (2B))°

n)m'/T

o BE commute with operators of composition with unitary transformations

@ B¢ is a function of the Euclidean Laplacian Acn :

—~ (1
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BEREZIN TRANSFORM AND THE EUCLIDEAN LAPLACIAN

o This transform can be written via a convolution product
By ¢l = hmx o, ¢ €L?(C",du)

involving the function

() = gz (L5 (2B))°

n)m'/T

o BE commute with operators of composition with unitary transformations

@ B¢ is a function of the Euclidean Laplacian Acn :

—~ (1

@ hm — hm :is the Fourier transform.
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THEOREM Z. MOUAYN, J. FOURIER ANAL & APP 2012

For m= 0, 1,2, ..., the Berezin transform can be expressed as a function of the
Laplacian A¢n as

2m
1A . ] i
Bﬁ,,r = e4AC Z’yj(m il (A(Cn)/
j=0
with coefficients
22m (m1)® (—1Y aF 2 (é —m B —mj+nj-m+1j—m+ 1;1)
(M) )t2% (2m — (T (j — m+ 1))

(m,n)

Vi =

given in terms of a 3F>-sum.

. 1
o In particular for m = 0 we recover B = es%c.
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THEOREM Z. MOUAYN, J. FOURIER ANAL & APP 2012

For m= 0, 1,2, ..., the Berezin transform can be expressed as a function of the
Laplacian A¢n as

2m
1A . 3 i
Bﬁ,,r = e4AC Z’yj(m il (A(Cn)/
j=0
with coefficients
22m (m® (—=1Y sF (%—m,’%‘ —m,j+n,j—m+1,j—m+1;1)
(M) )t2% (2m — (T (j — m+ 1))

(m,n)

Vi =

given in terms of a 3F>-sum.

. 1
o In particular for m = 0 we recover B = es%c.

Idea on the proof. we use a linearization of the product of Laguerre polynomials
and next we calculate some integral involving Bessel functions.
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EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL B"

o X=D1R"
e dup=(1-<2,z >)7n71 du, du: Lebesgue measure on B”.
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EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL B"

e X=DRB"
e dup=(1-<2,z >)7n*1 du, du: Lebesgue measure on B”.
@ The Schrodinger operator with v-magnetic field on B”

n n
H, = =401 = 12P)(>_ (65-22) 90 + v > _(20; — Z0)) + v°) + &/
ij=1 =

provided that v > n/2. The notations §; = 9/0z; and 9; = 9/0Z;
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e X=DRB"
e dup=(1-<22z >)7n*1 du, du: Lebesgue measure on B”.
@ The Schrodinger operator with v-magnetic field on B”

n n
Hy = 41~ 1223 (61-22) 0T + v’ (20 — 0 + ) + 42
ij=1 j=1
provided that v > n/2. The notations d; = 9/0z; and 9; = 8/0z;

o H, is an elliptic densely defined operator on L2(B", (1 — (z,z))~ (" dy)
admitting a unique self-adjoint realization also denoted by H,,.
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EXAMPLE 3: THE LANDAU PROBLEM ON THE BERGMAN BALL B"

e X=B"
e dup=(1-<22z >)7n*1 du, du: Lebesgue measure on B”.
@ The Schrodinger operator with v-magnetic field on B”

n n
Hy = 41~ 1223 (61-22) 0T + v’ (20 — 0 + ) + 42
ij=1 j=1
provided that v > n/2. The notations d; = 9/0z; and 9; = 8/0z;

o H, is an elliptic densely defined operator on L2(B", (1 — (z,z))~ (" dy)
admitting a unique self-adjoint realization also denoted by H,,.

e Its spectrum: [n?, 400 (scattering states) and a finite number of infinitely
degenerate eigenvalues (bound states):

e = 4v(2m+n) —4m(m+n), m=0,1,...[v — n/2].

called hyperbolic Landau levels on B".
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THE GENERALIZED BERGMAN SPACES A% (B")
@ Focus on the discrete part of the spectrum e};", and the corresponding eigenspace
AZV (B") = {goELzB dun), Hyp = e go}

where m= 0,1, ..., [v — n/2].
@ An eigenfunction f of H, with eigenvalue €p;", in terms of the appropriate
Fourier series in B” :

