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1. Introduction and Motivation

 The main task of quantum cosmology is to describe the evolution of
the universe in a very early stage.

 Since quantum cosmology is related to the Planck scale phenomena 
it is logical to consider various geometries (in particular 
nonarchimedean, noncommutative …)

 Supernova Ia observations show that the expansion of the Universe 
is accelerating, contrary to FRW cosmological models.

 Besides, cosmic microwave background (CMB) radiation data are 
suggesting that the expansion of our Universe seems to be in an 
accelerated state which is referred to as the “dark energy” effect. 

 A need for understanding these new and rather surprising facts, 
including (cold) “dark matter”, has motivated numerous authors to 
reconsider different inflation scenarios.

 Despite some evident problems such as a non-sufficiently long 
period of inflation, tachyon-driven scenarios remain highly 
interesting for study.



2. Adelic Quantum Theory

 Reasons to use p-adic numbers and adeles in quantum physics:

 The field of rational numbers Q, which contains all observational 
and experimental numerical data, is a dense subfield not only in 
R but also in the fields of p-adic numbers Qp.

 There is an analysis within and over Qp like that one related to R.

 General mathematical methods and fundamental physical laws 
should be invariant [I.V. Volovich, (1987), Vladimirov, Volovich, 
Zelenov (1994)] under an interchange of the number fields R and
Qp.

 There is a quantum gravity uncertainty ( ), when 
measures distances around the Planck length, which restricts 
priority of Archimedean geometry based on the real numbers and 
gives rise to employment of non-Archimedean geometry.

 It seems to be quite reasonable to extend standard Feynman’s 
path integral method to non-Archimedean spaces. 
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Adelic Quantum Theory

 p-ADIC FUNCTIONS AND INTEGRATION

 There are primary two kinds of analyses on Qp : Qp 

Qp (class.) and Qp  C (quant.). 

 Usual complex valued functions of p-adic variable, 
which are employed in mathematical physics, are:

 an additive character  

 fractional part

 locally constant functions with compact support 

 The number theoretic function
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Adelic Quantum Theory

 There is well defined Haar measure and integration. 

Important integrals are

 Real analogues of integrals
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Adelic Quantum Theory

 Dynamics of p-adic quantum model

 p-adic quantum mechanics is given by a triple

 Adelic evolution operator is defined by

 The eigenvalue problem

))(),(),((
2 ppppp

tUzWQL

 



,...,...,3,2,

)( )(),()(),()()(
pv

Q vv
v

vv
v
tA t

v

dyyyxKdyyyxKxtU 

)()()()( xtExtU   



Adelic Quantum Theory

 The main problem in our approach is computation of

p-adic transition amplitude in Feynman's PI method

 Exact general expression (   - classical action)
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Adelic Quantum Theory

 Adelic quantum mechanics [Dragovich (1994), G. Dj.

and Dragovich (1997, 2000), G. Dj, Dragovich and 

Lj. Nesic (1999)].

 Adelic quantum mechanics:

 adelic Hilbert space,

 Weyl quantization of complex-valued functions on adelic

classical phase space,  

 unitary representation of an adelic evolution operator,

 The form of adelic wave function
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Adelic Quantum Theory

 Exactly soluble p-adic and adelic quantum mechanical 
models:
 a free particle and harmonic oscillator [VVZ, Dragovich]

 a particle in  a constant field [G. Dj, Dragovich]

 a free relativistic particle [G. Dj, Dragovich, Nesic]

 a harmonic oscillator with time-dependent frequency [G. Dj, Dragovich]

 Resume of AQM: AQM takes in account ordinary as well as 
p-adic effects and may me regarded as a starting point for 
construction of more complete quantum cosmology and string/M 
theory. In the low energy limit AQM effectively becomes the 
ordinary one.



3. Minisuperspace quantum cosmology as 

quantum mechanics over minisuperspace

(ADELIC) QUANTUM COSMOLOGY

 The main task of AQC is to describe the very early stage in the 
evolution of the Universe.

 At this stage, the Universe was in a quantum state, which 
should be described by a wave function (complex valued and 
depends on some real parameters).

 However, QC is related to Planck scale phenomena - it is natural to 
reconsider its foundations. 

 We maintain here the standard point of view that the wave function 
takes complex values, but we treat its arguments in a more 
complete way!

 We regard space-time coordinates, gravitational and matter fields to 
be adelic, i.e. they have real as well as p-adic properties 
simultaneously.

