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Vector bundles Existence of holomorphic vector bundles

Construction methods (1)

Serre’s method

Theorem (J.-P. Serre) X=complex manifold, L1, L2 ∈ Pic(X ) line bundles,
Z ⊂ X with codimX (Z ) = 2. Under some cohomological conditions, the
sheaf E sitting in

0→ L1 → E → L2 ⊗ JZ → o

is locally free.

If X is projective, ANY rank-2 holomorphic vector bundle can be
constructed this way (cons. of Cartan-Serre theorems).

Definition. A coherent sheaf F is called filtrable if there exists

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr = F

with each Fi =coherent of rank i .
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Vector bundles Existence of holomorphic vector bundles

Construction methods (1)

Existence results

(Schwarzenberger) If X is a projective surface and E is any
topological rank-2 vector bundle, with det(E ) ∈ Pic(X ), then E has a
holomorphic structure constructed in this way.

(Bănică - Le Potier) If X is a non-projective surface then there exists
a non-negative function m such that if E is a filtrable rank-2 vector
bundle, then ∆(E ) = 4c2(E )− c21 (E ) ≥ m(c1, c2) ≥ 0.

Non-filtrable vector bundles

Let X be a K3 surface with Pic(X ) = 0. Then the tangent bundle TX
is non-filtrable.

(Bănică - Le Potier) If X is a non-projective surface and N is big
enough, there exists rank-2 vector bundles on X with c2(E ) = N
which are non-filtrable.
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(Bănică - Le Potier) If X is a non-projective surface and N is big
enough, there exists rank-2 vector bundles on X with c2(E ) = N
which are non-filtrable.

3 / 11



Vector bundles Existence of holomorphic vector bundles

Construction methods (1)

Restrictions on non-projective surfaces

Theorem (Bănică - Le Potier) If X is non-projective surface and E is a
rank-n holomorphic vector bundle then

∆(E ) = 2nc2(E )− (n − 1)c21 (E ) ≥ 0.

Theorem(-) If X is non-projective surface and E is a holomorphic vector
bundle then

χ(E ) = h0(E )− h1(E ) + h2(E ) ≤ 0
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Vector bundles Existence of holomorphic vector bundles

Construction methods (2)

Double cover method

Prop. If f : Y → X is a 2 : 1 map and L ∈ Pic(Y ) then f∗(L) is a rank-2
vector bundle on X .

(Schwarzenberger) If X is a projective surface and E is any
topological rank-2 vector bundle with det(E ) ∈ Pic(X ), then E has a
holomorphic structure constructed in this way.

Pick again a K3 surface X with Pic(X ) = 0; then X has no double
cover at all!

(Br̂ınzănescu - Moraru) If X is a non-Kähler elliptic surface, all rank-2
vector bundles can be constructed in this way.
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Vector bundles Existence of holomorphic vector bundles

Construction methods (3)

Elementary transformations

Theorem. Let X be a complex manifold, i : D ↪→ X closed with
dim(D) = dim(X )− 1, E=vector bundle on X , V =vector bundle on D.
Assume there exist a surjection

E → i∗(V )→ 0

Then E defined by
0→ E → E → i∗(V )→ 0

is locally free on X .

(Ballico) If X is a projective surface and E is any topological rank-2
vector bundle with det(E) ∈ Pic(X ), then E has a holomorphic
structure by applying elementary transformations starting from the
trivial bundle.

The method fails on non-projective surfaces due to lack of curves!
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Vector bundles Stability

Stability

Slope stability

Definition. X=compact complex manifold of complex dimension n ,
ω=fixed Gauduchon metric (i.e. ∂∂ωn−1 = 0) , E=holomorphic vector
bundle.

The degree of E is

degω(E ) =

∫
X
c1(E , h) ∧ ωn−1

The slope of E is

µω(E ) =
degω(E )

rank(E )

Definition. E is called ω-(semi)stable if

µω(F) < µω(E )

(resp. ≤) for all coherent F ⊂ E with rank(F) < rank(E ).
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Vector bundles Stability

Stability

The Kobayashi-Hitchin correspondence

Definition. (X , ω)= compact complex manifold, ω =Gauduchon metric. E
is said Hermite-Einstein if it has a Hermitian metric h whose curvature Fh
satisfies

ΛωFh = γE idE

for some γE ∈ R.

Main Theorem. E is (poly)stable iff E has a Hermite-Einstein metric.

Corollary. (Bogomolov-Lübke) If X is a surface and E is a stable rank-r
vector bundle, then

2rc2(E )− (r − 1)c21 (E ) ≥ 0
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Vector bundles Stability

Stability

Examples of stable vector bundles.

Line bundles are stable.

Non-filtrable vector bundles are stable.

On non-Kähler surfaces X one can easily prove:

Theorem. For any n > 0 there exists a stable rank-2 vector bundle E
with trivial determinant, (det(E ) = OX ) and c2(E ) = n.
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Vector bundles Stability

More about non-filtrable vector bundles

Can one produce more examples?

Theorem. If X is a compact complex non-projective surface and X̂ is its
blow-up at some point, then every holomorphic vector bundle on X̂ can be
turned into a pull-back form X (twisted by a line bundle) after finitely
many elementary transformations along the exceptional divisor.

Theorem. (Verbitsky) If π : X → B is an elliptic principal bundle (with
dimC(X ) ≥ 3) over a projective manifold B which is positive (i.e.
π∗(ω) =exact, for some Kähler class ω on B) then every stable vector
bundle E on X is a pull-back form B (up to a twist by a line bundle),

E = π∗(E)⊗ L.

Theorem. (Br̂ınzănescu-/) The same is true if B is a surface with no
curves (with a topological condition on the fibration instead of positivity).
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Vector bundles Stability

What about the structure of moduli space?

Moduli space

Theorem. (Tyurin, Kim) If X is a compact Kähler manifold, then any
moduli space of stable vector bundles has a natural Kähler structure.

Question. If X is an LCK manifold, is it true that moduli spaces of stable
vector bundles have (natural) LCK metrics?

Theorem.(Aprodu-Moraru-Toma) If X is a Kodaira surface, and if M is a
(well-chosen) moduli space of non-filtrable rank-2 vector bundles on X ,
then M is itself a primary Kodaira surface.
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