+o00 2 iAtn : H
1-— iX+n iX+n 2)
f(z):z( r) ? 2F1< . +y+p,ify+q,p+q+n;p‘
2 /
p,q=0
d(n,p,q)

X Z apq’/ Mp.q(0),

in C*(B"), z=pb, p € [0,1] and § € IB", »F;: Gauss hypergeometric
function and ( ;‘ S i) E C9(mP.9), Here {hf,_, g}1<j<d(n,p,q) is an orthonormal

basis of H(p, q).
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THE SPACE A>"(B")

For m = 0, the space Ag"’ (B") is isomorphic to the weighted Bergman space of
holomorphic function 1) on B” satisfying

L s @F (- (22 du(2) < . (*)

This fact justify why the eigenspace A" (B") has been called a generalized Bergman
spaces of index m.

AN ORTONORMAL BASIS OF A%"(B")

It can be given explicitly by
" v—m 5
Opg(2) = wpg" (1= 12P) " T PR AIID (1212 B (2,2)

with

o=

,m,n_< ' T(n+m+p)Ff(Qv—n—m—q+1) ),
~\n2@[v—m —n)(m-q)IT (2v — m+ p)

p=0,1,2,..,9=0,1,.....mandj=1,....,d(n; p, q).
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A SET OF COHERENT STATES {|z,v, m)}
e X=B", x=zeB" dup,

zeB"
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A SET OF COHERENT STATES {|z,v, m)}
e X=B", x=zeB" dup,
o A2:= A5 (B") C L3(B", dun).

zeB"
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A SET OF COHERENT STATES {|z,v, m)}
e X=B", x=zeB" dup,
o A2:= A5 (B") C L3(B", dun).

o {d(X)} = {<D;:2j (z)} is the orthonormal basis of A" (B").

zeB"
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A SET OF COHERENT STATES {|z,v, m)}
e X=B", x=zeB" dup,
o A2:= A5 (B") C L3(B", dun).

o {d(X)} = {<D;:2j (z)} is the orthonormal basis of A" (B").

zeB"

o {¢vk} = {pp,q,} is an orthonormal basis of another Hilbert space #
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A SET OF COHERENT STATES {|z,v, m)}
e X=B", x=zeB" dup,
o A2:= A5 (B") C L3(B", dun).

o {d(X)} = {cb;:g/ (z)} is the orthonormal basis of A" (B").

zeB"

o {¢vk} = {pp,q,} is an orthonormal basis of another Hilbert space #
@ Generalized CS are defined by

_1 N TN
| z,v,m >:= (N (2)) 2 > o0 (2)¢p.a,
0<g<m,0<p<+oo
1<j<d(n,p,q)

@ The normalization factor

@Cyv—m)—nT(2v—m)T(m+n)

Nn(2) = = @y —m—n+1)  mir(n
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A SET OF COHERENT STATES {|z,v, m)}
e X=B", x=zeB" dup,
o A2:= A5 (B") C L3(B", dun).

o {d(X)} = {cb;:g/ (z)} is the orthonormal basis of A" (B").

zeB"

o {¢vk} = {pp,q,} is an orthonormal basis of another Hilbert space #
@ Generalized CS are defined by

_1 N TN
| z,v,m >:= (N (2)) 2 > o0 (2)¢p.a,
0<g<m,0<p<+oo
1<j<d(n,p,q)

@ The normalization factor

@Cyv—m)—nT(2v—m)T(m+n)

Nn(2) = = @y —m—n+1)  mir(n

o The CS satisfy the resolution of the identity

14 = / |z,v,m) (z,v, M| Nn (2) dpn (2)
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THE OVERLAP INTEGRAL BETWEEN TWO CS IN B”

This quantity is defined by

-1 v,m WM N
(z,v,mw,v,m) = (N (2) N (w)) 2 > b a (2)p g (W)
0<g<m,0<p<+o0
1<j<d(n,p,q)

@ly —m =W @r=m) ¢ xS (1 1z W>>V
w)

" (2v—m—n+1)

x (cosh (d (z,w))) 2™ PR A0 (4~ 24anh (d (2, w)))

[ )(.) denotes Jacobi polynomial.
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CS QUANTIZATION AND BEREZIN TRANSFORM

e Forany ¢ € L?(B", dup), the operator-valued integral

o A= [ |znm) (2. ml o (2 (2) din2)

The function ¢ (Z) is a upper symbol of the operator A,,.
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CS QUANTIZATION AND BEREZIN TRANSFORM

e Forany ¢ € L?(B", dup), the operator-valued integral
o Ay = / |z,v,m) (z,v,m| o (2) N (2) dun(2)
Bﬂ

The function ¢ (Z) is a upper symbol of the operator A,,.
o The Berezin transform is defined as the expectation value

B [¢](2) = Eqiz,myy (Ap) = (z,v,m| A, |z,v,m) (lower symbol of A,).