 There is no Schroedinger and Wheeler-De Witt equation for 
cosmological models.

 Feynman’s path integral method was exploited and minisuperspace
cosmological models are investigated as a model of adelic quantum 
mechanics [Dragovich (1995), G Dj, Dragovich, Nesic and Volovich
(2002), G.Dj and Nesic (2005, 2008)…].



Minisuperspace quantum cosmology as quantum 

mechanics over minisuperspace

(ADELIC) QUANTUM COSMOLOGY

 Adelic minisuperspace quantum cosmology is 

an application of adelic quantum mechanics to 

the cosmological models.

 Path integral approach to standard quantum 

cosmology
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4. p-Adic Inflation

 p-Adic string theory was defined [Volovich, Freund, Olson (1987); Witten 
at al (1987,1988)] replacing integrals over R (in the expressions for 
various amplitudes in ordinary bosonic open string theory) by integrals 
over , with appropriate measure, and standard norms by the p-adic
one.

 This leads to an exact action in d dimensions, , .

 The dimensionless scalar field  describes the open string tachyon. 

 is the string mass scale and  

 is the open string coupling constant

 Note, that the theory has sense for any integer  and make sense in the 
limit 1p
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p-Adic Inflation

 The corresponding equation of motion: 

 In the limit  (the limit of local field theory) the above eq. of motion 
becomes a local one

 Very different limit         leads to the models where nonlocal 
structures is playing an important role in the dynamics

 Even for extremely steep potential p-adic scalar field (tachyon) rolls 
slowly! This behavior relies on the nonlocal nature of the theory: the 
effect of higher derivative terms is to slow down rolling of tachyons. 

 Approximate solutions for the scalar field and the quasi-de-Sitter 
expansion of the universe, in which  starts near the unstable 
maximum      and rolls slowly to the minimum  .01
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5. Tachyons

 A. Somerfeld - first discussed about possibility of particles to

be faster than light (100 years ago).

 G. Feinberg - called them tachyons: Greek word, means fast,

swift (almost 50 years ago).

 According to Special Relativity:

 From a more modern perspective the idea of faster-than-light

propagation is abandoned and the term "tachyon" is recycled

to refer to a quantum field with

.
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Tachyons

 Field Theory

 Standard Lagrangian (real scalar field):

 Extremum (min or max of the potential):

 Mass term:

 Clearly can be negative (about a maximum of the

potential). Fluctuations about such a point will be

unstable: tachyons are associated with the presence of

instability.
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6. Tachyons-From Field Theory to 

Classical Analogue – DBI and Sen

approach

 String Theory

 A. Sen – proposed (effective) tachyon field action

(for the Dp-brane in string theory):

 - tachyon field

 - tachyon potential

 Non-standard Lagrangian and DBI Action!
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Tachyons-From Field Theory to Classical 

Analogue – DBI and Sen approach

 Equation of motion (EoM):

 Can we transform EoM of a class of non-

standard Lagrangians in the form which 

corresponds to Lagrangian of a canonical 

form, even quadratic one? Some classical 

canonical transformation (CCT)?
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7. Classical Canonical Transformation 

and Quantization

 CCT:

 Generating function:

 EoM transforms to
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Classical Canonical Transformation 

and Quantization

 Choice:

 EoM reduces to:

 This EoM can be obtained from the standard 

type Lagrangians
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Classical Canonical Transformation 

and Quantization

 Example:

 Generating function:

 EoM:

 This EoM can be obtained from the standard-

type (quadratic)Lagrangian 
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Classical Canonical Transformation 

and Quantization

 Action (quadratic):

 Quantization; Transition amplitude,

 The necessary condition for the existence of a p-adic 
(adelic) quantum model is the existence of a p-adic 
quantum-mechanical ground (vacuum) state in the form 
of a characteristic     -function; we get expression which 
defines constraints on parameters of the theory
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Classical Canonical Transformation 

and Quantization

 Using p-Adic Gauss integral

 we get (for the case of inverse power-law potential)
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Classical Canonical Transformation 

and Quantization

 Case 1 impossible to fulfill

 Case 2

 Case 3
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where we denoted with an "0" index all values at the initial 
actual time.

8. Review of Reverse Engineering 

Method - “REM”

Table 1.