@ Using the overlap integral between two CS, we obtain:

or _ (11221 - g») "™
Brlel(2) = m/( 11— (2,8 )

x (P2 (1 2162)) " o (€) dun €).

. Mm@ —m)-nl@2v—m)
Pl (n+m)T(2v —m—n+1)
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THE BEREZIN TRANSFORM 5§’

e For m = 0, this transfrom is the well known Berezin transfom attached to the
weighted Bergman space Ag"’ (B") of holomorphic function ¢ on B" satisfying
the growth condition () and given by

(2v—n)T (2v)

T @ —nt1) /B (coshdl(z,€))* —£ )

BE'[41(2) = 7 (©)
(1-1¢)
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THE BEREZIN TRANSFORM 5§’

e For m = 0, this transfrom is the well known Berezin transfom attached to the
weighted Bergman space Ag"’ (B") of holomorphic function ¢ on B" satisfying
the growth condition () and given by

(2v—n)T (2v)

T @ —nt1) /B(COShd(Z’ gy 28

BE'[41(2) = 7 (©)
(1-1¢)

@ This have been written as a function of the Bergman Laplacian Agn as

2

1 n i
Bgr:r a+1+ -+ = —ABn—HZ)

(a+1)r(a+n+1)‘r( 2 2

firstly by Berezin.
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THE BEREZIN TRANSFORM 5§’

e For m = 0, this transfrom is the well known Berezin transfom attached to the
weighted Bergman space Ag"’ (B") of holomorphic function ¢ on B" satisfying
the growth condition () and given by

BY [4](2) =
(1-1¢)

@ This have been written as a function of the Bergman Laplacian Agn as

2

1 n i
Bgr:r a+1+ -+ = —A]Bgn—n2)

(a+1)r(a+n+1)‘r( 2 2

firstly by Berezin.

@ The above form, involving gamma factors, was derived by Peetre so that « there
occurring in the weight of the Bergman space, corresponds to 2v — n — 1.
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THE BEREZIN TRANSFORMS AS FUNCTIONS OF THE
LAPLACE-BELTRAMI OPERATOR

THEOREM A. GHANMI & Z. MOUAYN HOUSTON. J. MATH 2014

The transform Bj, can be expressed as a function of the Laplace-Beltrami operator Agn in
terms of a 3f o-sum as

o _ 2m o r (2(u— m)—1 (n— i\/m))
m_;’ r(2w-m+j+i(n+iv-Bem—re))

$ (n+iv/ =B =) .1+, (n+ i/ =B = 1P)

X3l 2 . ; |1
(v—m)+j+%(n+/\/—A]Bn—n2),n
where .
cvnm _ Rv=—m)=n)T (n+m) (1) T (n+))
i mrv—n—m+1)r(2v —n)
min(m,j)

s (m2T (2v — m)T (2v — m+j — p)
y G=p)(m+p—j)ipt(m—p)IT (n+j—p)T (n+p)

p=max(0,j—m
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ON THE PROOF

o Consider the non-negative elliptic self-adjoint operator —L, := —Agn» — n°.
Then, for given suitable function f : R — R, the operator f (—Lp) is defined by

+oo
f(-8sr = PA@ = [ ([ W@ ) i duw),

where the spectral kernel is given by

n+ix  n—iX

P22 ta oo
2 2Fy n

4710 (N)|F(IN)

V(z,w;\) = — sinh?(d(z, w))
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ON THE PROOF

o Consider the non-negative elliptic self-adjoint operator —L, := —Agn» — n°.
Then, for given suitable function f : R — R, the operator f (—Lp) is defined by

+oo
F(—Aar — ?)[p](2) = / (/0 V(z,w; )\)f(/\)dA> %dﬂ(w),

where the spectral kernel is given by

n+ix  n—iX

P22 ta oo
2 2Fy n

4710 (N)|F(IN)

V(z,w;\) = — sinh?(d(z, w))

@ By equating the previous integral representation to

Bnle](2) = /B Bulz, W)&du(w)

(1 — [w[2)n+
we get

/+oo V(z, w; \)f(N)dX = By(z, w).
0
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ON THE PROOF

@ To determine the function f we use the Fourier-Jacobi transform
he 2Ry, Bap(t)dt) — g € L2 Ry, (2m) " [Ca,p(A)| 2 dA)

defined by
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ON THE PROOF

@ To determine the function f we use the Fourier-Jacobi transform
he 2Ry, Bap(t)dt) — g € L2 Ry, (2m) " [Ca,p(A)| 2 dA)

defined by
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ON THE PROOF

@ To determine the function f we use the Fourier-Jacobi transform
he 2Ry, Bap(t)dt) — g € L2 Ry, (2m) " [Ca,p(A)| 2 dA)

defined by

@ Upon the use of
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ON THE PROOF

@ To determine the function f we use the Fourier-Jacobi transform
he 2Ry, Bap(t)dt) — g € L2 Ry, (2m) " [Ca,p(A)| 2 dA)

defined by

@ Upon the use of
@ Explicit expressions of the different quantities
© Appropriate change of variables
© A special formula of the product of two Jacobi polynomials
© A special integral representation for the » F1-sum,
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@ we arrive at

. 2(v —m)—nml(n+ m)
) = milr'(2v — (n+ m) + 1)l (2v — m) Z

N n+//\ n+l>\
><B<n+/,l)\Tn+2(l/—m)>3F2{ ) ‘ ]

o + 2(v — m) +j,n
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@ we arrive at

B (2(v — m) — n)[(n+ m)
M) = mirey —+ m) + e - m) - Z

. n+//\ n+IA
><B<n+/,l)\2n+2(1/m)>3F2{ N+, ‘ ]

A “2(v—m)+j.n

@ Replacing A by \/—Ap» — n? and expressing the Beta function in terms of
Gamma functions we obtain the announced formula.
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THEOREM A. BOUSSEJRA AND Z. MOUAYN (TO APPEAR IN MOSCOW J. MATH)

The Berezin transform B¢’ can be expressed as a function of the Laplace-Beltrami
operator Apn as

BY = 'r(z(um)g+; Awnz)

1 n? n nnn
Vnm . _ _ o0
X E Yk ( ABn 4 2(V m) 2,1+2,2,2)

where W (.) are Wilson polynomials,

vnm  20imIT (n) (2 (v —m) — n)T (2v — m) (—1)* x AZ™"
Tk T T (nem)T(2v —m—n+ 1) kT2 (2 (v — m) + k)

and A;,™™ are some coefficients.
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ON THE PROOF

@ Making appeal to an automorphism g, € Aut(B") such that g,.0 = z € B”
and expressing the distances occurring in the formula

® tanh?d (z,€) = |g; "¢

2
(P(”_1’2(”_m)_”) ( 2 g—1.£‘2>)
n m z d
B I(2) =i [ =)

n (1 o't D o (1-1eP)"

which can be viewed as “convolution product” of the ¢ with the radial function

Ry (€) = (1 _ |£‘2)2(V_m) <P,(,;7—1,2(u—m)—n) <1 _9 |£|2>)2 EcB.

cosh™2d(z,6) =1—|g; "¢

we get the integral transform

v (&)
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@ We have to calculate the Fourier-Helgason transform of hj;" (¢), which reads

du(§)

n+1?

T[] (A w) = [ hE" () Pa(6w)

s (1 |§|2) (\,w) € R x OB,

where P, (.,.) is the Poisson kernel

1_ |§|2 (n+iX)/2
Py (& w) = <|1—<§w>|2> ,(&,w) € B" x OB
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@ We have to calculate the Fourier-Helgason transform of hj;" (¢), which reads

5 () (v = [ M@ Py (f’w)@oi(li;nw () € B x 3B

where P, (.,.) is the Poisson kernel

1_ |§|2 (n+iX)/2
Py (& w) = <|1—<§w>|2> ,(&,w) € B" x 0B

@ Denote by do the Lebesgue (surface) measure on OB” and set ¢ = pf with
0 < p<1,0c 0B, and use polar coordinates