We shall now introduce the most general scalar field 

as a source for the cosmological gravitational field, 

using a Lagrangian as : 

where  is the numerical factor that describes the

type of coupling between the scalar  field and the

gravity.  
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Cosmology with non-minimally

coupled scalar field

 Although we can proceed with the reverse method 
directly with the Friedmann eqs. it is rather complicated 
due to the existence of nonminimal coupling. We 
appealed to the numerical and graphical facilities of a 
Maple platform in the Einstein frame with a minimal 
coupling!.

 For sake of completeness we can compute the Einstein
equations for the FRW metric.
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Where

These are the new Friedman equations !!!

Cosmology with non-minimally

coupled scalar field
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 After some manipulations we have:



The potential in terms of the scalar field for            ,            (with green line in both panels) 

and for               (left panel) and               (right panel) with blue line

Some numerical results

 The exponential expansion and the 

corresponding potential depends on the field
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Some numerical results

 The exponential expansion and the corresponding 

potential depends on the field and “omega factor”

The potential in terms of the scalar field and       , for           (the green surface in both 

panels) and for               (left panel) and               (right panel) the blue surfaces 
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9. Tachyon inflation in an AdS

braneworld

 Inflation is driven by the tachyon field originating in string theory

 A simple model of this kind is based on the second Randall-Sundrum (RSII) 
model 

 The model was originally proposed as a possible mechanism for localizing 
gravity on the 3+1 universe embedded in a 4+1 dimensional space-time without 
compactification of the extra dimension.

 Originally proposed as a possible mechanism for localizing gravity on the 3+1 
universe embeded in a 4+1 dimensional spacetime without compactication of 
the extra dimension.

 The RSII model is a 4+1 dimensional Anti de Sitter (AdS5) universe containing 
two 3-branes with opposite tensions separated in the fifth dimension: observers 
reside on the positive tension brane and the negative tension brane is pushed 
off to infinity.

 The Planck mass scale is determined by the curvature of the AdS spacetime
rather than by the size of the fifth dimension.

 The fluctuation of the interbrane distance along the extra dimension implies the 
existence of the radion.

 Radion - a massless scalar field that causes a distortion of the bulk geometry.



RS II Model

 We discuss a dynamics of 3-brane moving in the spacetime of the extended 

RSII model which includes the back-reaction of the radion field

 - the dynamical brane tension
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RS II Model

 Cosmology on the brane is obtained by allowing the brane to move in the 

bulk. Equivalently, the brane is kept fixed at y=0 while making the metric in 

the bulk time dependent.

y   y 0y 
N. Bilic, “Space and Time in Modern Cosmology”



RS II Model

 The brane Lagrangian, after integrating out the fifth coordinate, is:

 Where Φ is the radion field,  is the tachyon field, k is the inverse of the 

AdS curvature radius  and  is
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 In the absence of radion, the combined brane-radion Lagrangian is

 Where

 The treatment of our the system in a cosmological context is 

conveniently performed in the Hamiltonian formalism.

 The Hamiltonian density is
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Hamilton's equations

 Friedman equation

 Where

 Besides, we rescaled the time as

 and express the system in terms 

of dimensionless quantities
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Conditions for inflation and 

slow-roll parameters

 Slow-roll parameters are 

defined as

 The first two parameters:

 In the absence of the radion
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Results

 We analyze the effects of radion to tachyon field by comparing 

results for the RS II model to the results obtained for the inverse 

quartic potential (absence of radion)

 The system of equations is solved numerically and the slow roll 

parameters are calculated 
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Conclusion and perspectives

 Sen’s proposal and similar conjectures have attracted important interests.

 Our understanding of tachyon matter, especially its quantum aspects is still 
quite pure.

 Perturbative solutions for classical particles analogous to the tachyons offer 
many possibilities in quantum mechanics, quantum and string field theory 
and cosmology on archimedean and nonarchimedean spaces. 

 It was shown [Barnaby, Biswas and Cline (2007)] that the theory of p-adic
inflation can compatible with CMB observations.

 Quantization of tachyons in homogenous case  is possible and done in the 
“locally equivalence” limit 

 Quantum tachyons could allow us to consider even more realistic 
inflationary models including quantum fluctuation.

 Reverse Engineering Method-REM remains a valuable auxiliary tool for 
investigation on tachyonic–universe evolution for nontrivial models.

 Randal-Sundrum model allows numerical consideration for tachyon like 
systems  with promising preliminary results. 
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