/n P () du(§) = 2n/0 P dp /W ® (pf) do (6).
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o Then, the integral 7 [h;"] () takes the form

1 2n—1¢n
” PP 185, (p) (n—1,2(v—m)—n) 2
o )00 [ T 5 -2
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o Then, the integral 7 [h;"] () takes the form

1 2n—1¢n
v, Q) (n—1,2(v—m) ) 2
(1) ) =en | (1 g2y -2 (P27 (1-26) " dp

@ After calculations using many transformations, we get

1 2n—1 2
v, _ P (n—1,2(v—m)—n)
1) v =2 [ (PR (1 20%)

n4+ix n—ix 2
><2F1< 5 > 7r);pzp_1>d,0
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Linearization of the square of Jacobi polynomial as a Clebsh-Gordon type formula (Chaggara,
H. and Koepf, W, App. Math. Lett. 2010):

s+/

PE) (u) PO (u) = 3 Ay (K) P (u)

k=0

In our setting, the linearization coefficients As ; (k) are of the form

(2(v = M) + )y (Mo (2K +2(v = m) + n) (=1)* 2m)! (2 (v = M))m)°

A:,n,m _ 5
(M) (2 = M) + My ey (M2 (2M — k) (2 (v — m)),,)
22 -2m+k,—2v—k—n:—-m,—-n—m+1,—-m —m—n+1
2 —2m,—2m—n+1:1-2u,1 —2u U

Here /7 " () denotes the Kampé de Fériet double hypergeometric function :

a:b/,C/
(@)@

), ( (@] g [O], [Cor] x?y®
o i) ) = >

. bl, o, a

q,s=0

where [ap], = H]‘-’:1 (a@j), in which (x); = x (x + 1) ... (x + s — 1) is the Pochhammer
symobol.
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Inserting

(P(n 12 (1 _ p,2) )2 _ i”iAZ,n,mP,((n—uz(u—m)) (1-22)

k=0
into
2m
[T () = 3 AT ()
k=0
where the last term in this sum is
1 2n—1
v, 2np (n—1,2(v—m)) 2
ka()\) = A (1 . )n+1 2(V m)Pn " (1 72p )

le 1 (”+ I)\) ! (” I)\) n, > dp
! 2 ’ 2 B p- — 1 '
By the Change of variable p = ta t,

+oo
3" = /o 2n (sinh 12"~ p{n=120=m) (1 — 2tanh? t)

ot A n— i\ .
x (cosh £)~*" =M1 L F, (n;' ,nTl,n;—sth t) dt.
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Using the result established (Koorwinder, Lecture Notes in Math. 1985):

+oo
/O (cosh )@ +#=3=1'=1 (ginh )2+ p{®?) (1 — 2tanh? t)

at+B+1+iN a+8+1—1i)
><2F1< 62 ; Bz

,a+u—ng0dt

Fa+ 1) (D TA@E+p + 1+ T (O + 4 +1—iN)
klr( (a+B+6+W +2)+ k)T (3(a—B+5+ 1 +2)+k)

><Wk<4/\2;;(5+u’+1),;(6u’+1),;(a+5+1) 1(aﬂ+1))

where 3,0,\ € R, a,0 > —1,0 + R(n)’ > —1 and W (.) is the Wilson
polynomial given in terms of the 4 F3-sum as :

Wi (x,a,b,c,d) := (a+ b), (a+c), (a+ d),

A F —k,k+a+b+c+d—-1,a+ix,a—ix ‘1
4rs a+b,a+ca+d
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For the special valuesa =n—1,§ =2(v —m) —n,8 =0 and

@' =2(v—m)—n—1, we find that
v (yy 200 (n) (=1)" n AN\
BN = mEee—m e B Mo tig

1.5 n nnn
XWk<4>\,2(V—m)—2,1+2,2,2>

Finally, replacing A by \/—Ag» — N?, we arrive at the announced result.
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EXAMPLE 4: THE LANDAU PROBLEM ON THE COMPLEX
e X =CP"
o dup=(1+<2,z >)7n71 du, du: Lebesgue measure on C".
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EXAMPLE 4: THE LANDAU PROBLEM ON THE COMPLEX
PROJECTIVE SPACE CP”

e X =CP"

o dup=(1+<2,z >)7n*1 du, du: Lebesgue measure on C".

@ The Schrodinger operator with v-magnetic field on CP”

n n
H, =401+ 123> (05 + 22) 90+ v > (20, — Z0)) — 1°) + 4/
ij=1 j=1

provided that 2v € Z*. The notations 8; = §/0z; and 9; = 8/0z;.
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EXAMPLE 4: THE LANDAU PROBLEM ON THE COMPLEX
e X =CP"
o dup=(1+<2,z >)7n*1 du, du: Lebesgue measure on C".

@ The Schrodinger operator with v-magnetic field on CP”

n n
H, =401+ 123> (05 + 22) 90+ v > (20, — Z0)) — 1°) + 4/
i,j=1 j=1
provided that 2v € Z*. The notations 8; = §/0z; and 9; = 8/0z;.

@ H, is an elliptic densely defined operator on L2(C", dy1,,) admitting a unique
self-adjoint realization also denoted by H,,.

@ The associated discrete spectrum

em” = —4v(m+v)(m+v+ n)+4u2, m=0,1,2,...,00

called spherical Landau levels on CP".
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THE EIGENSPACES AY, (CP")

@ The corresponding eigenspaces

AY(CP") = {F:C" — C, A, F = ¢%"F and sup / |F(pz)[2du < +oo}
p>0
sZn—1

@ Any function F(Zz) in A%,(CP") can be written in the form

—(m+v)
F(z) = (1+12P) > ef(p-ma-m-2vn+p+q—Iz1) hg
0<p<m;0<q<m+2v

2Fiis the Gauss hypergeometric function and

lim F(ro)= > (—ym-p (M= P+ )T (n+2p +2v)

r— o0 e Fr(m+n+p+2v)

hP’P+2V (w, w)

for z=zw, r > 0,w € $"~" and hy 4(2,2) € H(p, q).
e The dimension of A%, (CP") is

r(m+ n)r(m+ n+ 2v)
(Mr(m+1)r(m+2v+1)

dim( Ay, (CP")) := (2m+ n+ 2v) )
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A SET OF COHERENT STATES {|Z, M)} ,_c»

e Form=20,1,2, ..., aclass of generalized coherent states is defined by

_1 _—
|zm>=Wm(@)2 Y. O (@)leipa)
1<j<d(n.p,q)
0<g<m+2v,0<p<m
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A SET OF COHERENT STATES {|Z, M)} ,_c»

e Form=20,1,2, ..., aclass of generalized coherent states is defined by

_1 _—
|z,m>= (Npn(2))® > 7, 4 (2) ¥ip.a)
1<j<d(n,p,q)
0<g<m+2v,0<p<m

o &7, . (2) : orthonormal basis of A7, (CP")
® |pj p,q) : orthonormal basis of another (functional) Hilbert space
e dim# = dim A2, (C")

® Np(z) is a normalization factor such that (z, m|z, m),, = 1:

N (5)_ 2@m+2v L m(m+n+2v)  T(m+n)
m(2) = VoI(S?=")F(m+2v+1) T(m+1)(F(n))?
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A SET OF COHERENT STATES {|Z, M)} ,_c»

e Form=20,1,2, ..., aclass of generalized coherent states is defined by

_1 _—
|z,m>= (Npn(2))® > 7, 4 (2) ¥ip.a)
1<j<d(n,p,q)
0<g<m+2v,0<p<m

o &7, . (2) : orthonormal basis of A7, (CP")
® |pj p,q) : orthonormal basis of another (functional) Hilbert space
e dim# = dim A2, (C")

® Np(z) is a normalization factor such that (z, m|z, m),, = 1:

N (5)_ 2@m+2v L m(m+n+2v)  T(m+n)
m(2) = VoI(S?=")F(m+2v+1) T(m+1)(F(n))?

@ The CS satisfy the resolution of the identity

1 = /C |z m) (2, m| Nin (2) djun (2)
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THE OVERLAP INTEGRAL BETWEEN TWO CS IN C”

This quantity is defined by
1 -
’ > &]p.q (2) P 4 (W)

1<j<d(n,p,q)
0<g<m+2v,0<p<m

(z,mlw, m) = (Nm (2) Nim (W)~

_2(2m+2v + n)F(m+ n+ 2v) N+ w2 1" giet.2n)
= Vol r(mrm+2r £ 1) LAa+ 2P0+ W] T (Eeseela, W),
where d(z,w) is the Fubini-Study distance given by

[T +zw)
cos® d(z,w) = A+ zP)(A + |wp) ‘

|2

ZOUHAIR MOUAYN (MOROCCO)



CS QUANTIZATION AND BEREZIN TRANSFORM

e For any ¢ € L2(C", dup), the operator-valued integral
o A, = / |z,v,m) (z,v,m| o (2) Nm (2) dun(2)
Cﬂ

The function ¢ (Z) is a upper symbol of the operator A,.
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CS QUANTIZATION AND BEREZIN TRANSFORM

e For any ¢ € L2(C", dup), the operator-valued integral
o A, = / |z,v,m) (z,v,m| o (2) Nm (2) dun(2)
Cﬂ

The function ¢ (Z) is a upper symbol of the operator A,.
@ The Berezin transform is defined as the expectation value

B (0] (2) = Eqz,0.m)y (Ap) = (Z,v,m| A, |z,v,m) (lower symbol of A,).

@ Using the overlap integral between two CS, we obtain:

n M+ <z,w> 2 2 (n—1,2v) 2
Bnl¢l(2) = ciy C/ <(1+|22)(1+|W|2)) (PS~"#(cos 2d(z, )" o (w)dpun(w)

with
o 2(m+2v+n)(m+2v+n—1)
mo 7 (m + 2v)!
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THE BEREZIN TRANSFORMS AS FUNCTIONS OF Afs

THEOREM PREPRINT, N.DEMNI, Z.MOUAYN AND H.YAQINE, 2016

(2B + m)!
728 (mi(2B) )2
(—2B)kk! )j(2B + m+ n);(n);
(Mk(n+ k)eg(n+k —1) 'Z I(2B k+1)(2B+k+1+n),-

E —m,28—|—m+n,28—|—1+/,n+j 1
43 \2B—k+1+4j,2B+k+1+n+j,2B+1

(m+2B+n(m+2B+n—-1)
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ON THE PROOF

@ The Berezin kernel
” . 2
Bm(z, w) = ¢ (cos? d(z, W))2 (P,(,f7 2)(cos? d(z, w)))

@ The kernel of f (—Afgs):

+oo
K(z,w) = f(A)¥n(k; z,w), Ak = k(K + n) eigenvalues of — Afs
k=0

@ The spectral function

d(k,n+1) P10 (2] (z,w) 2 - 1)

Yn(k; Zz,w) = Vol(S2+T) PI—10) (1)
k

@ f : the unknown function?
@ By equating Bp,(z, w) = K(z, w)
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@ Next, we identify with the formula
PP (1 — 2x4 1) P2 P (1 — 2xt)

_ a1+ My saos + mo (a+ B+ 2k +1)(—u)k (,B) 1 _
= (e 1u m )( )Z(a @t Bkt 1), K L

p222 (pt 1 a1 =m0+ B +m 1, =My ap + o + My + 1
211l —k+1, a+B+p+2+k : ai+1, ag + 1

X1, Xz]

References:

@ Srivastava, H. M. (Oct. 1987). Some Clebsch-Gordan type linearization relations and other
polynomial expansions associated with a class of generalized multiple hypergeometric
series arising in physical and quantum chemical applications.

@ After isolating the ¥n(k, z, w) part in this formla and calculations, we arrive at f(Ax)
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THE BEREZIN TRANSFORM B§" oN CP"

@ A set of coherent states

_ [errem) (-0 +20)\" (0 +20)?)
$z,m (€) = (2u+m)!m!< 142z ) (1+zz>

@ For lowest Landau level m = 0

(1+28)°

B0 (s)—( . ) in 2(C, (1 + 22) %0 (2))
® Use s (1+28) 6 then d,,,,0(6) = (1+ 20 in L2(C, dur(2))

52
020z

%VE:ﬁO 14072 A
0 A+ (1 +(n+1)vT)

n=1

@ The Laplace-Beltrami operator A := — (1 4 zZ)?

here 1/h = 2v.

Some references:

e Z. Mouayn 2009, Coherent states attached to the spectrum of the Bochner Laplacian for
the Hopf fibration, Journal of Geometry and Physics.

o F. A. Berezin 1975, General concept of quantization, Comm. Math. Phys.
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